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Abstract: In this work, we propose an analytical model for estimating confinement loss in
Tube Lattice Fibers. It is based on the single-tube model and the inhibited coupling waveguiding
mechanism. The comparison with numerical simulations of tube lattice fibers having different
geometrical parameters and dielectric refractive indexes demonstrates the model validity and
effectiveness. Being based only on analytical closed formulas, it constitutes a useful tool for rapid
estimation of TLF CL. It also gives a more in-depth insight into the TLF guiding mechanisms,
confirming the inhibited coupling is an appropriate and effective model for such kind of fibers.
© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Since they were first proposed [1], and then experimentally demonstrated [2], single-ring Tube
Lattice Fibers (TLFs) have been showing extremely interesting optical properties, making them
good candidates as hollow-core low-loss broadband fibers for applications from the terahertz
band [3, 4] to visible and ultraviolet wavelengths [5, 6], including the mid-infrared [7, 8] spectral
range. More recently they have proved to be also a good platform for sensing [9–11].

Their waveguiding mechanism is known as Inhibited Coupling (IC): it is the same as Kagome
Fibers and is based on the inhibition of the coupling between coremodes and cladding ones [12,13].
The waveguiding of these fibers is also referred to in the context of ARROW. We refer the reader
to [5, 14], which explain the differences. A consequence of the guidance mechanism is the leaky
nature of the core modes, so that Confinement Loss (CL) is one of the main loss mechanisms in
TLFs. Recently, an empirical formula able to estimate the minimum value of CL in each of the
fiber transmission bands has been proposed [15].

In this work we further extend the model, taking into account the high-loss bands separating the
fiber transmission bands. Preliminary results have been shown in [16]. Here we report a more in
depth description of the model and of the analytical formulas used, and we extend the validation
to a wider range of fibers. The approach here followed is based on the single-tube model [1, 3].
That model describes the cladding modes in terms of the modes of a single dielectric tube, which
have been analytically calculated in closed form [17]. In particular, the high-loss spectral bands
are defined by the cut-off frequencies of the cladding modes, which are well approximated by
the cut-off frequencies of the single-tube modes [1]. By assuming that the loss caused by the
coupling between a core mode and a single cladding mode manifests itself as a function with a
Lorentzian spectral shape, it is possible to estimate the loss in the high-loss band. Combining this
formalism with the formula estimating the CL minima in each transmission band, it is possible to
obtain an accurate analytical model for TLF CL.
The model is validated by comparing its analytical results with numerical simulations of

several TLFs with different geometrical parameters and refractive indexes working in different
spectral ranges. In all cases, the good agreement shows the validity and the effectiveness of the
model. The proposed analytical model not only permits to obtain a quicker estimate of the loss,
but also to gain more insight in the waveguiding process.
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Fig. 1. (a) Left: Geometry of TLF cross-section; center: E-field magnitude distribution
examples of core, hole, and dielectric modes; right: CL spectrum. (b) TLF mode dispersion
map (top) and fundamental mode confinement loss (bottom) around F = 1; in the dispersion
map, the gray dots represent the effective indexes of cladding modes; the dispersion curves of
DMs with slow spatial oscillation are shown with colored solid and dashed lines, for HE-like
and EH-like modes, respectively; the corresponding electric field distributions are shown in
the insets; the brown dashed-dotted line shows the dispersion curve of a quickly spatially
oscillating DM; the dotted blue lines shows the FM-DMs phase-matching frequencies,
corresponding to peaks in the loss spectrum (except for the DM with quick oscillations).
(c) Single-tube model validation. Top: Dispersion curves of HE (solid) and EH (dashed)
modes with same oscillation period along the tube perimeter and the same profile across
the tube boundary orthogonal direction. Bottom: Cross-sections of the analyzed fibers and
electric field distributions of the two kinds of modes compared in the analysis.

2. Model description

Differently from Photonic Band Gap Fibers, the cladding of Inhibited Coupling Fibers (ICFs)
does not exhibit any kind of band gap and the cladding modes (CLMs) form a continuum of
highly lossy solutions [12]. A core mode (CM) is potentially coupled with lossy CLMs at any
wavelength, since there is always a CLM having the same effective index (fulfilling the phase
matching condition) as the CM. Despite that, CM loss spectra are composed of an alternation
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Fig. 2. Left: Amplitudes of the Lorentzian resonances of the CLMs. Right: pν(F) (thick
solid line), L(F − FHE

cµ,ν ) (solid lines), and L(F − FEH
cµ,ν ) (dashed lines) spectra for ν = 2,

µ ≤ 8, rext = 5µm, t = 1µm, and n = 1.44.

of high- and low-loss bands. High-loss bands correspond to phase matching between CMs
and CLMs with slow spatial oscillations on the fiber transverse plane [5, 12]. Low-loss ones
correspond to spectral bands where only CLMs with quick oscillations are present. Since in a
hollow-core fiber, the effective index of CMs is lower than but close to the air line, the phase
matching condition occurs very close to the cut-off of the latter. CM loss spectra are thus mainly
defined by the spectral distribution of the CLM cut-off wavelengths.

TLFs are a particular kind of ICFs where the microstructured cladding is composed only of a
ring of dielectric tubes surrounding the hollow core, and surrounded in turn by a homogeneous
dielectric. Here t, rext , δ, and N are thickness, external radius, spacing, and number of the tubes
composing the cladding. An example of TLF with N = 8 is shown in Fig. 1(a) together with
an example of the three kind of modes sustained by TLFs: cladding dielectric modes (DMs)
mainly confined within the tubes’ dielectric, core modes (CMs) confined in the hollow core, and
hole modes (HMs) mainly confined inside the tubes’ holes. Since usually the core radius Rco is
larger than rext − t and we will focus on the CL of the fundamental core mode (FM), HMs do not
play any role and for this reason they will not be examined here. The reader can find a thorough
analysis about their role in TLF waveguiding in the following references [1, 15, 18]. Figure 1(a)
also shows a typical FM CL spectrum. F is the normalized frequency: F = 2t/λ

√
n2 − 1, being

λ the wavelength and n the refractive index of the dielectric. The TLF has a number of tubes
N = 8 and parameters: t = 0.6µm, rext = 9 µm, δ = 4.2µm, and n = 1.45. The spectrum is
an alternation of low loss regions and high loss ones occurring at the vicinity of integer values
of F. Figure 1(b) shows a detail of the mode dispersion map centered around the high-loss
peak at F = 1. Gray dots correspond to the effective indexes of the DMs. The FM dispersion
curve is highlighted in black. Also, the dispersion curves of DMs with slow spatial oscillation
are highlighted with different colors and style lines, according to the number of spatial periods
along the tubes’ perimeter and polarization (electric field tangential - HE-like - or orthogonal -
EH-like - to tubes’ boundaries). The anti-crossings due to the coupling between FM and DMs
with slow spatial oscillation are clearly visible. In the same figure also the CL spectrum of the
FM is shown. It highlights that the high-loss band is actually composed of several peaks with
the maxima centered at the frequencies corresponding to the phase matching between FM and
DMs. Also, the strength of the anti-crossing and the peak amplitude is reduced as the DM spatial
field oscillations become quicker and quicker. A field distribution of a mode with quick spatial
oscillations is also shown (coded in brown). Its dispersion curve intersects the FM one with no
observable anti-crossing at the plot resolution used here, and also no peak is observed in the CL
spectrum. This is explained by coupled mode theory, which states that the coupling between two
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Fig. 3. Cut-off normalized frequencies of the dielectric tube modes HEµ,ν (left) and EHµ,ν
(right) as a function of tube aspect-ratio parameter t/rext for two different refractive indexes:
n = 1.44 (top), and n = 2.5 (bottom). Symbols refer to numerical solutions, solid lines to
approximated analytical formulas.

modes occurs when the phase matching condition is satisfied and it is stronger as the overlap
integral

k =
π

2λ

∫
S∞

−→
E FM ·

−→
E DMdS (1)

is greater than zero [5].
Since the high-loss peaks are a superposition of peaks corresponding to the coupling of the

core mode with a slow spatial oscillation DM, their peak bandwidth depends on the spectral
distribution of the cut-off frequencies of the slow spatial oscillation DMs. According to the
single-tube model [1], these cut-off frequencies can be estimated with those of the dielectric modes
of a single-tube (ST) fiber. The fairness of the single-tube approximation can be appreciated in
Fig. 1(c), where the dispersion curve and electric field distribution of two TLF DMs are compared
with those of a ST fiber and with those of a TLF having only one tube in the cladding (1T-TLF).
The compared modes have same spatial period along the tube’s perimeter and same profile across
the tube’s thickness. The dispersion curves are almost overlapping and the cut-off frequency
difference is of the order of 1%.
The advantage of the single-tube model relies on the fact that the modes of a ST fiber have

been analytically analyzed in [17]. Their cut-off can be effectively expressed in terms of two
normalized quantities: the normalized frequency F and the tube aspect-ratio t/rext . They also
depend on the refractive index of the dielectric. The higher the refractive index the more spread
out the cut-off frequencies. Figure 3 shows the cut-off normalized frequencies Fc obtained
numerically solving the transcendental dispersion equations for two different refractive indexes.
The indexes µ and ν, represent the azimuthal and radial index, respectively.
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In the proposed approach, each FM-DM resonance is modeled with a Lorentzian-shaped peak:

L(F) =
γ2

γ2 + F2 , (2)

with γ = 0.003. Each peak is centered at one of the ST fiber cut-off frequencies FHE
cµ,ν

, FEH
cµ,ν

.
Their peak amplitudes A(µ) have to take into account that the coupling strength is reduced as the
azimuthal index µ is increased [5]. Here we propose the following empirical formula:

A(µ) = 2 · 103e−0.05 |µ−1 |2.6 . (3)

Plots of the amplitudes for µ ≤ 8 are shown in Fig. 2. The origin of the value of γ in Eq. (2)
and the expression of Eq. (3) is purely empirical, however their validity is verified by the result
analysis shown and discussed in the next section.
Even though analytical solutions of the ST fiber modes are available [17], their cut-off

normalized frequencies Fc are only available as solutions of transcendental equations. To
further simplify the model and avoid numerical integrations, here we also propose approximated
analytical formulas for the estimation of Fc:

FHE
cµ,ν
=



����0.21 + 0.175µ −
0.1

(µ − 0.35)2

���� ( t
rext

) (
0.55+5·10−3

√
n4−1

)
+ 0.04

√
µ

(
t

rext

)
if ν = 1

0.3
n0.3

(
2
ν

)1.2
|µ − 0.8|

(
t

rext

)
+ ν − 1 if ν ≥ 2

(4)

FEH
cµ,ν
=



(
0.73 + 0.57

µ0.8 + 1.5
4

−
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) (
t

rext

)0.5− n−1
10(µ+0.5)0.1
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0.34 +
µ

4

( n
1.2

)1.15

(µ + 0.2
n )

0.15

(
t
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) (
0.75+ 0.06

n1.15 +0.1
√

1.44
n (ν−2)

)
+ ν − 1 if ν ≥ 2

(5)
Again, despite the empirical origin of these expressions, their validity has been verified by
comparing the exact numerical solutions of transcendental equations and the approximated
analytical ones as shown in Fig. 3. There is a good agreement in the range of t/rext of practical
interest.
Finally, in the proposed model, the FM confinement loss of TLFs is estimated as:

CLan(F) =
∑
ν

pν(F) · CLmin(F), (6)

with
pν(F) =

∑
µ

A(µ)
(
L(F − FHE

cµ,ν
) + L(F − FEH

cµ,ν
)

)
, (7)

and CLmin(F) is the function giving the minimum value of CLan in each transmission band [15].
Here, in Eq. (3) of [15], the minimum value 3 · 10−4 instead of the average value 5 · 10−4 has been
used. Examples of pν(F), L(F − FHE

cµ,ν
), L(F − FEH

cµ,ν
) spectra for ν = 2 and µ ≤ 8 are shown in

Fig. 2.
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Table 1. TLF design parameters for different spectral ranges.

Fiber t (µm) rext (µm) δ (µm) n N Spectral range

F#1 1.0 10 5.0 1.44 8 NIR

F#2 1.0 5.0 2.5 1.44 8 NIR

F#3 1.0 10 2.5 1.44 8 NIR

F#4 0.5 10 5.0 1.44 8 VIS

F#5 0.2 4.0 0.419 1.50 8 UV

F#6 0.2 4.0 1.6 1.50 8 UV

F#7 1.0 10 5.0 1.44 6 NIR

F#8 1.0 10 5.0 2.42 8 MIR

F#9 1.0 10 4.0 1.44 10 NIR

F#10 100 1000 445 1.521 8 THz

To summarize, according to the inhibited coupling waveguiding mechanism, the high-loss
bands pν are the results of the superposition of the loss coming from the resonance of the FMwith
DMs having slow transverse spatial oscillation. In the proposed model, we describe the single
resonance loss curve with a Lorentzian function L(F), estimating the spectral location by means
of the cut-off frequencies of the ST fiber modes FHE

cµ,ν
and FEH

cµ,ν
. CLan is estimated combining

the high-loss term pν with the function giving the minimum value in each transmission band
CLmin.

3. Model validation

In order to validate the model, and in particular the validity of the empirical formulas proposed
to estimate bandwidth and amplitude of the single Lorentz resonance, ten different TLF designs
have been considered. The fibers covers different spectral ranges: ultraviolet (UV), visible and
near infrared (NIR), mid infrared (MIR), and THz. The design parameters are summarized in
Table 1. The geometrical parameters range over about 3 orders of magnitude, and the dielectric
refractive index from 1.44, that is the refractive index of the silica in NIR, to 2.42, that is the
refractive index of chalcogenide glass such as As2S3 in MIR. A number of tubes between 6 and
10 has been considered because it is the range usually used in real fibers. Fibers with significantly
different tube aspect ratios have been compared, as that ratio significantly affects the DM cut-off
normalized frequencies and thus the spectral width of the high-loss bands [1]. The same is for
the dielectric refractive index. Also, fibers with significantly different core radius have been
considered in order to check if the loss peaks pν could affect the effectiveness of the CLmin

analytical formula for the minimum loss estimation inside each transmission band. The validation
has been carried out by comparing the CL estimation with the analytical model here proposed
with numerical CL spectra obtained with COMSOL Multiphysics. The comparisons of the ten
fibers (from #1 to #10) are shown in Fig. 4. The analysis covers the first four transmission bands.
To better appreciate the accuracy also the ratio CLan/CLnum is shown. In the CLan computation
only the cladding modes with µ ≤ 8 have been considered. Analytical formulas agree quite well
with the numerical results over a wide spectral range covering the first four transmission bands.
By focusing on the low-loss spectral bands, where the fibers are actually used, the agreement is
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Fig. 4. CL spectra for Fibers from #1 to #10 (left-right, top-down) given by numerical
simulations (red curve) and analytical model (orange curve), and their ratio (cyan curve).
The curve from the analytical formula for the minima proposed in [15] is also shown in
green colour. The solid black lines represent values of 2.0 and 0.5 for the ratio.

good for all fibers even though CL ranges from more than 10dB/m to less than 10−5dB/m for a
total of about seven order of magnitude. The ratio CLan/CLnum is bound between 0.5 and 2
over wide range in each transmission band. The worst agreement is in Fiber #2, which is the fiber
with the highest aspect ratio t/rext = 0.2. However, such high aspect ratios are hardly ever used
in practice, due to the narrow band of the low loss regions and due to CL scaling as (t/rext )6 [15].

4. Conclusion

In this work we proposed an analytical model to estimate CL inside TLF transmission bands. It
is based on the Inhibited Coupling guiding mechanism to model the interaction between core
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modes and cladding modes, and on the single-tube model for the description of the cladding
modes in TLFs. Resonances between fundamental core mode and cladding modes are spectrally
estimated by considering the single-tube dielectric modes, and modeled as Lorentzian resonances.
The high-loss peaks so obtained are combined with an empirical formula for the minimum
loss estimation previously proposed by one of the authors. Albeit the analytical formulas for
estimation of frequencies and amplitudes of the resonances could appear a little exotic, their
effectiveness has been demonstrated through the analysis of ten TLFs with different geometrical
parameters and refractive indexes, covering all spectral range of TLF applications from THz
to UV. A good agreement between the proposed model confinement loss estimation and its
numerical computation is observed inside the first four transmission bands even though the
geometrical parameters have been varied over two orders of magnitude and the loss range over
seven orders of magnitude. The model is completely based on analytical closed formulas which
can also be easily implemented in a spreadsheet, constituting a useful tool for rapid estimation
of TLF CL. It also helps to give a more in-depth insight into the TLF guiding mechanisms,
confirming the inhibited coupling is an appropriate and effective model to describe and analyze
waveguiding in this kind of fibers.
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