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Abstract 1 

The bioactive chemical constituents of water and ethanol extracts of Euphorbia hirta L. leaves have 2 

been identified and quantified using an un-targeted mass spectrometric approach. The study allowed 3 

the tentative identification of 123 individual phenolic compounds and 18 non-phenolic 4 

phytochemicals, most of them described in Euphorbia hirta L. leaves for the first time. 5 

Gallotannins, hydroxybenzoic and hydroxycinnamic acids were the most abundant phenolic classes 6 

in Euphorbia hirta L. leaves, representing together the 71.5% (26.3%, 25.2% and 20%, 7 

respectively) of the total amount of identified phenolics. The main phenolic compounds detected 8 

were tri-O-galloyl-glucose isomers, feruloyl-coniferin, tetra-O-galloyl-glucose isomers, di-O-9 

galloyl-glucose isomers, ethyl-gallic acid, protocatechuic acid-O-pentoside-O-hexoside, 5-O-10 

caffeoyl-quinic acid trans isomer and digalloyl-quinic acid. Feruloyl-coniferin was found to be 11 

approximately six times more concentrated in the ethanol extract with respect to the water extract. 12 

The ethanol extract exhibited higher ABTS (1338.3 ± 85.3 and 802.3 ± 91.0 μmol ascorbic acid 13 

equivalent/gram of dry extract, respectively) and superoxide anion (2014.6 ± 78.6 and 1528.0 ± 14 

111.7 μmol ascorbic acid equivalent/gram of dry extract, respectively) scavenging abilities than the 15 

water extract. Additionally, the ethanol extract also showed a remarkable anti-fungal effect against 16 

Fusarium oxysporum f. sp. vasinfectum, Alternaria solani and Rhizoctonia solani. This study 17 

provides new information about Euphorbia hirta L., offering reasons to promote this plant species 18 

as rich source of phenolics and an excellent source of antifungal molecules that might have a 19 

prospective use in controlling fungal diseases of vegetable crops. 20 

Keywords: Bio-fungicides; phytochemicals; mass spectrometry; phytopathogenic mycetes; tomato. 21 
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1. Introduction 22 

Euphorbia hirta L. (E. hirta) is a plant species commonly found in all tropical countries worldwide, 23 

including Cameroon. E. hirta belongs to the spurge family of Euphorbiaceae. Although it can be 24 

seen lying down sometimes, it is usually upright, slender-stemmed, spreading up to 80 cm tall (Abu 25 

et al., 2011). 26 

E. hirta is a very popular medicinal herb and has been used since ancient times as decoction or 27 

infusion in traditional remedies to treat gastro-intestinal diseases and disorders (e.g. intestinal 28 

parasites, diarrhoea and peptic ulcer), skin problems and asthma (Huang et al., 2012). More 29 

recently, extracts from E. hirta have shown a broad range of biological properties, including 30 

antimicrobial, antifungal, anti-inflammatory, antioxidant, anticancer and antidiabetic activities 31 

(Almosnid et al., 2018; Kumar et al., 2010; Li et al., 2015). Several phytochemicals have been 32 

already extracted and identified from E. hirta leaves, such as terpenoids, coumarins, lignans and 33 

phenolic compounds (Kumar et al., 2010; Li et al., 2015; Yi et al., 2012). The latter components, 34 

widely known for their antioxidant and biological activities, have been rarely investigated. In this 35 

context, previous phytochemical studies showed that the leaves from E. hirta were characterized by 36 

the presence of flavonols (quercetin and myricetin derivatives, and kaempferol), hydroxybenzoic 37 

acids (gallic and protocatechuic acids), tannins (gallotannins and euphorbins), flavones (luteolin) 38 

and lignans (pinocembrin, pinoresinol derivatives and syringaresinol derivatives) (Kumar et al., 39 

2010; Li et al., 2015; Yi et al., 2012). However, a comprehensive identification and quantification 40 

of the phenolic profile of E. hirta leaves is still lacking. 41 

Phytopathogenic fungi are the causative agents of several important diseases of cultivated plants, 42 

responsible of enormous crop losses in agriculture (Eloff et al., 2017). In this context, the 43 

application of chemical fungicides is the most widespread pest management strategy to prevent 44 

yield and quality losses. Quite frequently, the development of resistance traits among the pathogens 45 

is the result of massive and improper use of these chemicals (Lucas et al., 2015). Moreover, some of 46 
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these fungicides may seriously affect human health due to the environmental pollution and the 47 

presence of residues frequently detected in fruits and vegetables. 48 

Currently, the research on alternative natural products with potential use in pest management 49 

strategies is very active (Bocquet et al., 2018; Eloff et al., 2017; Wu et al., 2018). To this purpose, 50 

phenolic-rich plant extracts were shown to display antifungal activity against different pathogenic 51 

fungi, including Fusarium oxysporum, Rhizoctonia solani, Phytophthora nicotianae, Alternaria 52 

alternata and Aspergillus species (Eloff et al., 2017; de Rodríguez et al., 2015; Wu et al., 2018). In 53 

addition, purified phenolics demonstrated a direct antifungal action as well, such as ferulic acid 54 

against Botrytis cinerea or alkylresorcinols against different Fusarium spp. (Patzke et al., 2017; 55 

Patzke and Schieber, 2018). 56 

The aim of the present study was to identify and quantify the phenolic profile of two different 57 

extracts (water and ethanol extracts) of E. hirta leaves by using an un-targeted mass spectrometry 58 

approach. The two different extracts were also characterized for their antioxidant properties and 59 

their ability to inhibit the growth of some plant pathogenic fungi affecting tomato.  60 
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2. Materials and methods 61 

2.1. Chemicals and reagents 62 

Phenolic standards (quercetin, quercetin-3-O-rutinoside, quercetin-3-O-glucoside, kaempferol, 63 

epicatechin, ellagic acid, gallic acid, protocatechuic acid, caffeic acid, p-coumaric acid, and ferulic 64 

acid) and reagents for analytical determination were purchased from Sigma-Aldrich (Milan, Italy). 65 

Deionized water was obtained from a Milli-Q System (Bedford, MA, USA). The mass spectrometry 66 

reagents and solvents for phenolic compounds extraction were obtained from BioRad (Hercules, 67 

CA, USA).  68 

 69 

2.2 Fungal strains 70 

Three pathogenic fungi affecting tomato were used: Fusarium oxysporum f. sp. vasinfectum Snyder 71 

et Hansen, strain FUSITS04 (from Cameroon), Alternaria solani Sorauer, strain ASU4 (from 72 

Cameroon) and Rhizoctonia solani Kuhn, strain RsG1 (isolated in Italy and kindly provided by 73 

Paola Nipoti, University of Bologna). The fungi were maintained on 3.9% (m/v) potato dextrose 74 

agar (PDA) medium at 27°C until their use. 75 

 76 

2.3. Plant material 77 

A tropical plant species, Euphorbia hirta L. (family: Euphorbiaceae), native and widely spread in 78 

Cameroon was selected for the production of the extracts. Plants were collected from a local area  79 

(Central Region, Yaoundé-Mbankomo, Cameroon) and identified by Tadjouteu Fulbert by 80 

comparison with the botanical collection of A. J. M. Leeuwenberg, number 10480 and registered at 81 

the Cameroon National Herbarium in Yaoundé under the number 48982/HNC. Whole plants, 82 

including roots, were harvested just before the flowering stage (Figure S1).  83 

 84 

2.4. Preparation of crude extracts 85 
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Water and ethanol plant extracts were obtained as described in Nguefack et al. (2013). After manual 86 

harvesting, the whole plants were shade-dried at a temperature of 35°C for 15 days. Dry leaves 87 

were detached from plants and then milled into powder using a GRAIN MILL MAGNUM 4V 88 

(motor power: 1 HP 750 Watt, 13,000 to 15,000 rpm). Aliquots of 100 g of plant powder were first 89 

defatted by mixing with 600 mL of hexane on a rotary shaker at 120 rpm for 24 h at room 90 

temperature. After filtration with a fine cloth, the plant residue was spread on an aluminium foil 91 

under a sterile hood, allowing the complete hexane evaporation. Lipid-free dry powder was then 92 

used for the extraction. Two solvents were simultaneously used in two different extraction 93 

procedures: distilled water and 70% ethanol/water solution. For both extractions, the defatted plant 94 

material was soaked and stirred in 600 mL of distilled water or, alternatively, 70% ethanol for 24 h 95 

at room temperature, followed by filtration through Whatman No1 filter paper. The resulting 96 

filtrates were then centrifuged at 5,200×g for 10 min and the supernatants were evaporated into a 97 

ventilate oven at 50°C overnight to obtain dried pellets. Dried pellets were named water extract and 98 

ethanol extract. The average yields were 8.20% for water extract and 5.60% for ethanol extract. 99 

  100 

2.5. LC-ESI-IT-MS/MS analysis of phenolic compounds 101 

For LC-MS/MS analysis, 20 mg of powders from water and ethanol extracts of E. hirta leaves were 102 

re-suspended in 1 mL of the respective solvents (water and 70% ethanol, respectively). The extracts 103 

were then analysed on a HPLC Agilent 1200 Series system equipped with a C18 column (HxSil 104 

C18 Reversed phase, 250×4.6 mm, 5 μm particle size, Hamilton Company, Reno, Nevada, USA) as 105 

reported in Mena et al. (2016). The mobile phase consisted of (A) H2O/formic acid (99:1, v/v) and 106 

(B) acetonitrile/formic acid (99:1, v/v). The gradient started at 1% B for 1 min then linearly ramped 107 

up to 40% B in 13 min. The mobile phase composition was raised up to 99% B in 13 min and 108 

maintained for 2 min in order to wash the column before returning to the initial condition. The flow 109 

rate was set at 1 mL/min. The samples were injected in the amount of 40 μL. After passing through 110 
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the column, the eluate was split and 0.4 mL/min were directed to an Agilent 6300 ion trap mass 111 

spectrometer. Two MS experiments were performed, one in ESI negative ion mode and one using 112 

positive ESI ionization, under the same chromatographic conditions. Identification of phenolic 113 

compounds in all samples was carried out using full scan, data-dependent MS2 scanning from m/z 114 

100 to 800.  115 

Ellagitannins were quantified as ellagic acid equivalents whereas gallotannins as gallic acid 116 

equivalents. Flavonols were quantified as quercetin-3-glucoside or kaempferol equivalents. Flavan-117 

3-ols were quantified as catechin equivalent. Hydroxybenzoic acids were quantified as gallic acid or 118 

protocatechuic acid equivalents whereas hydroxycinnamic acids as caffeic acid or coumaric acid or 119 

ferulic acid equivalents. Isocoumarins were instead quantified as gallic acid equivalents.  120 

ESI-IT-MS/MS parameters, limits of detection (LOD) and limits of quantification (LOQ) for the 121 

different standards were the same as reported in Martini et al. (2017). 122 

Quantitative results were expressed as mg of compounds per g of dry extract. 123 

 124 

2.6 Antioxidant activity analysis 125 

The antioxidant properties of water and ethanol fractions obtained from E. hirta leaves were 126 

analysed by using four different assays. The samples were obtained by dissolving 20 mg of powders 127 

from water and ethanol extracts in 1 mL of the respective solvents (water and 70% ethanol, 128 

respectively). The radical scavenging ability was tested by using the ABTS assay according to Re et 129 

al. (1999). For the determination of the reducing ability, a protocol based on the ferric 130 

reducing/antioxidant power (FRAP) assay was used (Benzie and Strain, 1999). The capacity to 131 

scavenge superoxide anion radicals was evaluated according to the methods reported by Martini et 132 

al. (2017). The results were expressed as μmol of ascorbic acid equivalent per gram of dry extract. 133 

The Fe2+-chelation ability was instead evaluated by the ferrozine assay (Karama and Pegg, 2009). 134 
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Re-dissolved water and ethanol extracts of E. hirta leaves were diluted 20-fold in the respective 135 

solvents and tested for the chelating ability. Results were expressed as percentage of bound Fe2+. 136 

 137 

2.7 Antifungal activity 138 

The agar plate dilution method, as described by Rios et al. (1988), was performed to investigate the 139 

direct antifungal activity of the extracts. Five increasing dilutions of the plant extracts were used to 140 

obtain the following final concentrations: 1.25, 2.50, 5, 10, and 20 mg of dry extract/mL. PDA 141 

plates without any addition of plant extracts were used as a negative control.  142 

A 5 mm mycelial disk of each phytopathogenic fungus was placed on the centre of an agar plate and 143 

then incubated at 26°C. After 7 days, in order to assess the fungal growth, the two perpendicular 144 

diameters of the fungal mycelium were measured. Growth inhibition was calculated comparing 145 

fungal growth on pre-treated PDA plates with the growth on PDA without any addition of plant 146 

extracts. Growth inhibition percentage (% I) was calculated according to the formula developed by 147 

Pandey et al., (1982):            148 

% I = [(MGC – MG)/MGC]×100 149 

where, MGC = mycelium growth diameter in the control PDA plate, MG = mycelium growth 150 

diameter in the pre-treated PDA plate.  
151 

The concentration of plant extracts required to inhibit by 50% the fungal growth (IC50) was 152 

determined by plotting the growth inhibition percentage as a function of final plant extract 153 

concentration (base-10 logarithm). IC50 values were expressed as mg of extract/mL. 154 

                                                                    155 

2.8. Statistics 156 

Mass spectrometry and antioxidant activity data are displayed as mean ± SD for three replicates for 157 

each prepared sample. Antifungal activity data are reported as mean ± SD for five replicates. 158 

Univariate analysis of variance (ANOVA) with Tukey’s post-hoc test was applied using GraphPad 159 
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prism 6.0 (GraphPad Software, San Diego, CA, U.S.A.) when multiple comparisons were 160 

performed. The differences were considered significant with P < 0.05. IC50 for antifungal activity 161 

was calculated by using non-linear regression analysis (GraphPad prism 6.0; GraphPad Software, 162 

San Diego, CA, U.S.A.).163 
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3. Results and discussion 164 

3.1. Identification of the major phytochemicals in water and ethanol extracts of Euphorbia hirta 165 

leaves 166 

In this study, the water and ethanol extracts of E. hirta leaves were analysed for their phytochemical 167 

profile. The phytochemical composition of the extracts was investigated using an un-targeted 168 

method through LC-ESI-IT-MS/MS experiments. Representative base peak chromatograms (BPCs) 169 

are shown in Figure 1. This approach allowed the tentative identification of 123 individual phenolic 170 

compounds, 7 organic acids, 4 terpenes, 3 amino acids, 1 dipeptide, 1 alkaloid, 1 anthraquinone and 171 

1 norisoprenoid. 172 

Ten compounds were identified by comparison with reference standards, while the remaining 131 173 

compounds were tentatively identified based on the interpretation of their fragmentation patterns 174 

obtained from mass spectra (MS2 experiments) and by comparison with the literature. The mass 175 

spectrum data along with peak assignments and retention time for the identified phytochemicals are 176 

described in Tables 1 and 2. 177 

 178 

3.1.1. Ellagic acid derivatives and ellagitannins 179 

A total of 21 ellagic acid derivatives and ellagitannins were identified in the E. hirta extracts. 180 

Compound 41.1 presented a negative charged molecular ion at m/z 285 ([M-H]-1) and the same 181 

fragmentation pattern as ellagic acid with a base peak at m/z 257 and secondary peaks at m/z 229 182 

and m/z 185 (Calani et al., 2013). However, its m/z value was 16 Da lower than that of ellagic acid 183 

and was tentatively identified as deoxyellagic acid. Compound 31.5 was identified as ellagic acid 184 

by comparison of the retention time and mass spectral data with the authentic standard. Compounds 185 

28.1 and 30.4 showed an m/z ion at 519 ([M-H]-1) and the typical fragmentation pattern of ellagic 186 

acid. The loss of 218 Da is typical of a pentoside-malonyl group (loss of −86 Da and −132 Da 187 

corresponding to malonyl and pentoside moieties, respectively) and these compounds were, 188 
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therefore, identified as isomers of ellagic acid malonyl-pentoside. Compound 32.5 gave a 189 

pseudomolecular ion at m/z 601 ([M-H]-1) and a fragmentation pattern consistent with gallagic acid 190 

(Mena et al., 2012). Ellagitannins are characterized by the presence of a hexahydroxydiphenoyl 191 

(HHDP) moiety, which results in the typical appearance of fragment ions at m/z 301 and m/z 275 in 192 

the MS2 spectra. Compounds 2.2, 3.1 and 5.1 yielded the same pseudomolecular ion at m/z 481 and, 193 

on the basis of the fragmentation spectra, they were identified as HHDP-hexoside isomers (Calani 194 

et al., 2013). Three signals (compounds 6.7, 11.1 and 20.1) at m/z 633 were observed and identified 195 

as galloyl-HHDP-hexoside (corilagin) isomers (Sousa et al., 2016). Additionally, two signals at m/z 196 

631 (compounds 17.2 and 18.1) showed the same fragmentation pattern of galloyl-HHDP-hexoside. 197 

These compounds were identified as dehydro-corilagin isomers. Based on previously published 198 

fragmentation spectra (Mena et al., 2012; Calani et al., 2013), compounds 17.1 and 22.2 were 199 

identified as pedunculagin II and pedunculagin I, respectively, whereas compounds 21.2 and 27.2 200 

were identified as granatin B isomers. Finally, four signals (compounds 6.3, 7.1, 9.1 and 31.4) 201 

displayed the typical fragmentation pattern of ellagitannins, but it was not possible to assign them 202 

an exact structure. 203 

 204 

3.1.2. Gallotannins 205 

In this study, 11 gallotannins were detected in the E. hirta leaves extracts. Gallotannins are 206 

polyphenolic compounds with a sugar core linked to at least two gallic acid moieties. The MS2 207 

spectra of gallotannins usually gave typical fragment ions at m/z 331, 313 and 169, which 208 

correspond to the moiety of galloyl-hexoside, galloyl-hexoside –H2O, and gallic acid, respectively 209 

(Gu et al., 2013). The typical losses included gallic acid moieties (152 or 170 Da) and sugar units 210 

(162 Da) (Hukkanen et al., 2007). According to the proposed fragmentation pathway, 211 

compounds 10.3 and 14.5 were identified as di-O-galloyl-glucose isomers (Gu et al., 2013). 212 

Compounds 16.1, 19.2, 23.2 and compounds 23.4 and 27.3 were identified as isomers of tri- and 213 
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tetra-O-galloyl-glucose, respectively. The product ion at m/z 483 corresponding to the deprotonated 214 

di-O-galloyl-glucose molecule and originating from successive loss of galloyl groups can be 215 

observed in the MS2 spectra of both tri-O-galloyl-glucose and tetra-O-galloyl-glucose. The 216 

fragmentation of tetra-O-galloyl-glucose isomers also generated a signal at m/z 635 corresponding 217 

to the deprotonated tri-O-galloyl-glucose molecule. Finally, compound 30.1 was assigned to penta-218 

O-galloyl-glucose. Compound 24.3 had a pseudomolecular ion at m/z 467 and produced at MS2 m/z 219 

315 and 169 corresponding to the loss of galloyl group (-152 Da) and galloyl group plus 220 

deoxyhexose (-152 and -146 Da). Therefore, this compound was tentatively identified as di-O-221 

galloyl-rhamnose. Finally, two signals (compounds 6.4 and 33.1) displayed the typical 222 

fragmentation pattern of gallotannins but it was not possible to assign an exact structure to these 223 

molecules. 224 

 225 

3.1.3. Flavonols 226 

Among the 34 flavonol derivatives (Table 1) detected, 16 compounds were identified as quercetin-227 

derivatives and 13 as kaempferol-derivatives. Quercetin-derivatives can be easily identified by the 228 

presence of the typical fragment ions in the MS2 spectra at m/z 301, 271, 179 and 151 derived from 229 

the fragmentation of the quercetin aglycone (Fabre et al., 2001). Compound 40.1 was identified as 230 

quercetin aglycone by comparison with the authentic standard. Compounds 32.3 and 33.3 presented 231 

an identical pseudomolecular ion [M-H]- at m/z 433, releasing a fragment ion at m/z 301 (loss of a 232 

pentose group), which might be coherent with quercetin-O-pentoside isomers. The appearance of 233 

the signal at m/z 271 (Y0-2H-CO) characteristic of 3-O-glycosyl flavonols in the MS2 spectra of the 234 

compound 32.3 pointed as the existence of a 3-O-pentoside binding site and the compound was 235 

therefore identified as quercetin-3-O-pentoside (Ablajan et al., 2006; Martini et al., 2018). 236 

Compound 33.3, instead, showed the presence of a signal at m/z 273 (Y0-CO), which is 237 

characteristic of 7-O-glycosyl flavonols, and the compound was therefore identified as quercetin-7-238 
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O-pentoside (Ablajan et al., 2006; Martini et al., 2018). Compound 33.4 showed a pseudomolecular 239 

ion at m/z 477 and was identified as quercetin-3-O-rhamnoside due to the presence of the signals at 240 

m/z 301 (quercetin aglycone originating from the loss of the rhamnosyl moiety) and 271. 241 

Compound 23.3 had the same negative molecular ion (m/z 463) as compound 31.1, which was 242 

identified as quercetin-3-O-glucoside by comparison with the authentic standard. The analysis of 243 

MS2 spectra revealed the loss of 162 Da (hexose group) to produce an m/z 301 (quercetin) daughter 244 

ion. Basing on the elution order, this compound was tentatively identified as quercetin-3-O-245 

galactoside (Del Rio et al., 2004). Compound 31.6 presented a pseudomolecular ion [M-H]- at m/z 246 

477 releasing a fragment ion at m/z 301 (loss of a glucuronide group), which might be coherent with 247 

quercetin-3-O-glucunoride (Dall’Asta et al., 2012). Compounds 32.4 and 35.1 showed the same 248 

negative molecular ion (m/z 505), which gave product ions in the MS2 spectra at m/z 463 (loss of 249 

acetyl group) and 301 (loss of hexose group). The presence of the peak at m/z 271 allowed us the 250 

identification of the peaks as quercetin-3-O-acetyl-hexoside isomers (Ablajan et al., 2006; 251 

Cuyckens and Claeys, 2004). Compounds 33.5, 35.5 and 37.3 exhibited identical negative 252 

molecular ion (m/z 585) and peaks at m/z 433 (loss of a galloyl group) and 301 (loss of a pentoside 253 

group) in the MS2 spectra. The presence of the peak at m/z 273 allowed us the identification of the 254 

peaks as quercetin-7-O-galloyl-pentoside isomers (Ablajan et al., 2006; Cuyckens and Claeys, 255 

2004). Quercetin-3-O-rutinoside (compound 29.1; m/z 609) was identified by comparison of 256 

retention time and fragmentation spectra with the authentic standard. Compounds 31.7 and 37.2 257 

showed the same pseudomolecular ion at m/z 615, which gave product ions in the MS2 spectra at 258 

m/z 463 and 301, thus indicating a successive loss of a galloyl group (-152 Da) and a hexosyl 259 

moiety (-162 Da). Due to the presence of a peak at m/z 271, these compounds were tentatively 260 

identified as quercetin-3-O-galloyl-hexoside isomers (Ablajan et al., 2006; Cuyckens and Claeys, 261 

2004). Compound 14.6 (m/z 625) presented peaks at m/z 463 (loss of a hexose group), 301 (loss of a 262 

second hexose group), 300, 273 and 271 in the fragmentation spectra. The presence of the peak at 263 
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m/z 463 (Y1) is indicative that the two hexosyl groups are attached in different position. The 264 

observed peaks at m/z 273 and 271 indicated that one sugar is linked to the -OH group in position 3 265 

and the other one to the -OH group in position 7 of the aglycone (Ferreres et al., 2004; Li and 266 

Claeys, 1994). This peak was assigned to quercetin-3-O-hexoside-7-O-hexoside. Compounds 14.2, 267 

24.4, 25.3, 31.2, 32.2, 33.2, 33.6, 35.3, 35.4, 36.1, 36.2, 37.1, 38.1, and 39.1 were characterized for 268 

the presence in the MS2 spectra of an intense signal at m/z 285, which is diagnostic of the 269 

kaempferol aglycone (Fabre et al., 2001). Based on the same rules, as reported above for quercetin, 270 

these compounds were assigned to kaempferol-derivatives, as depicted in Table 1. Similarly, 271 

compounds 27.4 and 30.2 were characterized for the presence of the diagnostic peaks of the 272 

myricetin aglycone (m/z 317 and 179) in the MS2 spectra and identified as myricetin-derivatives as 273 

reported in Table 1 (Calani et al., 2013). Finally, two isorhamnetin-derivatives (compounds 11.3 274 

and 32.1) were identified in the E. hirta leaves extracts (Table 1) (Mena et al., 2016). 275 

 276 

3.1.4. Flavan-3-ols, flavones, dihydroflavonols and isocoumarins 277 

Five flavan-3-ols were identified in the E. hirta leaves extracts (Table 1). Epicatechin (compound 278 

20.2; m/z 289) was identified by comparison of retention time and fragmentation spectra with the 279 

authentic standard. Three type-B procyanidin dimers ((epi)catechin-(epi)catechin) were identified at 280 

m/z 577 (compounds 14.3, 17.3 and 20.3). The fragmentation pattern reported in Table 1 is 281 

consistent with previously reported data (Gu et al., 2003). Compound 27.6 showed a 282 

pseudomolecular ion at m/z 597 and MS2 fragments at m/z 435 and 315. The fragment at m/z 435 283 

revealed the loss of O-linked hexoside group whereas the subsequent loss of 120 Da (fragment at 284 

m/z 315) is characteristic of a C-linked hexoside group. Fragmentation did not generate the 285 

aglycone, but it can be obtained through the calculation [M-H]--162-120-42 (Waridel et al., 2001). 286 

The compound was tentatively identified as (epi)afzelechin-O-hexoside-C-hexoside. 287 
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Five flavones were identified in the E. hirta leaves extracts (Table 1). Compound 42.1 was 288 

assigned to the aglycone chrysin based on previously published fragmentation pathway (Fabre et 289 

al., 2001). Compounds 22.1, 24.1, 25.5 and 30.3 were instead identified as apigenin-derivatives. 290 

Compound 22.1 presented a pseudomolecular ion at m/z 415 with a single peak in the MS2 spectra 291 

at m/z 269 originating from the loss of a rhamnosyl moiety and corresponding to the aglycone of 292 

apigenin (Fabre et al., 2001). Compound 30.3 (m/z 431) was identified as apigenin-6-C-glucoside 293 

due to the presence of the peak at m/z 341 (-90 Da) and 311 (-120 Da) diagnostic for a C-linked 294 

hexoside group, and at m/z 413 (-18 Da) diagnostic of a 6-C-glycosidic bond (Waridel et al., 2001). 295 

Compound 25.5 showed a negative molecular ion at m/z 563 and fragment ions at m/z 473, 443 and 296 

413 resulting from the loss of 90, 120 and 150 Da, respectively, indicating the linkage of hexoside 297 

to the C-position of aglycone (Ferreres et al., 2007). The presence of the fragment at m/z 545 (-18 298 

Da) is diagnostic of a 6-C-hexoside bond. The fragments at m/z 383 and 353 are instead indicative 299 

of the presence of an 8-C-linked pentoside moiety (Waridel et al., 2001). The compound was 300 

identified as apigenin-6-C-hexoside-8-C-pentoside. Compound 24.1 (m/z 593) generated in the MS2 301 

spectra fragment at m/z 473 (loss of 120 Da), 431 (loss of 162 Da from the parent ion) and 311 (loss 302 

of 120 Da from the ion at m/z 431). This compound was therefore identified as apigenin-8-C-303 

hexoside-4’-O-hexoside. Three dihydroflavonols were identified in the mass spectrum. Compound 304 

24.2 showed a pseudomolecular ion at m/z 449 and was identified as dihydrokaempferol-7-O-305 

hexoside due to the presence of the signals at m/z 287 (dihydrokaempferol aglycone originating 306 

from the loss of the hexoside moiety) and 259 (characteristic of 7-O-glycosyl linkage). Compounds 307 

16.2 and 19.3 showed the same negative molecular ion (m/z 465) and a fragmentation pattern 308 

typical of taxifolin-hexoside (Martini et al., 2017). Finally, 5 isocoumarins (brevifolin-derivatives), 309 

corresponding to compounds 3.2, 7.2, 17.4, 21.1 and 23.1, were found in the extract (Table 1). 310 

They were characterized for the presence of peaks in the MS2 spectra corresponding to the 311 

brevifolin aglycone (m/z 247) and brevifolin-carboxylic acid (m/z 291) (Lantzouraki et al., 2015). 312 
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 313 

3.1.5. Hydroxycinnamic acids 314 

Compounds 1.1, 25.1 and 34.1 were easily identified by comparison with authentic standards. On 315 

the other hand, compounds 2.1, 6.4, 11.4, 12.1, 19.1 and 23.5 (m/z 353) were identified as 316 

caffeoylquinic acids (CQAs) using the hierarchical keys previously developed by Clifford et al. 317 

(2003) and the order of elution (Martini et al., 2017). Indeed, two isomers of 5-O-coumaroylquinic 318 

acid (compounds 10.1 and 25.2; m/z 337) and one of 5-O-feruloylquinic acid (compound 27.5; m/z 319 

367) were identified using the same hierarchical keys as reported above (Clifford et al., 2003; 320 

Martini et al., 2017). Compound 34.2 showed a negative molecular ion at m/z 309 and a product ion 321 

at m/z 193 (ferulic acid aglycone) due to the loss of a malic acid residue (-116 Da). Compound 14.1 322 

(m/z 341) was identified as caffeic acid-O-hexoside due to the presence of the peaks at m/z 179 (loss 323 

of hexose residue) and 135 which are characteristic of caffeic acid (Martini et al., 2017). Compound 324 

10.4 (m/z 515) showed a fragmentation pattern typical of 3,5-O-dicaffeoylquinic acid (Clifford et 325 

al., 2005). Compound 5.3 showed a pseudomolecular ion at m/z 517 and fragment in the MS2 326 

spectra at m/z 337 (loss of 180 Da associated with a coniferyl alcohol moiety) and 193 (loss of 327 

hexose). This compound was identified as feruloyl-coniferin (Mena et al., 2012). Finally, 328 

compounds 14.4 and 19.4 (m/z 529) were assigned to feruloyl-caffeoylquinic acid (Clifford et al., 329 

2006). 330 

 331 

3.1.6. Hydroxybenzoic acids 332 

Compounds 6.1, 13.1 and 26.1 were easily identified by comparison with authentic standards. 333 

Compounds 4.2, 5.2, 6.2 and 8.1 with a parent ion [M−H]- at m/z 331 revealed a daughter ion 334 

[M−H−162]− at m/z 169 upon fragmentation, indicating the loss of a hexosyl moiety. They were 335 

identified as galloyl-O-hexoside isomers (Erşan et al., 2016). The parent ion [M−H]− at m/z 493 of 336 

compound 5.4 formed daughter ions [M−H-162]− at m/z 313 and [M−H−162−162]− at m/z 169 and 337 
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was tentatively identified as a galloyl-di-O-hexoside. Compounds 4.1, 5.5 and 6.6 (m/z 343) were 338 

identified as galloyl-quinic acid isomers due to the presence in the MS2 spectra of peak at 191 339 

(quinic acid moiety generated by the loss of a galloyl moiety) and 169 (galloyl moiety generated by 340 

the loss of a quinic acid moiety) (Erşan et al., 2016). Compounds 15.1 and 21.3 were tentatively 341 

identified as di- and tri-galloylquinic acids due to sequential losses of galloyl moieties (152 Da) 342 

from their parent ions at m/z 495 and 647, respectively, and the formation of a final product ion at 343 

m/z 191 (quinic acid moiety) (Erşan et al., 2016). Compound 27.1 presented a pseudomolecular ion 344 

at m/z 505, which generated the daughter ions at m/z 343 (galloylquinic acid moiety; due to the loss 345 

of a hexose group) and 313 (gallic acid hexose moiety; due to the loss of a quinic acid moiety). This 346 

compound was identified as galloylquinic acid-O-hexoside. Compounds 108 and 119, exhibited 347 

parent ions [M−H]− at m/z 321 and 473. Their fragmentations resulted in product ions at m/z 169 348 

and 125 characteristic of gallic acid. Thus, these compounds were tentatively identified as di- and 349 

tri-gallic acids, due to sequential loss of galloyl moieties, yielding product ions specific for gallic 350 

acid. Three additional compounds (106, 109 and 117) showed the presence in the MS2 spectra of 351 

the typical product ions of gallic acid (m/z 169 and 125). Compound 106 (m/z 197) was 352 

characterized for a loss of 48 Da generated by ethylic group. This compound was tentatively 353 

identified as ethyl-gallic acid. Compound 109 exhibited a pseudomolecular ion [M−H]- at m/z 325 354 

and was characterized by the loss of 156 Da, yielding a daughter ion at m/z 169. This compound 355 

was identified as galloyl-shikimic acid (Erşan et al., 2016). Compound 117 (m/z 437) generated 356 

after fragmentation a peak at m/z 169 and was identified as galloyl-salicilin (Itoh et al., 2000). 357 

Compounds 107 and 118 showed negative parent ions at m/z 315 and 447, respectively, and their 358 

fragmentations resulted in product ions at m/z 153 and 109 characteristic of protocatechuic acid. For 359 

the compound 107 the signal at m/z 153 resulted from the loss of a hexose group and was identified 360 

as protocatechuic acid-O-hexoside (Martini et al., 2017). Compound 118 presented in the MS2 361 

spectra a fragment at 315 (protocatechuic acid-hexoside group) arising from the loss of a pentose 362 
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group (-132 Da). This compound was tentatively identified as protocatechuic acid-O-hexoside-O-363 

pentoside. 364 

 365 

3.1.7. Other phytochemicals 366 

Seven organic acids (compounds a.1, a.2, b.1, c.1, d.1, f.1 and p.4, Table 2) were easily identified 367 

in the E. hirta extracts due to the characteristic fragmentation patterns that resulted in the loss of 368 

H2O (-18 Da) and/or CO2 (-44 Da) (Brent et al., 2014). Two ent-kaurene diterpenoids, albopilosin H 369 

(m/z 331; compound i.1) and ponicidin (m/z 361; compound l.1) were identified according to the 370 

fragmentation scheme proposed by Zhou et al. (2008). Based on the same scheme an ent-6,7-seco-371 

diterpenoids, isojaponins A (m/z 377; compound l.2), was identified in the extract (Zhou et al., 372 

2009). An additional diterpenoid, gibberellin CA29 (m/z 347; compound e.1), was identified basing 373 

on the fragmentation spectrum reported by Urbanová et al. (2013). Two additional signals in the 374 

negative mass spectra were assigned to crysophanol-8’-O-(6’-O-galloyl)-glucose (m/z 567; 375 

compound h.1) and roseoside (m/z 385; compound g.1) (Cádiz-Gurrea et al., 2013; Ye et al., 2007). 376 

In the positive MS spectra, 5 additional signals were identified. Three of them belonged to the 377 

aromatic amino acids phenylalanine (m/z 166; compound p.1), tyrosine (m/z 182; compound p.2) 378 

and tryptophan (m/z 205; compound p.3). Compound p.5 was instead identified as the dipeptide 379 

glutamic acid-tyrosine (m/z 311). Finally, the last signal (m/z 466; compound p.6) was assigned to 380 

the alkaloid ternatoside C (Zhang et al., 2007). 381 

 382 

3.2. Quantitative profile of phenolic compounds in the Euphorbia hirta leaves 383 

Tables 3-6 and Figure 2 provide information about the amount of the 123 tentatively identified 384 

phenolic compounds in the water and ethanol extracts of E. hirta leaves. 385 

Water extract of E. hirta leaves contained more phenolic compounds than the ethanol extract, 386 

163.62 ± 0.61 mg/g of extract vs 49.61 ± 0.39 mg/g of extract (P< 0.05), respectively. Water extract 387 
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was particularly rich in gallotannins and hydroxybenzoic acids (representing the 31.4% and 26.5% 388 

of total phenolic compounds, respectively) (Tables 3 and 6 and Figure 2A), whereas the ethanol 389 

extract was rich in hydroxycinnamic acids and isocoumarin (representing the 45% and 16.7% of 390 

total phenolic compounds, respectively) (Tables 5 and 6 and Figure 2B). In the ethanol extract, 391 

feruloyl-coniferin represented alone the 31.7% of total phenolic compounds and the 70.3% of total 392 

hydroxycinnamic acids (Table 6). 393 

Figure 3 details the structure of the most important phenolic compounds identified in the E. hirta 394 

leaves. 395 

 396 

3.3. Antioxidant activity analysis 397 

To fully characterize the antioxidant properties of the two extracts, the ability to scavenge 398 

physiologically relevant radicals (superoxide anions), the organic nitro-radical ABTS and the 399 

reducing power were evaluated. In addition, the Fe2+-chelating ability of the two extracts was 400 

assessed. The ethanol extract of E. hirta leaves was more effective, with respect to the 401 

corresponding water extract, in scavenging ABTS (P< 0.05) and superoxide anion radicals (P< 402 

0.05), despite the lower phenolic content measured by LC-MS analysis (Figure 4). Furthermore, the 403 

ethanol extracts also showed higher reducing power with respect to the water extract (P< 0.05). 404 

These results may be due the presence of non-phenolic antioxidant compounds or of unidentified 405 

phenolic compounds in the ethanol extract. Alternatively, phenolic compounds present in the 406 

ethanol extract may have a better antioxidant potential than those in the water extract. On the other 407 

hand, the water extract exhibited better chelating ability towards Fe2+ than the ethanol extract (P< 408 

0.05). 409 

 410 

3.4. Antifungal activity analysis 411 
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The in vitro antifungal activity of E. hirta leaves extracts was assayed, in order to check their 412 

activity in inhibiting fungal growth. The assessment of any antifungal activity is pivotal for the 413 

development and implementation of a suitable technology for the production of novel bio-414 

fungicides based on the exploitation of a possible antifungal activity of such extracts.  415 

The extracts of E. hirta leaves displayed higher effectiveness in reducing the myceliar growth of 416 

three pathogenic fungi to tomato, R. solani, F. oxysporum f. sp. vasinfectum, and A. solani, in a 417 

concentration-dependent manner (Table 7). The ethanol extract was more effective in inhibiting 418 

fungal growth than the water extract (P< 0.05; Figure S2). These results are in agreement with 419 

those of other authors reporting that the in vitro antifungal and antimicrobial activities of some 420 

ethanol extracts had higher efficacy than the aqueous extracts (Eloff, 1998; Kotze and Eloff,  2002; 421 

Dakole et al., 2016).  422 

Several plant extracts have been tested for their antifungal activity against the three pathogenic 423 

fungi analysed in this study. Methanolic extracts of leaves from Pulicaria incisa, Rhanterium 424 

epapposum and Horwoodia dicksoniae showed higher antifungal activity against F. oxysporum than 425 

the E. hirta leaves extracts (Mohamed et al., 2017). However, E. hirta ethanol extract was as 426 

effective as Citrullus colocynthis and Gypsophila capillaris leaves methanolic extracts (Mohamed 427 

et al., 2017). Indeed, E. hirta ethanol extract displayed higher antifungal activity against F. 428 

oxysporum and A. solani than Vitis vinifera, Punica granatum and Ficus carica leaves methanolic 429 

extracts (El-Khateeb et al., 2013). The aqueous extracts of Polystichum squarrosum, Adiantum 430 

venustum Parthenium hysterophorus, Urtica dioeca and Cannabis sativa leaves exhibited 431 

antifungal activity against R. solani, F. oxysporum and A. solani with a lower effectiveness respect 432 

to E. hirta ethanol and water extracts (Tapwall et al., 2011). Rongai et al. (2015) investigated the 433 

antifungal properties of aqueous extracts from twenty plants against F. oxysporum. Among them, 434 

extracts of Rivina humulis, Brassica carinata, Brunfelsia calyicina, Salvia guaranitica and Punica 435 
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granatum showed the best antifungal activity. Nevertheless, they were less effective than the E. 436 

hirta water extract tested in this study.  437 

The linearly increasing efficacy related to the concentration is a clear indication of the presence of 438 

antifungal molecules in both extracts. Despite the higher amount of phenolic compounds identified 439 

in water extract, a more pronounced antifungal activity was obtained using the ethanol extract (P< 440 

0.05). This might be related to the very high content in isocoumarins and hydroxycinnamic acids of 441 

the latter. Isocoumarins and hydroxycinnamic acids are well known phenolics, able to confer and/or 442 

induce a non-specific resistance to several phytopathogens, when they affect their host plants. Such 443 

plant-derived molecules belong to a group of antimicrobial substances called phytoalexins (Ingham, 444 

1972) and are secondary metabolites produced in plants, especially as a result of biotic stresses 445 

(Hammerschmidt, 1999).  446 

Some of the phenolic compounds detected in the ethanol extract in higher amount, with respect to 447 

the water extract, are described to possess a marked antifungal activity. For instance, ferulic and 448 

coumaric acids showed a remarkable in vitro inhibiting effect on the growths of F. oxysporum and 449 

R. solani (El Modafar and El Boustani, 2001; Hayashi, 1997). These compounds were also found in 450 

higher concentration in date palm cultivars resistant to F. oxysporum infection, when compared to 451 

the susceptible cultivars (El Modafar and El Boustani, 2001). Gallic acid showed antifungal activity 452 

against F. oxysporum and A. solani (Alves Breda et al., 2016; Wu et al., 2009). Feruloyl-coniferin, 453 

which represented alone more than 30% of the phenolic compounds in E. hirta leaves ethanol 454 

extract (Table 6), seems to be particularly interesting. It is an ester between a molecule of coniferin 455 

and a ferulic acid moiety (Figure 3). As reported above, ferulic acid was a potent inhibitor of fungal 456 

growth, whereas coniferin was able to inhibit in vitro the growth of the pathogenic fungus 457 

Verticillium longisporum (König et al., 2014). Indeed, mutant Arabidopsis thaliana plant lines 458 

producing a high amount of coniferin were particularly resistant to Verticillium longisporum 459 

infection (König et al., 2014). Induction of ferulic and coumaric acids synthesis is a common plant 460 
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defence mechanism to fungal infections. Panina et al. (2007) reported protection of tomato from F. 461 

oxysporum as a consequence of ferulic and coumaric acids synthesis induced by the biocontrol non-462 

pathogenic fungus F. oxysporum CS-20 strain. Similarly, the biocontrol fungus Pythium 463 

oligandrum elicited the accumulation of ferulic acid, protecting wheat from Fusarium germinatum 464 

(Takenaka et al., 2003). Increased ferulic and coumaric acids level has been also associated to 465 

tomato resistance to pathogens in resistant cultivars (Gayoso et al., 2010). The exact antifungal 466 

mechanism of phenolic compounds is not yet fully elucidated, but may involve direct fungilytic 467 

activity by disrupting cell membrane as well as inhibition of mycelial growth or the activation of 468 

specific signalling pathways (Hayashi, 1997; Martins et al., 2015; Shalaby et al., 2016). 469 

 470 

4. Conclusion 471 

From this study, it emerges that E. hirta L. might be a potential and very rich source of phenolic 472 

classes, such as gallotannins, hydroxybenzoic and hydroxycinnamic acids, and bioactive 473 

components especially tri-O-galloyl-glucose isomers, feruloyl-coniferin, tetra-O-galloyl-glucose 474 

isomers, di-O-galloyl-glucose isomers, ethyl-gallic acid, protocatechuic acid-O-pentoside-O-475 

hexoside, 5-O-caffeoyl-quinic acid trans isomer and digalloyl-quinic acid. The development and 476 

implementation of new fungicides from these phenolics or, alternatively, the use of purified extracts 477 

from E. hirta, may provide a new approach to control fungal diseases in tropical areas where, often, 478 

sustainability of chemical control measures are not met. Additionally, since E. hirta is a very 479 

common weed, the use of its extracts may provide an additional income to rural areas.  480 
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Figure captions 

Fig. 1. Representative negative ion mode base peak chromatograms (BPCs) of water (A) 

and ethanol (B) extracts from Euphorbia hirta leaves. The shown BPCs are representative 

of three independent experiments. 

Fig. 2. Occurrence of phenolic classes in Euphorbia hirta extracts. Global percentage of 

flavan-3-ols, flavonols, di-hydro-flavonols, hydroxybenzoic and hydroxycinnamic acids, 

gallotannins, ellagitannins, flavones and isocoumarins in water (A) and ethanol (B) extracts of 

Euphorbia hirta leaves. The total amounts of phenolic compounds quantified with mass 

spectrometry is also shown. 

Fig. 3. Structures of some newly identified Euphorbia hirta leaves phenolic compounds. 

Examples of the phenolic structures present in highest concentration in the Euphorbia hirta 

leaves. (A) R1: -H, coumaric acid; -CH3, ferulic acid; (B) R1: -OH, caffeoyl-quinic acid; -CH3, 

feruloyl-quinic acid; (C) feruloyl-coniferin; (D) quercetin-7-O-pentoside; (E) apigenin-6-C-

hexoside; (F) kaempferol-3-O-hexoside; (G) R1: -OH, gallic acid; -CH2CH3, ethyl-gallic acid; 

(H) di-galloyl-quinic acid; (I) tri-galloyl-quinic acid; (J) gallotannins (R1-R5 may be –OH or –

gallic acid); (K) brevifolin-carboxylic acid; (L) protocatechuic acid-O-pentoside-O-hexoside 

(R1 and R2 may identified a pentoside or hexoside moiety). 

Fig. 4. Antioxidant properties of water (black columns) and ethanol (grey columns) 

extracts from Euphorbia hirta leaves. Antioxidant capacity (expressed as μmol ascorbic 

acid/g of powder) measured by three different assays (left y-axys). SOA: superoxide anion 

scavenging activity. The right y-axys detailed the Fe2+-chelating ability of the two extracts 

expressed as percentage of bound Fe2+. Each sample was run in triplicate and results are 

reported as mean values ± SD. Values with different letter within the same assay are 

significantly different (P < 0.05).  



 34 

Table 1. Mass spectra data for phenolic compounds identified in water and ethanol extracts 
from Euphorbia hirta leaves. 

Peak Compound 
[M-H] - 
(m/z) 

MS2 ion 
fragments (m/z) 

Water  
extract 

Ethanol 
extract 

1 1.1 Coumaric acid 163 119, 101 - + 

2 2.1 4-O-caffeoyl-quinic acid cis 353 173, 191 + - 

 2.2 HHDP-hexoside isomer 481 301, 275 + - 

3 3.1 HHDP-hexoside isomer 481 301, 275 + - 

 3.2 
Dihydro-hydroxy-brevifolin-
dicarboxylic acid 

353 291, 247, 203, 335 - + 

4 4.1 Galloyl-quinic acid isomer 343 191, 169, 125 + + 

 4.2 Galloyl-glucose isomer 331 169, 125, 271, 211 + + 

5 5.1 HHDP-hexoside isomer 481 301, 275 + - 

 5.2 Galloyl-glucose isomer 331 169, 125, 271, 211 + - 

 5.3 Feruloyl-coniferin 517 337, 193, 175, 217 + + 

 5.4 Galloyl-di-O-hexoside 493 331, 313, 271, 169, 211 + - 

  5.5 Galloyl-quinic acid isomer   343 191, 169, 125 + - 

6 6.1 Gallic acid 169 125 + + 

 6.2 Galloyl-glucose isomer 331 169, 125, 271, 211 + - 

   6.3 Ellagitannin   847 481, 301 + - 

   6.4 Gallotannin   465 271, 169, 313, 301 + + 

 6.5 4-O-caffeoyl-quinic acid trans 353 173, 191 + - 

 6.6 Galloyl-quinic acid isomer 343 191, 169, 125 + - 

   6.7 
Galloyl-HHDP-hexoside isomer 
(corilagin) 

  633 301, 481, 275 + - 

7   7.1 Ellagitannin   681 481, 301, 663, 619 - + 

   7.2 
Brevifolin-dicarboxylic acid-
hexoside isomer 

  497 335, 291, 247, 203 - + 

8   8.1 Galloyl-glucose isomer   331 169, 125, 271, 211 + - 

9   9.1 Ellagitannin   681 481, 301, 663, 619 - + 

10 10.1 5-O-coumaroyl-quinic acid trans   337 191, 173, 233, 337 + + 

 10.2 Galloyl-shikimic acid   325 169, 125 + - 

 10.3 Di-O-galloyl-glucose isomer   483 
271, 193, 211, 169, 313, 
331 

+ - 

 10.4 3,5-O-dicaffeoyl-quinic acid   515 191, 353, 179, 173 + - 

 10.5 Protocatechuic acid-O-hexoside 315 153, 109 + - 
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11 11.1 
Galloyl-HHDP-hexoside isomer 
(corilagin) 

633 301, 481, 275 + + 

 11.2 
Protocatechuic acid-O-pentoside-O-
hexoside 

447 315, 153 + - 

 11.3 Isorhamnetin-3-O-pentoside 447 315, 300, 301 + - 

 11.4 3-O-caffeoyl-quinic acid cis 353 191, 179, 135 + + 

12 12.1 3-O-caffeoyl-quinic acid trans 353 191, 179, 135 + - 

13 13.1 Protocatechuic acid 153 109 - + 

14 14.1 Caffeic acid-O-hexoside 341 179, 135 + - 

 14.2 Kaempferol-3-O-hexoside isomer 447 285, 255 + - 

 14.3 Procyanidin dimer B-type isomer 577 407, 289, 245, 425 + - 

 14.4 Feruloyl-caffeoyl-quinic acid isomer 529 353, 173 + - 

 14.5 Di-O-galloyl-glucose isomer 483 
271, 193, 211, 169, 313, 
331 

+ - 

 14.6 
Quercetin-3-O-hexoside-7-O-
hexoside 

625 463, 301, 273, 271 + - 

15 15.1 Digalloyl-quinic acid 495 343, 191, 169 + - 

16 16.1 Tri-O-galloyl-glucose isomer 635 
271, 193, 211, 483, 169, 
313, 331 

+ - 

 16.2 Taxifolin-3-O-hexoside isomer 465 303, 285, 241 + - 

17 17.1 bis-HHDP-hexoside (pedunculagin I) 783 301, 275 - + 

 17.2 
Dehydro-galloyl-HHDP-hexoside 
isomer 

631 451, 301, 275 + + 

 17.3 Procyanidin dimer B-type isomer 577 407, 289, 245, 425 + - 

 17.4 
Brevifolin-carboxylic acid-hexoside 
isomer 

453 291, 247 + + 

 17.5 Digallic acid 321 277, 169, 125 - + 

18 18.1 
Dehydro-galloyl-HHDP-hexoside 
isomer 

631 451, 301, 275 + + 

19 19.1 5-O-caffeoyl-quinic acid trans 353 191 + - 

   19.2 Tri-O-galloyl-glucose isomer 635 
271, 193, 211, 483, 169, 
313, 331 

+ - 

 19.3 Taxifolin-3-O-hexoside isomer 465 303, 285, 241 + - 

 19.4 Feruloyl-caffeoyl-quinic acid isomer 529 353, 173 + - 

20   20.1 
Galloyl-HHDP-hexoside isomer 
(corilagin) 

633 301, 481, 275 + + 

   20.2 Epicatechin 289 245, 205, 179, 125 + + 

 20.3 Procyanidin dimer B-type isomer 577 407, 289, 245, 425 + - 

21 21.1 Brevifolin-carboxylic acid 291 247 + + 
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 21.2 Granatin B isomer 951 933, 301 + - 

 21.3 Tri-galloyl-quinic acid 647 495, 343 - + 

22 22.1 Apigenin-7-O-rhamnoside 415 269 + - 

 22.2 
Di-galloyl-HHDP-hexoside 
(pedunculagin II) 

785 481, 301 + - 

23 23.1 
Brevifolin-carboxylic acid-galloyl-
hexoside 

605 453, 291, 247 + + 

 23.2 Tri-O-galloyl-glucose isomer 635 
271, 193, 211, 483, 169, 
313, 331 

+ - 

 23.3 Quercetin-3-O-galactoside 463 301, 179, 271, 151 + - 

 23.4 Tetra-O-galloyl-glucose isomer 787 635, 617, 483, 301 + - 

 23.5 5-O-caffeoyl-quinic acid cis 353 191 + - 

24 24.1 
Apigenin-8-C-hexoside-4'-O-
hexoside 

593 
473, 431, 311, 301, 179, 
271, 151 

+ + 

 24.2 Dihydro-kaempferol-7-O-hexoside 449 287, 269, 259 + - 

 24.3 Di-O-galloyl-rhamnose 467 423, 315, 169 + - 

 24.4 
Kaempferol-7-O-hexoside-3-O-
rutinoside 

755 593, 375, 285, 255 + - 

25 25.1 Caffeic acid 179 135 + + 

 25.2 5-O-coumaroyl-quinic acid cis 337 191, 173, 233, 337 + - 

 25.3 Kaempferol-3-O-hexoside isomer 447 285, 255 + - 

 25.4 Galloyl-salicin 437 313, 169, 125 + - 

 25.5 
Apigenin-6-C-hexoside-8-C-
pentoside 

563 
545, 473, 443, 413, 383, 
353, 303 

+ + 

26 26.1 Dihydroxy-benzoic acid 153 109 - + 

27 27.1 Galloyl-quinic acid-O-hexoside 505 343, 313, 169 + - 

 27.2 Granatin B isomer 951 933, 301 + - 

  27.3 Tetra-O-galloyl-glucose isomer 787 635, 617, 483, 301 + - 

  27.4 Myricetin-3-O-hexoside 479 433, 316, 287, 179 + - 

 27.5 5-O-feruloyl-quinic acid 367 191, 173 + - 

 27.6 
(Epi)afzelechin-C-hexoside-O-
hexoside 

597 435, 315 + - 

  28 28.1 
Ellagic acid-malonyl-pentoside 
isomer 

519 
301, 501, 484, 413,  
319, 275, 229, 199 

- + 

29 29.1 Quercetin-3-O-rutinoside 609 301, 271, 179, 151 + - 

30 30.1 Penta-O-galloyl-glucose 939 785, 769, 617 + - 

 30.2 Myricetin-3-O-pentoside 449 316, 317, 287, 179 + - 
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 30.3 Apigenin-6-C-hexoside 431 341, 311, 283, 413 + + 

 30.4 
Ellagic acid-malonyl-pentoside 
isomer 

519 
301, 501, 484, 413,  
319, 275, 229, 199 

- + 

31 31.1 Quercetin-3-O-glucoside 463 301, 179, 271, 151 + + 

 31.2 Kaempferol-3-O-hexoside isomer 447 285, 255 + - 

 31.3 Ethyl-gallic acid 197 169, 125 + + 

 31.4 Ellagitannin 765 301, 463, 626, 229 + - 

 31.5 Ellagic acid 301 271, 229 + + 

 31.6 Quercetin-3-O-glucuronide 477 301, 179, 271, 151 + + 

 31.7 
Quercetin-3-O-galloyl-hexoside 
isomer 

615 463, 301, 271 + - 

32 32.1 Isorhamnetin-3-O-rutinoside 623 315, 300, 301, 179 + - 

 32.2 Kaempferol-3-O-rutinoside 593 285, 255 + - 

 32.3 Quercetin-3-O-pentoside 433 301, 271, 179, 151, 300 + - 

 32.4 Quercetin-3-O-acetyl-hexoside isomer 505 
300, 301, 463, 271, 179, 
151 

+ - 

 32.5 Gallagic acid 601 313, 287, 211, 169 + - 

33 33.1 Gallotannin 659 465, 313, 489 + - 

 33.2 Kaempferol-3-O-hexoside isomer 447 285, 255 + - 

 33.3 Quercetin-7-O-pentoside 433 301, 273, 179, 151, 300 + - 

 33.4 Quercetin-3-O-rhamnoside 447 301, 179, 151, 271 + - 

 33.5 
Quercetin-7-O-galloyl-pentoside 
isomer 

585 433, 301, 273, 179, 255 + - 

 33.6 Kaempferol-3-O-glucuronide 461 285, 255 + - 

34 34.1 Ferulic acid 193 178, 149, 134 + + 

 34.2 Feruloyl-malic acid 309 193 + - 

35 35.1 Quercetin-3-O-acetyl-hexoside isomer 505 
300, 301, 463, 271, 179, 
151 

+ - 

 35.2 Trigallic-acid 473 271, 211, 169 + - 

 35.3 Kaempferol-3-O-pentoside isomer 417 285, 284, 255 + - 

 35.4 Kaempferol-3-O-acetyl-hexoside 489 327, 285, 255 + - 

 35.5 
Quercetin-7-O-galloyl-pentoside 
isomer 

585 433, 301, 273, 179, 255 + - 

36 36.1 Kaempferol-3-O-pentoside isomer 417 285, 284, 255 + - 

 36.2 Kaempferol-3-O-rhamnoside 431 285, 255 + - 

37 37.1 
Kaempferol-7-O-galloyl-pentoside 
isomer 

569 285, 257, 417 + - 
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 37.2 
Quercetin-3-O-galloyl-hexoside 
isomer 

615 463, 301, 271 + - 

 37.3 
Quercetin-7-O-galloyl-pentoside 
isomer 

585 433, 301, 273, 179, 255 + - 

38 38.1 
Kaempferol-7-O-galloyl-pentoside 
isomer 

569 285, 257, 417 + - 

39 39.1 
Kaempferol-7-O-galloyl-pentoside 
isomer 

569 285, 257, 417 + - 

40 40.1 Quercetin 301 151, 179 + - 

  41   41.1 Deoxyellagic acid 285 257, 229, 185 + - 

  42   42.1 Chrysin 253 209 + - 

HHDP: 2,3-(S)-hexahydroxydiphenoyl 
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Table 2. Mass spectra data for non-phenolic phytochemicals identified in water and ethanol 
extracts from Euphorbia hirta leaves. 
 

Peak Compound 
[M-H] - 
(m/z) 

MS2 ion fragments 
(m/z) 

Samplea  
Class 

a a.1 Hydroxycitric acid 207 163, 119, 101 EE Organic acid 

 a.2 Quinic acid 191 111 WE and EE Organic acid 

b b.1 Shikimic acid 173 155, 111 EE Organic acid 

c c.1 Citric acid 191 173, 111 WE and EE Organic acid 

d d.1 Malic acid 133 115 EE Organic acid 

e e.1 Gibberelin CA29 347 303, 259, 163, 150 EE Terpene 

f f.1 Chelidonic acid 183 139 EE Organic acid 

g g.1 Roseoside 385 223, 153 WE Norisoprenoid 

h h.1 
Chrysophanol-8'-O-(6'-
O-galloyl)-glucose 

567 
331, 313, 271, 211, 
169 

WE Anthraquinone 

i i.1 Albopilosin H 331 313, 295, 255, 241 EE Terpene 

L l.1 Ponicidin 361 
343, 325, 315, 271, 
253, 235 

EE Terpene 

 l.2 Isojaponins A 377 359, 341, 315, 297 EE Terpene 

p p.1 Phenylalanineb 166 120 WE and EE Amino acid 

 p.2 Tyrosineb 182 165, 136 WE and EE Amino acid 

 p.3 Tryptophanb 205 188, 159, 144 EE Amino acid 

 p.4 Gluconic acidb 235 118 WE and EE Organic acid 

 p.5 Glutamic acid-tyrosineb 311 182, 165, 136 WE and EE Dipeptide 

 p.6 Ternatoside Cb 466 304, 258, 190 EE Alkaloid 
aWE means that the compound was found in the aqueous extract whereas EE in the ethanol extract 
bIndicates [M+H]+ rather than [M−H]− 
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Table 3. Quantitative data for tannins (ellagitannins and gallotannins) identified in water and 
ethanol extracts from Euphorbia hirta leaves. Values are expressed as mg/g of dry extract and 
represent means ± standard deviation of triplicate determination (n.d. means not detected). 
 

Compound 
Water extract  
(mg/g) 

Ethanol extract  
(mg/g) 

Ellagitanninsa 

41.1 Deoxyellagic acid 0.80 ± 0.01 n.d. 

31.5 Ellagic acid 1.40 ± 0.03 0.40 ± 0.01 

2.2 HHDP-hexoside isomer 0.13 ± 0.01 n.d. 

3.1 HHDP-hexoside isomer 0.21 ± 0.01 0.42 ± 0.01 

5.1 HHDP-hexoside isomer 0.25 ± 0.01 n.d. 

28.1 
Ellagic acid-malonyl-pentoside 
isomer 

n.d. 0.59 ± 0.02 

30.4 
Ellagic acid-malonyl-pentoside 
isomer 

n.d. 0.54 ± 0.01 

32.5 Gallagic acid 0.64 ± 0.03 n.d. 

17.2 
Dehydro-galloyl-HHDP-
hexoside isomer 

0.25 ± 0.01 0.24 ± 0.01 

18.1 
Dehydro-galloyl-HHDP-
hexoside isomer 

0.28 ± 0.01 0.17 ± 0.01 

6.7 
Galloyl-HHDP-hexoside 
(corilagin) isomer 

0.14 ± 0.02 n.d. 

11.1 
Galloyl-HHDP-hexoside 
(corilagin) isomer 

1.22 ± 0.09 0.26 ± 0.01 

20.1 
Galloyl-HHDP-hexoside 
(corilagin) isomer 

1.95 ± 0.01 0.29 ± 0.02 

6.3 Ellagitannin n.d. 0.19± 0.01 

7.1 Ellagitannin n.d. 0.26 ± 0.01 

9.1 Ellagitannin 0.27 ± 0.01 n.d. 

17.1 
bis-HHDP-hexoside 
(pedunculagin I) 

n.d. 0.35 ± 0.02 

22.2 
Di-galloyl-HHDP-hexoside 
(pedunculagin II) 

0.23 ± 0.01 n.d. 

31.4 Ellagitannin 0.01 ± 0.00 n.d. 

21.2 Granatin B isomer 0.88 ± 0.01 n.d. 

27.2 Granatin B isomer 0.68 ± 0.01 n.d. 

 Total ellagitannins 
9.32 ± 0.10 
(5.7%) 

3.52  ± 0.03 
(7.1%) 
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Gallotanninsb 

6.4 Gallotannin 0.57 ± 0.04 0.45 ± 0.01 

24.3 Di-O-galloyl-rhamnose 3.23 ± 0.02 n.d. 

10.3 Di-O-galloyl-glucose isomer 4.10 ± 0.08 n.d. 

14.5 Di-O-galloyl-glucose isomer 6.76 ± 0.11 n.d. 

16.1 Tri-O-galloyl-glucose isomer 3.17 ± 0.04 n.d. 

19.2 Tri-O-galloyl-glucose isomer 5.57 ± 0.03 n.d. 

23.2 Tri-O-galloyl-glucose isomer 10.11 ± 0.34 n.d. 

33.1 Gallotannin 0.85 ± 0.01 n.d. 

23.4 Tetra-O-galloyl-glucose isomer 0.95 ± 0.09 n.d. 

27.3 Tetra-O-galloyl-glucose isomer 14.35 ± 0.06 n.d. 

30.1 Penta-O-galloyl-glucose 1.64 ± 0.01 n.d. 

 Total gallotannins 
51.30 ± 0.39 
(31.4%) 

0.45 ± 0.01 
(0.9%) 

aQuantified as ellagic acid equivalent 
bQuantified as gallic acid equivalent  

Water and ethanol extracts were prepared by dissolving 20 mg of powder obtained from the extraction 
procedures in 1 mL of the respective solvent. 
HHDP: 2,3-(S)-hexahydroxydiphenoyl 
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Table 4. Quantitative data for flavonols identified in water and ethanol extracts from 
Euphorbia hirta leaves. Values are expressed as mg/g of dry extract and represent means ± 
standard deviation of triplicate determination (n.d. means not detected). 
 

Compound 
Water extract  
(mg/g) 

Ethanol extract  
(mg/g) 

Flavonolsa 

40.1 Quercetin 0.78 ± 0.01 n.d. 

32.3 Quercetin-3-O-pentoside 1.57 ± 0.21 n.d. 

33.3 Quercetin-7-O-pentoside 3.77 ± 0.20 n.d. 

33.4 Quercetin-3-O-rhamnoside 0.83 ± 0.03 n.d. 

23.3 Quercetin-3-O-galactoside 0.20 ± 0.01 n.d. 

31.1 Quercetin-3-O-glucoside 1.96 ± 0.01 0.07 ± 0.00 

31.6 Quercetin-3-O-glucuronide 0.48 ± 0.01 0.11 ± 0.00 

32.4 
Quercetin-3-O-acetyl-hexoside 
isomer 

0.53 ± 0.01 n.d. 

35.1 
Quercetin-3-O-acetyl-hexoside 
isomer 

0.09 ± 0.00 n.d. 

33.5 
Quercetin-7-O-galloyl-
pentoside isomer 

0.33 ± 0.02 n.d. 

35.5 
Quercetin-7-O-galloyl-
pentoside isomer 

0.39 ± 0.01 n.d. 

37.3 
Quercetin-7-O-galloyl-
pentoside isomer 

1.05 ± 0.02 n.d. 

29.1 Quercetin-3-O-rutinoside 0.31 ± 0.01 n.d. 

31.7 
Quercetin-3-O-galloyl-
hexoside isomer 

0.07 ± 0.00 n.d. 

37.2 
Quercetin-3-O-galloyl-
hexoside isomer 

0.16 ± 0.01 n.d. 

14.6 
Quercetin-3-O-hexoside-7-O-
hexoside 

0.28 ± 0.01 n.d. 

35.3 
Kaempferol-3-O-pentoside 
isomer 

1.03 ± 0.04 n.d. 

36.1 
Kaempferol-3-O-pentoside 
isomer 

3.00 ± 0.10 n.d. 

36.2 Kaempferol-3-O-rhamnoside 0.15 ± 0.02 n.d. 

14.2 
Kaempferol-3-O-hexoside 
isomer 

0.15 ± 0.01 n.d. 

25.3 
Kaempferol-3-O-hexoside 
isomer 

0.14 ± 0.01 n.d. 
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31.2 
Kaempferol-3-O-hexoside 
isomer 

0.12 ± 0.01 n.d. 

33.2 
Kaempferol-3-O-hexoside 
isomer 

0.14 ± 0.01 n.d. 

33.6 Kaempferol-3-O-glucuronide 0.17 ± 0.01 0.07 ± 0.00 

35.4 
Kaempferol-3-O-acetyl-
hexoside 

0.19 ± 0.01 n.d. 

37.1 Kaempferol-7-O-galloyl-
pentoside isomer 

0.13 ± 0.01 n.d. 

38.1 Kaempferol-7-O-galloyl-
pentoside isomer 

0.23 ± 0.01 n.d. 

39.1 Kaempferol-7-O-galloyl-
pentoside isomer 

0.47 ± 0.02 n.d. 

32.2 Kaempferol-3-O-rutinoside 0.59 ± 0.01 n.d. 

24.4 Kaempferol-7-O-hexoside-3-O-
rutinoside 

0.12 ± 0.00 n.d. 

30.2 Myricetin-3-O-pentoside 0.31 ± 0.01 n.d. 

27.4 Myricetin-3-O-hexoside 0.16 ± 0.01 n.d. 

11.3 Isorhamnetin-3-O-pentoside 0.72 ± 0.02 n.d. 

32.1 Isorhamnetin-3-O-rutinoside 0.16 ± 0.01 n.d. 

 Total flavonols 
20.78 ± 0.31 
(12.7%) 

0.26 ± 0.00 
(0.5%) 

aQuantified as quercetin-3 glucoside equivalent with the exception of the kaempferol-derivative which were 
quantified as kaempferol equivalent  
Water and ethanol extracts were prepared by dissolving 20 mg of powder obtained from the extraction 
procedures in 1 mL of the respective solvent. 
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Table 5. Quantitative data for flavan-3-ols, flavones, dihydroflavonols and isocoumarins 
identified in water and ethanol extracts from Euphorbia hirta leaves. Values are expressed as 
mg/g of dry extract and represent means ± standard deviation of triplicate determination (n.d. 
means not detected). 
 

Compound 
Water extract  
(mg/g) 

Ethanol extract  
(mg/g) 

Flavan-3-olsa 

20.2 Epicatechin 0.39 ± 0.01 0.08 ± 0.01 

14.3 
Procyanidin dimer B-type 
isomer 

0.10 ± 0.00 n.d. 

17.3 
Procyanidin dimer B-type 
isomer 

0.80 ± 0.01 n.d. 

20.3 
Procyanidin dimer B-type 
isomer 

0.23 ± 0.01 n.d. 

27.6 
(Epi)afzelechin-C-hexoside-O-
hexoside 

0.46 ± 0.02 n.d. 

 Total flavan-3-ols 
1.97 ± 0.02 
(1.2%) 

0.08 ± 0.01 
(0.2%) 

    
Flavonesb 

42.1 Chrysin 0.16 ± 0.01 0.26 ± 0.01 

22.1 Apigenin-7-O-rhamnoside 0.96 ± 0.01 n.d. 

30.3 Apigenin-6-C-hexoside 2.18 ± 0.11 0.32 ± 0.01 

25.5 
Apigenin-6-C-hexoside-8-C-
pentoside 

0.33 ± 0.01 0.18 ± 0.01 

24.1 
Apigenin-8-C-hexoside-4'-O-
hexoside 

0.13 ± 0.01 0.12 ± 0.01 

 Total flavones 
3.76 ± 0.11 
(2.3%) 

0.89 ± 0.01 
(1.8%) 

    
Dihydroflavonolsb 

24.2 
Dihydro-kaempferol-7-O-
hexoside 

0.04 ± 0.00 n.d. 

16.2 Taxifolin-3-O-hexoside isomer 0.17 ± 0.01 n.d. 

19.3 Taxifolin-3-O-hexoside isomer 0.09 ± 0.00 n.d. 

 Total dihydroflavonols 
0.30 ± 0.01 
(0.2%) 

n.d. 

    
Isocoumarinsc 

21.1 Brevifolin-carboxylic acid 5.25 ± 0.13 3.61 ± 0.05 
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3.2 
Dihydro-hydroxy-brevifolin-
dicarboxylic acid 

n.d. 4.86 ± 0.05 

17.4 
Brevifolin-carboxylic acid-
hexoside 

2.04 ± 0.10 2.73 ± 0.06 

7.2 
Brevifolin-dicarboxylic acid-
hexoside 

n.d. 2.09 ± 0.02 

23.1 
Brevifolin-carboxylic acid-
galloyl-hexoside 

2.27 ± 0.04 0.51 ± 0.01 

 Total isocoumarins 
9.56 ± 0.17 
(5.8%) 

13.81 ± 0.09 
(27.8%) 

aQuantified as catechin equivalent  
bQuantified as quercetin-3-glucoside equivalent 
cQuantified as gallic acid equivalent 
Water and ethanol extracts were prepared by dissolving 20 mg of powder obtained from the extraction 
procedures in 1 mL of the respective solvent. 
  



 46 

Table 6. Quantitative data for phenolic acids (hydroxycinnamic and hydroxybenzoic acids) 
identified in water and ethanol extracts from Euphorbia hirta leaves. Values are expressed as 
mg/g of dry extract and represent means ± standard deviation of triplicate determination (n.d. 
means not detected). 
 

Compound 
Water extract  
(mg/g) 

Ethanol extract  
(mg/g) 

Hydroxycinnamic acidsa 

1.1 Coumaric acid n.d. 2.58 ± 0.07 

25.1 Caffeic acid 0.26 ± 0.01 0.16 ± 0.01 

34.1 Ferulic acid 1.97 ± 0.02 2.55 ± 0.06 

34.2 Feruloyl-malic acid 0.52 ± 0.03 n.d. 

10.1 
5-O-coumaroyl-quinic acid 
trans 

1.28 ± 0.04 1.05 ± 0.01 

25.2 5-O-coumaroyl-quinic acid cis 1.25 ± 0.01 n.d. 

14.1 Caffeic acid-O-hexoside 0.17 ± 0.01 n.d. 

2.1 4-O-caffeoyl-quinic acid cis 0.15 ± 0.01 n.d. 

6.5 4-O-caffeoyl-quinic acid trans 1.29 ± 0.01 n.d. 

11.4 3-O-caffeoyl-quinic acid cis 0.22 ± 0.01 0.29 ± 0.01 

12.1 3-O-caffeoyl-quinic acid trans 1.33 ± 0.01 n.d. 

19.1 5-O-caffeoyl-quinic acid trans 7.46 ± 0.06 n.d. 

23.5 5-O-caffeoyl-quinic acid cis 0.65 ± 0.05 n.d. 

27.5 5-O-feruloyl-quinic acid 2.70 ± 0.03 n.d. 

10.4 3,5-O-dicaffeoyl-quinic acid 0.50 ± 0.01 n.d. 

5.3 Feruloyl-coniferin 3.09 ± 0.08 15.71 ± 0.24 

14.4 Feruloyl-caffeoyl-quinic acid 
isomer 

0.24 ± 0.01 n.d. 

19.4 Feruloyl-caffeoyl-quinic acid 
isomer 

0.19 ± 0.01 n.d. 

 Total hydroxycinnamic acids 
23.26 ± 0.12 
(14.2%) 

22.34 ± 0.26 
(45.0%) 

    
Hydroxybenzoic acidsb 

13.1 Protocatechuic acid n.d. 0.49 ± 0.01 

26.1 Dihydroxy-benzoic acid n.d. 0.21 ± 0.01 

6.1 Gallic acid 1.25 ± 0.04 6.07 ± 0.28 

31.3 Ethyl-gallic acid 8.96 ± 0.14 0.43 ± 0.01 

10.5 Protocatechuic acid-O-hexoside 3.34 ± 0.02 n.d. 
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17.5 Digallic acid n.d. 0.33 ± 0.01 

10.2 Galloyl-shikimic acid 1.29 ± 0.02 n.d. 

4.2 Galloyl-glucose isomer 0.30 ± 0.01 0.26 ± 0.01 

5.2 Galloyl-glucose isomer 0.86 ± 0.02 n.d. 

6.2 Galloyl-glucose isomer 0.71 ± 0.01 n.d. 

8.1 Galloyl-glucose isomer 0.68 ± 0.01 n.d. 

4.1 Galloyl-quinic acid isomer 1.32 ± 0.01 0.48 ± 0.01 

5.5 Galloyl-quinic acid isomer 0.84 ± 0.01 n.d. 

6.6 Galloyl-quinic acid isomer 0.08 ± 0.00 n.d. 

25.4 Galloyl-salicin 1.04 ± 0.01 n.d. 

11.2 
Protocatechuic acid-O-
pentoside-O-hexoside 

8.03 ± 0.13 n.d. 

35.2 Trigallic-acid 0.58 ± 0.01 n.d. 

5.4 Galloyl-di-O-hexoside 0.65 ± 0.05 n.d. 

15.1 Digalloyl-quinic acid 7.11 ± 0.03 n.d. 

27.1 Galloyl-quinic acid-O-hexoside 0.49 ± 0.05 n.d. 

21.3 Trigalloyl-quinic acid 5.87 ± 0.09 n.d. 

 Total hydroxybenzoic acids 
43.37 ± 0.23 
(26.5%) 

8.27 ± 0.28 
(16.7%) 

aQuantified as caffeic acid equivalent (caffeic acid derivative) or coumaric acid equivalent (coumaric acid 
derivative) or ferulic acid equivalent (ferulic acid derivative) 
bQuantified as gallic acid equivalent (gallic acid derivative) or protocatechuic acid equivalent (protocatechuic 
acid derivative) 
Water and ethanol extracts were prepared by dissolving 20 mg of powder obtained from the extraction 
procedures in 1 mL of the respective solvent. 
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Table 7. Mycelium growth inhibition of Fusarium oxysporum f. sp. vasinfectum, Alternaria 
solani, and Rhizoctonia solani as observed on potato dextrose agar medium added with the 
ethanol or water extracts of Euphorbia hirta leaves. 

Extract  Alternaria solani Rhizoctonia solani 
Fusarium oxysporum 
vasinfectum 

  IC 50 (mg of dry extract/mL) 

EE  3.23 ± 0.73a 3.66 ± 0.11a 2.93 ± 0.14a 

WE  6.87 ± 0.19b 32.14 ± 0.59b 12.38 ± 0.21b 

Data are the average ± SD of five replications. Data in the same column followed by the different letters are significantly 
different (p<0.05).  

WE means water extract of Euphorbia hirta leaves whereas EE ethanol extract of Euphorbia hirta leaves. 

 

 

 










