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Abstract

Currently IFN-α is widely used for effective treatment of viral infections and several malignancies.
However, IFN-α can cause neuropsychiatric disturbances and mental impairments, including fatigue,
insomnia, depression, irritability and cognitive deficits. Molecular and cellular mechanisms leading to
such side-effects are still poorly understood. Neurons seem to be an important target in mediating cellular
effects induced by exposure to this cytokine, but so far little is known about IFN-α-induced effects on these
cells. We have investigated the ability of IFN-α (2–100 ng/ml) to induce damage and toxicity to the human
neuroblastoma SH-SY5Y cell line, commonly used for studying such phenomena, and the mechanisms
underlying these effects. After 24 h treatment, IFN-α increased mitochondrial activity, whereas cell
density was reduced in a dose- and time-dependent manner. This effect did not depend on reduced cell
proliferation, but rather the activation of apoptosis, as revealed by an increased Bax:Bcl-2 mRNA ratio
after 72-h IFN-α exposure. At this time-point, IFN-α also reduced the expression of the brain-derived
neurotrophic factor gene, and induced an increase in reactive oxygen species (ROS). A co-treatment
with N-acetyl-cysteine (NAC; 5mM), a potent antioxidant and mitochondrial modulator, was able to
counteract all of these IFN-α-induced effects. These findings demonstrated that IFN-α induces neurotoxicity
and apoptosis that is, in part, very likely due to mitochondrial damages and production of ROS. We
suggest that NAC, already tested for the treatment of psychiatric disorders, may be useful to prevent
IFN-α-induced central side-effects in a safe and effective way.
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Introduction

Interferon-α (IFN-α) is used for the therapy of different
malignancies, including melanoma and renal carci-
noma, and is the gold standard for treating hepatitis
C virus (HCV) infections. The World Health Organiz-
ation estimated that in 1999 about 3% of the
world’s population (i.e. about 170 million people) are
living with HCV (Sy and Jamal, 2006) and each year
> 350,000 subjects die from HCV-related conditions
(Averhoff et al., 2012). For patients infected with

most HCV genotypes, the combination of the
pro-inflammatory cytokine IFN-α and the antiviral
drug ribavirin (RBV) represents the standard-of-care
treatment. Although this regimen is quite effective for
treating HCV infection, leading to sustained virological
response, it has long been observed that IFN-α plus
RBV have some severe side-effects that can limit the
use of this combination in a significant number of
HCV patients (Wartelle-Bladou et al., 2012).

Neuropsychiatric disturbances and mental impair-
ments are among the most common and serious com-
plications associated with IFN-α treatment (Baraldi
et al., 2012; Schaefer et al., 2012; Zunszain et al.,
2012b). Depressed mood, fatigue, insomnia, anhedonia,
irritability, cognitivedeficits,mania, delirium, psychotic
symptoms and even suicidal thoughts, have been
observedduring this therapy. Indeed,4 70%of patients
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treated with IFN-α experience mild-to-moderate
depressive syndromes (Schaefer et al., 2012), and
∼30% have major depression (Hepgul et al., 2012).
IFN-α-induced psychiatric symptoms not only strongly
affect patient’s quality of life but may also significantly
compromise therapeutic response (Maddock et al.,
2005; Leutscher et al., 2010). Preventing onset of neuro-
psychiatric symptoms in IFN-α-treated patients is there-
fore an important medical need, and such a goal has to
be achieved using methods that do not interfere with
the efficacy of the antiviral treatment. However, a rel-
evant obstacle is that themolecularmechanisms respon-
sible for IFN-α-induced depression are still largely
unknown.

It is now well recognized that both systemic and
intra-cerebral IFN-α administration induce a variety
of central actions, ranging from changes in gene
expression (Wang et al., 2008) to the development of
a psychopathological phenotype in animal models
and in humans (Felger et al., 2007; Hayley et al.,
2012; Hepgul et al., 2012). This pro-inflammatory cyto-
kine and its receptor (IFN-R) are present in the brain,
where a fraction of the peripherally administered
IFN-α may enter by diffusion through the blood–
brain barrier (BBB; Vitkovic et al., 2000; Fioravanti
et al., 2012) or by activating cells at the BBB to induce
local production of IFN-α (Indraccolo et al., 2007).
However, even if neurons seem to be an important
target in mediating behavioural IFN-α-induced
changes (Wang et al., 2008), so far little is known
about the molecular effects induced by exposure to
this cytokine on these cells.

The human neuroblastoma SH-SY5Y cell line pos-
sesses many characteristics of neurons, and is one of
the most-used models for studying cellular events
and mechanisms involved in neurotoxicity and neuro-
degeneration or even in neuroprotection (Yu et al.,
2011; Emanuelsson and Norlin, 2012). Undifferentiated
or differentiated SH-SY5Y cells have been used as a
translationally-valid experimental model for several
neurodegenerative and psychiatric disorders, includ-
ing Parkinson’s disease, Alzheimer’s disease and
depression, for understanding pathogenesis, mechan-
isms of disease progression and therapeutic targets
(Donnici et al., 2008; Xie et al., 2010; Sutinen et al.,
2012).

Thus, in order to test whether human recombinant
IFN-α was able to induce direct neurotoxicity, and
the mechanisms underlying these putative effects, we
have used this in vitro model of human neurons,
with the ultimate aim of identifying potential
therapeutic targets for the management of IFN-α
neuropsychiatric side-effects.

Materials and method

Cell culture

Human neuroblastoma SH-SY5Y cells were grown and
maintained in complete medium [Dulbecco’s modified
Eagle’s medium (DMEM) high glucose medium:
Ham’s nutrients mixture F-12 (1:1) containing 2mM

L-glutamine, 1% non-essential amino acids, 100 U/ml
penicillin and 10 μg/ml streptomycin, supplemented
with 10% foetal bovine serum (FBS)], at 37 °C in a
humidified atmosphere of 5% CO2 in air. All reagents
used to culture cells were purchased from Euroclone
(Italy). Only cells between passages P18 to P25 were
used. For the experiments, ∼60% confluent cultures
were harvested and maintained 24 h before the treat-
ments in complete medium supplemented with 10%
FBS or without FBS. We differentiated SH-SY5Y cells
as neuron-like as previously described by Ojala et al.
(2008). Briefly, cells were plated as 105 cells/well into
96-well plates in complete medium supplemented
with 10% FBS and differentiated for 3 d with 10 μM all-
trans retinoic acid (Sigma-Aldrich, USA). Then neuron-
like differentiated SH-SY5Y cells were maintained for
4 d before treatment in complete medium without
FBS, supplemented with 50 ng/ml human recombinant
brain-derived neurotrophic factor (BDNF; Immuno-
logical Sciences, Italy). Human glioblastoma-
astrocytoma U-87 MG cells were grown in DMEM
with 10% FBS, 2mM L-glutamine, 100 U/ml penicillin
and 100mg/ml streptomycin.

Cell treatments

Following seeding (after 24 h), cells were treated
with recombinant human cytokines: IFN-α (2, 20 or
100 ng/ml; IFN-α2; PeproTech); interleukin (IL)-1β
(10 ng/ml, PeproTech); IL-18 (100 ng/ml, ProSpec) for
different time periods depending on the experiment
(6, 24, 48 and 72 h). Cells were also treated for 72 h
with N-acetyl-cysteine (NAC, 5mM; Sigma-Aldrich)
alone or in association with IFN-α (100 ng/ml corre-
sponding to at least 18 UI/μl). Control samples received
an equal amount of vehicle [sterile phosphate buffered
saline (PBS)]. SH-SY5Y neuron-like differentiated cells
were treated in complete medium supplemented with
50 ng/ml human recombinant BDNF.

Quantitative and qualitative PCR analysis

Cells were plated at a density of 106 cells/well on 6-well
plates in 1ml complete medium containing 10% FBS.
RNA preparation and DNAse treatment were per-
formed as previously described (Alboni et al., 2011a).
Total RNA was reverse transcribed with a high
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capacity cDNA reverse transcription kit (Applied
Biosystems). Qualitative PCR analysis was carried
out using GoTaq Flexi DNA polymerase (Promega
Italia, Italy) starting from cDNA equivalent to 100 ng
total RNA to demonstrate the expression of IFN-α,
IFN-R1 and IFN-R2 mRNAs in SH-SY5Y cells by
using specific primer pairs. Ubiquitin C (UBC)
mRNA expression was used as a control. Real-time
PCR was performed in ABI PRISM 7900 HT (Applied
Biosystems) using Power SYBR Green mix (Applied
Biosystems) by using specific primer pairs for B-cell
CLL/lymphoma 2 (Bcl-2)α, Bcl-2-associated X protein
(Bax)-β and BDNF (exon IX; see Supplementary
Table S1 for primer sequences). Each sample was nor-
malized to the expression of the housekeeping gene
UBC. Cycle threshold (Ct) value was determined by
the SDS software 2.2.2 (Applied Biosystems) and was
used to calculate mRNA fold changes using the ΔΔCt
method as described elsewhere (Alboni et al., 2011b).

Cytotoxicity assays

Thiazolyl Blue Tetrazolium Bromide assay

One day after plating on 96-well plates (104 SH-SY5Y
cells/well), cells were treated with human recombinant
cytokines in complete medium with 10% FBS or with-
out serum. Cells were maintained at 37 °C in a
humidified 5% CO2/air atmosphere for 24, 48 or 72 h
then cells were incubated for 4 h with a Thiazolyl
Blue Tetrazolium Bromide (MTT; Sigma Aldrich,
USA) solution (5mg/ml). The formazan formed was
dissolved in 150 μl acid isopropanol (0.1 N HCl in iso-
propanol) added to all wells and the absorbance was
measured by a multiplate reader at 570 nm wavelength
and at 620 nm as reference wavelength. All exper-
iments were performed three to five times (n=8 for
each experiment) in independent cultures. Results
were expressed as percentage of control.

Crystal Violet staining

For the Crystal Violet (CV) test, cells were plated at a
density of 105 SH-SY5Y cells/well on 96-well plates in
complete medium containing 10% FBS. One day after
plating, cells were treated with human recombinant
cytokines in complete medium with 10% FBS or
without serum. Cells were maintained at 37 °C in a
humidified 5% CO2 /air atmosphere for 24, 48 or 72 h
then after aspiration of culture medium, surviving
cells were fixed with 1% glutaraldeide (Sigma-
Aldrich) and stained with 0.5% CV in 95% ethanol
for 20min at room temperature. Then plates were
washed and dried, 100 μl 10% acetic acid solution

was added to all wells and the absorbance at 570 nm
wavelength was measured spectrophotometrically
for quantitative evaluation. All experiments were
performed three to five times (n=8 for each exper-
iment) in independent cultures. Results were expressed
as percentage of control.

Morphological analysis

SH-SY5Y cells (5×104) grown on glass coverslips were
treated 24 h after plating with IFN-α alone or in combi-
nation with NAC for 1 or 3 d and then washed with
PBS, fixed in 4% paraformaldehyde (PFA) in PBS.
Coverslips were mounted with Mowiol solution, cells
were examined and images were acquired through a
digital AxioCam HRc colour camera mounted on a
AxioScope 40 (Zeiss) using the AxionVision program.

Cell proliferation

5-Bromo-2′-deoxyuridine labelling

SH-SY5Y cells were incubated for 2 h with 10 μM
5-bromo-2′-deoxyuridine (BrdU), rinsed in PBS and
fixed in freshly-made 4% PFA in PBS for 30min at
4 °C and rinsed three times with PBS-Triton X-100
1%. The cells were incubated in HCl (1 N) for 10min
on ice, in HCl (2 N) for 10min at room temperature
and for 20min at 37 °C. Acid was neutralized by wash-
ing with 0.1 M borate buffer at pH 8.5 for 12min at
room temperature. After washing, cells were incubated
for 1 h at room temperature with blocking buffer (BB:
5% FBS; glycine 1 M; 1% Triton X-100 in PBS) and
finally incubated overnight with the monoclonal
anti-BrdU antibody (1:30; Becton-Dickinson, USA) in
BB. Cells were incubated for 1 h at room temperature
with FITC-conjugated goat anti-mouse Ab in BB
(1:100; Santa Cruz Biotechnology, USA). After washing
once with PBS for 5min at room temperature, the cells
were incubated with PBS-Tween 20 0.1% (DAPI; 100
ng/ml; Sigma-Aldrich) for 5min. Before mounting in
VECTASHIELD® mounting medium, coverslips were
washed for 5min in PBS and rinsed with deionized
water. All treatment conditions were applied in dupli-
cate. Images were acquired as described in the mor-
phological analysis section. For quantification, five
fields of identical size were analysed from two cover-
slips treated under the same experimental conditions,
using identical microscope settings. The total number
of cells was quantified by counting all DAPI-stained
nuclei (n=5 replicates, 500 cells, 40× objective). The
number of BrdU-stained nuclei was divided by the
total number of DAPI-stained nuclei and expressed
as a percentage of the total number of nuclei.
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Apoptosis and oxidative stress

Staining with Hoechst

SH-SY5Y cells (105) cultured coverslips were fixed with
4% PFA in PBS (v/v) for 20min at room temperature,
washed with PBS, then exposed to 0.5% Triton X-100
for 5min at room temperature and washed three
times with PBS. Coverslips were exposed to 8 μg/ml
Hoechst 33258 (Sigma Aldrich) dye in PBS for 5min
at room temperature, washed and mounted by using
VECTASHIELD® mounting medium. Apoptosis was
monitored by fluorescence microscopy (Carl Zeiss).
Images were acquired as described in the morpho-
logical analysis section.

Terminal deoxynucleotidyl transferase dUTP nick end
labelling test

Terminal deoxynucleotidyl transferase dUTP nick end
labelling (TUNEL) was performed starting from 3×105

SH-SY5Y cells, using the In Situ Cell Death Detection
Kit, TMR red (Roche), following manufacturer’s
instructions. Cells were analysed and images were
acquired as described in the morphological analysis
section.

Flow cytometry

Intracellular hydrogen peroxide (H2O2) and mitochon-
drial anion superoxide (mtO2

•−) were detected by flow
cytometry using 2′,7′-dichlorodihydrofluorescein dia-
cetate (H2DCFH-DA), and MitoSOX Red mitochon-
drial superoxide indicator respectively. Intracellular
fluorescences of H2DCFH-DA and MitoSOX Red
were in cells gated on the basis of physical parameters,
to eliminate debris and dead cells, and thus determine
H2O2 and mtO2

•− levels selectively in viable cells. This
approach is extremely useful to study reactive oxygen
species (ROS) content in cells receiving different
stimuli, and to analyse the relationship between
oxidative stress and cell death (Cossarizza et al.,
2009). Briefly, cells were treated as described earlier,
trypsinized, resuspended in complete medium, and
incubated with 5 μM MitoSOX at 37 °C. After centrifu-
gation, cells were incubated with 2 μM H2DCFH-DA
in PBS at 37 °C. Cells were resuspended in PBS and,
before acquisition, 0.1 μM TO-PRO-3 was added to
assess cell viability and exclude dead cells.

Apoptosis was detected combining Annexin-V
Alexa Fluor 488 conjugate, and TO-PRO-3, as
described (Troiano, 2007). All the relevant probes
were from Life Technologies Corporation, USA.

Samples were acquired using a CyFlow ML flow
cytometer (Partec GmbH, Germany); data from a

minimum of 20000 cells were analysed by FloMax
(Partec) and FlowJo 9.4.11 (Treestar Inc., USA) soft-
ware. Each experiment was repeated at least four
times. Data obtained after staining with fluorescent
probes represent the median of the net fluorescence
value (±S.D.). The net fluorescence value was obtained
by linearizing the fluorescence values from the logar-
ithmic scale and subtracting the linearized median
value of the blank from the median fluorescence
value of the stained sample. Then, all data were
compared to control samples, whose fluorescence
was considered as 100.

Statistical analysis

Results are reported as mean±S.E.M. Data were ana-
lysed using the Statistical Package for Social Sciences,
version 15.0 (SPSS Inc., USA). Statistical analysis was
performed on three to five independent biological
replicates (n=3–8 for each experiment) by either
Student’s t test, to compare means of two independent
treatment groups, or an analysis of variance (ANOVA),
followed by planned pairwise post hoc comparisons
(Tukey’s honestly significant difference) for multiple
comparisons. All mean differences were considered
statistically significant if p<0.05.

Results

IFN-α exposure induced cytotoxic effects against
SH-SY5Y cells in a time- and dose-dependent manner

Because IFN-α effects are mediated by the binding to
the IFN-α/β receptor (IFN-R), we first evaluated the
expression of the two chains composing this receptor
(IFN-R1 and IFN-R2). By using specific primer pairs
we demonstrated that SH-SY5Y cells expressed both
chains of the IFN-R, supporting the hypothesis that
this clone is responsive to IFN-α-induced effects. We
also demonstrated the expression of the IFN-α2
mRNA (data not shown).

We then tested the hypothesis that IFN-α may
induce toxic effects in this model of human neuron-like
cells. IFN-α significantly affected cell density and
viability in a time- (ANOVA univariate: F2, 215=14.000,
p<0.0001 for CV test; F2, 221=17.026, p<0.0001 for
MTT test) and dose- (ANOVA univariate: F3, 39=
63.975, p<0.0001 for CV test; F3, 124=71.905, p<0.0001
for MTT test) dependent manner (Fig. 1). Specifically,
after 72 h treatment with 100 ng/ml IFN-α, the number
of cells was ∼50% lower (t=−11.945, p<0.0001) com-
pared to the control group, while no effects were pre-
sent after 24 or 48 h treatment (Fig. 1a). After 72 h
treatment with IFN-α we also observed a strong
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decrease in formazan production (t=−15.420,
p<0.0001; Fig. 1b), which was likely dependent
on the reduction of cell density (Fig. 1a, b). The MTT
test demonstrated that mitochondrial metabolism
increased 24 h after exposure to IFN-α (t=4.437,
p<0.0001; Fig. 1b). After 72 h exposure, all tested
doses (2, 20 and 100 ng/ml) were effective in reducing
cell density and formazan production, with the stron-
gest effect observed at the 100 ng/ml dose (−50%
reduction, p<0.0001 for CV; −48%, p<0.0001 for
MTT; Fig. 1c, d). Examination of cells by light
microscopy showed that IFN-α exposure for 72 h
altered cell morphology causing process shortening
and loss of neurites (Fig. 1e).

We also tested the IFN-α-induced effects in neuron-
like differentiated SH-SY5Y cells (Ojiala et al., 2008)
and in serum deprivation conditions. We differentiated

SH-SY5Y cells for 3 d 10 μM all-trans retinoic acid fol-
lowed by 4 d 50 ng/ml human recombinant BDNF,
and then we exposed neuron-like differentiated cells
to IFN-α (100 ng/ml) for 24 or 72 h. Results in neuron-
like differentiated SH-SY5Y cells (Fig. 2a, b) and in
serum-free condition (Pirkmajer and Chibalin, 2011;
Fig. 2c, d) were similar to those observed in undifferen-
tiated cells in proliferating conditions (Fig. 1).

To test if the cytotoxicity induced by exposure to
IFN-αwas specific for cells with a neuronal phenotype,
we performed similar experiments in U-87 MG cells,
a human glioblastoma-astrocytoma cell line. IFN-α
exposure did not significantly affect either the cell den-
sity or the formazan production at any time-point
evaluated (24 and 72 h) in these cells (Fig. 2e, f).

Finally, to examine the specificity of IFN-α effect
on cell density and viability in our experimental
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Fig. 1. Cytotoxity of interferon-α (IFN-α) against SH-SY5Y cells. IFN-α-induced effects on cell number [assessed using Crystal
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72 h exposure. (d) IFN-α treatment (72 h) was able to reduce formazan production in a dose-dependent manner. Results are
represented as mean±S.E.M. for n=8 for all (three to five) independent experiments. * Statistically significant difference from
the control (p<0.05). (e) Examination of cells by light microscopy showed that IFN-α exposure for 72 h altered cell
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conditions, we tested the effects of other human recom-
binant pro-inflammatory cytokines (IL-1β and IL-18)
on SH-SY5Y cells. After 24 h treatment with the pro-
inflammatory cytokines IL-1β and IL-18 cell viability
was significantly increased when compared to control
SH-SY5Y cells (t=3.810, p<0.0001 and t=5.242,
p<0.0001 respectively) without affecting cell density
(Fig. 3a, b). No effects were observed after 72 h
treatment either on cell density or in cell viability
(Fig. 3c, d).

A 72 h exposure to IFN-α decreased cell density
by inducing early apoptosis

We found that a prolonged (72 h) IFN-α treatment
increased the percentage of BrdU positive cells
(t=2.64; p=0.015 vs. vehicle-treated cells) suggesting
that the reduction in cell density did not depend on
an inhibitory effect of cell proliferation (Fig. 4).

We then measured the Bax:Bcl-2 expression ratio. The
protein Bax is a member of the Bcl-2 family that pro-
motes apoptosis whereas Bcl-2 is an apoptosis inhibi-
tor. The Bax:Bcl-2 ratio determines the susceptibility
of a cell to apoptosis. After a prolonged exposure
(72 h) to IFN-α the Bax:Bcl-2 mRNA ratio was
increased in treated cells when compared to controls
(t=−4.455, p=0.0001; Fig. 5b). In particular, IFN-α
exposure significantly decreased the expression of the
apoptosis inhibitor Bcl-2 (t=−5.34, p<0.0001) without
affecting the expression of the apoptosis promoter
Bax (see later). Moreover, a 72 h exposure to IFN-α
significantly decreased the levels of BDNF mRNA
compared to vehicle-treated SH-SY5Y cells (t=−3.012,
p<0.01; Fig. 5d). After 24 h, we found that the Bax:
Bcl-2 mRNA ratio decreased (t=−4.561, p<0.0001;
Fig. 5a), and there were no effects on total BDNF
mRNA expression (Fig. 5c). Consistent with the
increased Bax:Bcl-2 mRNA ratio, after 72 h exposure
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Fig. 2. Interferon-α (IFN-α)-induced cytotoxic effects against SH-SY5Y cells when maintained in serum deprivation condition
and when neuroblastoma cells were differentiated to neurons with retinoic acid. IFN-α (100 ng/ml) did not induce cytotoxicity
after 24 and 72 h exposure in a glioblastoma-astrocytoma cell line. IFN-α-induced effects on cell number [Crystal Violet (CV)
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1854 S. Alboni et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/ijnp/article-abstract/16/8/1849/816841 by O

m
bretta M

alavasi user on 20 January 2020



to IFN-α we also found an increased number of cells
displaying fragmented nuclei (t=2.430, p=0.002;
Fig. 5e) and TUNEL positive cells (Fig. 5f).

We found a strong increase in early apoptosis,
demonstrated by annexin-V binding (a molecule that
binds phosphatidylserine) 72 h after exposure to IFN-α
treatment (t=36.73, p=0.001) but not 24 h after
(Fig. 5g). Moreover, IFN-α treatment did not induce sig-
nificant changes in late apoptosis and necrosis at
the two-time points evaluated (24 and 72 h; data not
shown).

IFN-α increased the production of H2O2

and mtO2
•− after a 72 h exposure in SH-SY5Y

Using a cytofluorimetric approach, we measured sim-
ultaneously, at the single-cell level, H2O2 content,

mtO2
•− and cell physical parameters in control and

IFN-α-exposed SH-SY5Y cells.
We found a statistically significant increase in the

production of both H2O2 (+12%, t=12.31; p<0.05) and
mtO2

•− (+230%, t=3.52; p<0.05) after 72 h exposure to
IFN-α compared to control SH-SY5Y live cells. No sig-
nificant effect was observed after 6 or 24 h exposure to
IFN-α (Fig. 6a, b).

NAC co-treatment partially prevented IFN-α
induced effects

We investigated whether NAC, an antioxidant and
mitochondrial modulator with antidepressant proper-
ties, could prevent oxidative stress and cytotoxic
effects induced by IFN-α in SH-SY5Y cells. Cells were
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Fig. 3. Cytokine-induced effects against SH-SY5Y cells on cell number [Crystal Violet (CV) staining] and viability [Thiazolyl
Blue Tetrazolium Bromide (MTT) assay] after 24 or 72 h. The SH-SY5Y cells at an initial density of 104/well were treated with
interleukin (IL)-1β (10 ng/ml) or IL-18 (100 ng/ml) for 24 (a and b) or 72 (c and d) h. (a) Acutely, all cytokines tested did not
affect cell density compared to vehicle-treated cells (Con), whereas (c) no effect was observed after 72 h exposure to IL-1β
or IL-18 in this in vitro model of human neurons. (b) Mitochondrial activity was increased 24 h after exposure to all the
pro-inflammatory cytokines tested, whereas (d) formazan production was not affected after a 72 h exposure to IL-1β or IL-18.
Results are represented as mean±S.E.M. for n=8 for all (three to five) independent experiments. * Statistically significant
difference from the control (p<0.05).
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exposed for 72 h to IFN-α (100 ng/ml), NAC (5mM) or
NAC (5mM) plus IFN-α (100 ng/ml). NAC co-treatment
was able to partially prevent IFN-α-induced effects on
cell density (Fig. 7a): the effects of IFN-α were reduced
from −57% to −29%. Indeed, when NAC was
co-administered with IFN-α, cell density was signifi-
cantly different when compared both to control
SH-SY5Y cells (t=−4.45, p<0.0001) and to IFN-α treat-
ed cells (t=5.81, p<0.0001; Fig. 7a). NAC also partially
counteracted IFN-α-induced effect on cell viability
(t=−3.57, p<0.01 compared to control cells; t=2.30,
p<0.05 compared to IFN-α treated cells; Fig. 7b).
Again, the effects of IFN-α were reduced from −48%
to −29%. In addition, NAC contrasted the effect of
IFN-α on cell morphology; for example, cells co-treated
with IFN-α plus NAC maintained neurites (Fig. 7c).
NAC alone did not affect cell density or formazan
production.

In term of apoptosis, NAC alone (t=−5.88,
p<0.0001) or in combination with IFN-α (t=−5.58,
p<0.0001) significantly decreased the Bax:Bcl-2 ratio,
counteracting the IFN-α-induced effect in increasing
the Bax:Bcl-2 ratio (Fig. 7d). In particular, exposure
to NAC alone increased Bcl-2 mRNA expression
(t=7.14, p<0.0001) and decreased Bax mRNA
expression (t=−2.47, p=0.03; Fig. 7d). When cells
were exposed to the two compounds together, Bcl-2

expression was significantly higher in treated cells
compared to control cells (t=6.75, p<0.0001)
whereas Bax expression was unaffected (Fig. 7d).
NAC co-administration was also able to prevent
IFN-α-induced down-regulation of total BDNF
mRNA expression (Fig. 7e).

Finally, when cells were exposed to NAC together
with IFN-α, NAC was able to prevent ROS production
induced by IFN-α (Fig. 8a, b) as well as an IFN-
α-induced effect on early apoptosis (Fig. 9), with
NAC alone having no effects.

Discussion

The aim of this paper was to identify some of the mol-
ecular and cellular effects of IFN-α on human cells of
neuronal origin, paying particular attention to those
aspects linked to the potential neurotoxicity of this
pro-inflammatory cytokine. We provide for the first
time the evidence of a direct toxic effect of IFN-α
against the SH-SY5Y cell line, a clone that expresses
several properties of human neuronal cells and is
largely used as a cellular model to provide mechanistic
implication of drug-induced effects on human neurons
(Dedoni et al., 2010). In these cells, IFN-α induced
apoptosis after 72 h exposure, likely by impairing mito-
chondrial integrity and activity, recruitment of Bcl-2
family members, and oxidative stress. To strengthen
the importance of ROS in such a phenomenon, it is
noteworthy that most IFN-α-induced effects on SH-SY5Y
cells were counteracted by the antioxidant NAC.

Very few studies have examined the direct effects of
IFN-α in neurons, although these cells seem to be a
responsive target to the IFN-α-induced central effects
(Wang et al., 2008). Type I IFNs (e.g. IFN-α) may
have broad-ranging actions in the brain, affecting neur-
onal differentiation, survival and synaptic plasticity
(Ignatowski and Spengler, 2008). Studies in transgenic
mice chronically producing IFN-α from astrocytes have
highlighted the ‘dark side’ of the effects of this cyto-
kine in the brain. In fact, deregulated production of
IFN-α in the central nervous system induces structural
changes, neurodegeneration with loss of neurons
(mainly cholinergic neurons), axonal degeneration,
impaired neuronal function and disturbed synaptic
plasticity (Campbell et al., 1999). However, the
molecular mechanisms underlying IFN-α-induced
neurodegeneration are still largely unknown.

Consistent with previous studies showing that
primary human neuron cultures and neurons produce
IFN-α and are responsive to this cytokine (Kawaguchi
et al., 1997; Li et al., 2011; Dedoni et al., 2012), we have
demonstrated that the SH-SY5Y cell clone expresses
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the IFN-α/IFN-R system. The expression of both the
cytokine and its receptor suggests that this pro-
inflammatory cytokine may affect cell activity in an
autocrine way. The range of the tested doses was
decided according with published works and ranged
from the dose able to affect glucocorticoid receptor
functionality in vitro to that comparable to the plas-
matic levels observed in IFN-α-treated subjects (Hu
et al., 2009; Bekisz et al., 2010; Hayley et al., 2012).

In SH-SY5Y cells, IFN-α causes time- and dose-
dependent cytotoxic effects, as demonstrated by
using two different tests. The cell number was signifi-
cantly reduced only after 72 h IFN-α treatment. Neither
a 24 nor a 48 h exposure to IFN-α affected the cell
density. This may be due to acute adaptive strategies

mounted by cells against the immune challenge.
Indeed, IFN-α increased the cell viability of SH-SY5Y
cells 24 h after exposure. As MTT assay is based on
the catalytic activity of enzymes in intact mitochon-
dria, our data suggest that SH-SY5Y may react via
mitochondrial protection mechanisms against the
immune challenge. This is further supported by a
decreased Bax (pro-apoptotic):Bcl-2 (anti-apoptotic)
ratio observed at this time (24 h), due to an increased
Bcl-2 expression. In the mitochondrion, the balance
between the action of pro-death (Bax) or pro-life
(Bcl-2) members of the Bcl-2 family determine whether
or not pro-apoptotic mediators have to be released
from the mitochondria (Yu et al., 2011). IFN-α may
have either pro- or anti-apoptotic properties
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Fig. 5. Interferon-α (IFN-α)-induced apoptosis in SH-SY5Y cells after 72 h exposure. (a and b) Changes in B-cell CLL/
lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) relative mRNA expression and (c and d) total brain-derived neurotrophic
factor (BDNF) mRNA expression in SH-SY5Y cells after 24 or 72 h treatment. IFN-α treatment was able to alter the Bax:Bcl-2
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apoptosis. (g) Quantification of early apoptosis in SY-SY5Y cells treated with IFN-α for 24 and 72 h, as revealed by flow
cytometry. Results are represented as mean±S.E.M. for n=4 for two independent experiments. * Statistically significant
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depending on the cell types and stimuli (Milner et al.,
1995; Rodríguez-Villanueva and McDonnell, 1995;
Sangfelt and Strander, 2001). Here we provide evi-
dence that IFN-α-induced effects on apoptosis may
depend on the time of exposure and by the ability of
the cells to mount an adaptive response to the immune
challenge. This may have clinical implications, provid-
ing a window for therapeutic intervention to prevent
the detrimental effects of a chronic IFN-α treatment.
Indeed, at the later time-point (72 h) all IFN-α tested
doses reduced the cell density and viability in a
concentration-dependent manner.

We also demonstrated that other pro-inflammatory
cytokines (IL-1β and IL-18), that are also proposed to
mediate neurodegeneration (Ojala et al., 2008; Alboni
et al., 2010; Maes et al., 2012), have different effects
compared with IFN-α. In fact, all the other cytokines
that were able to increase cell viability at 24 h failed
to reduce cell density after 72 h exposure. A protective
effect for some pro-inflammatory cytokines (e.g. IL-1α
and IL-6) in SH-SY5Y cells from oxidative damage
has been described, suggesting a neuroprotective
role for these cytokines under certain conditions
(Bissonnette et al., 2004). Our data show that the cyto-
toxic effect against the human neuroblastoma SH-SY5Y
cell line is specific for IFN-α, and supports the hypo-
thesis that another cell population, like microglia or
progenitor cells, may be the target underlying IL-1β
and IL-18 mediated neurodegenerative effects in
the brain (Sugama et al., 2004; Zunszain et al.,
2012a). Indeed, we demonstrated that U-87 MG cells,
a human glioblastoma-astrocytoma cell line, do not
exhibit a toxic response to IFN-α in the same exper-
imental conditions, showing that only SH-SY5Y cells

with a neuronal phenotype exhibit a high toxic
response to IFN-α. Obviously, SH-SY5Y cells, although
representing a widely accepted in vitro model for
studies of neurotoxicity, are proliferative cells of
tumour origin. However, a peculiarity of these cells
is that they could be differentiated by sequential treat-
ment with retinoic acid and BDNF, thus obtaining a
homogeneous population of human neuronal mature
cells presenting many of the characteristics of primary
culture of neurons (Encinas et al., 2000; Agholme et al.,
2010). When we tested the cytotoxicity of IFN-α against
SH-SY5Y differentiated cells and in serum-deprived
condition we obtained similar results as in proliferative
cells, suggesting that the IFN-α- induced effect on cell
number does not depend on anti-proliferative proper-
ties and is maintained in non-proliferative conditions.
Indeed, even if IFN-α is known to possess anti-
proliferativeproperties (Bekisz et al., 2010)we evaluated
the effects induced by IFN-α exposure in cell prolifer-
ation and surprisingly found a paradoxical increase in
the SH-SY5Y proliferation rate after 72 h treatment
with this cytokine. According to our results, this effect
was due to the incorporation of the thymidine analogue
(BrdU) in new-born cells in vitro and not to DNA repair
in post-mitotic cells, because BrdU-labelling was not
detected in cells positive for TUNEL (data not shown;
Cooper-Kuhn and Kuhn, 2002).

Despite the increased proliferation rate, 72 h
exposure to IFN-α resulted in ∼50% loss of cellular via-
bility and increased Bax:Bcl-2 ratio as compared to con-
trol cells thus suggesting that, at this time, intracellular
events triggered by IFN-α are able to impair mitochon-
drial activity/integrity and may lead to apoptosis.
We also found reduced levels of the neurotrophin
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BDNF expression after 72 h IFN-α treatment.
Deregulation of BDNF signalling is involved in the
pathogenesis of neurodegenerative and neuropsychia-
tric disorders (Alboni et al., 2011a; Zhang et al.,
2012). Moreover, in HCV patients receiving IFN-α
treatment, serum levels of BDNF are inversely associ-
ated with depressive symptoms, suggesting that
IFN-α-induced depression may be partially explained

by alteration in the neuroprotective capacity (Kenis
et al., 2011). It was recently reported that prolonged
exposure to type I IFNs curtails BDNF-induced signal-
ling, cell survival and neurite outgrowth in SH-SY5Y
cells (Dedoni et al., 2012). Reduced neurotrophic
support may contribute to mediated IFN-α-induced
toxicity against human neuron like cells undergoing
apoptosis (Franklin, 2011). It has been reported that,

100

*

*

#
*

#
*

80

60

40

20

NAC

NAC
NAC-IFN-α

– –
––
+

+ +
+

0

72 h
C

V
 (%

 o
f C

on
)

(a) (c)

IFN-α

IFN-α

IFN-α 72 h

NAC + IFN-α 72 hNAC 72 h

Con 72 h

100

80

60

40

20

1.2 1.4
*

*

*

*
*

* *

1.2

1.0

0.8

0.6

0.4

0.2

Bax:Bcl-2 ratio fold changes Bax mRNA fold changes Bcl-2 mRNA

0

1.0

0.8

0.6

0.4

0.2

0

NAC
– –

––
+

+ +
+

0

72 h

M
TT

 (%
 o

f C
on

)
To

ta
l B

D
N

F 
m

R
N

A
 (f

ol
d 

ch
an

ge
s)

(b)

(d)(e)

IFN-α

NAC
– –

––

+
+ +

+IFN-α

72 h

72 h 72 h 72 h

Con

Fig. 7. N-acetyl-cysteine (NAC) co-treatment protected SH-SY5Y cells from interferon-α (IFN-α)-induced effects. (a and b)
NAC protected SH-SY5Y cells against cytotoxicity induced by 72 h exposure to IFN-α. (a) Cell density and (b) formazan
production were significantly higher in SH-SY5Y cells exposed to NAC+IFN-α compared to cells treated for 72 h with IFN-α.
Results are represented as mean±S.E.M. for n=8 for two independent experiments. * Statistically significant difference from the
control (p<0.05). (c) Phase-contrast photomicrographs (×20 objective) of representative SH-SY5Y cells showing morphological
changes 72 h after treatments with IFN-α, NAC or NAC+IFN-α. (d) Relative abundance of B-cell CLL/lymphoma 2 (Bcl-2) and
Bcl-2-associated X protein (Bax) mRNA expression and Bax:Bcl-2 mRNA expression in SH-SY5Y cells exposed to IFN-α, NAC
or NAC+IFN-α for 72 h. NAC co-administration with IFN-α increased the expression of the anti-apoptotic bcl-2 gene thus
resulting in a reduced Bax:Bcl-2 ratio. (e) Total brain-derived neurotrophic factor (BDNF) mRNA expression in SH-SY5Y cells
exposed to IFN-α, NAC or NAC+IFN-α for 72 h. NAC alone did not affect BDNF expression but was able to prevent
IFN-α- induced effect on BDNF gene expression. The relative abundance of each transcript was normalized with ubiquitin C
and an average of vehicle-treated cells was used as calibrator. Results are represented as mean±S.E.M. for n=4 for two
independent experiments. * Statistically significant difference from the control (p<0.05).
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in neurons, neurotrophins (e.g. BDNF) exert neuropro-
tective effects by affecting mitochondrial function
(Markham et al., 2012), regulating Bcl-2 family mem-
bers (Pérez-Navarro et al., 2005) and through acti-
vation of the antioxidant pathway. Therefore, it is
possible that IFN-α and BDNF regulate similar mech-
anisms but in opposite directions, or that the effects
of IFN-α on mitochondrial function and apoptosis are
mediated in part by the decrease of BDNF activity.

By polychromatic flow cytometry we evaluated
IFN-α-induced effect on early apoptosis, late apoptosis
or necrosis. We found increased early apoptosis at the
later time-point, suggesting that IFN-α induced neur-
onal death through an intrinsic pathway very likely
evoked by the binding of the cytokine to its receptor,
but also that other events triggered by the formation
of the IFN-α/IFN-R are eventually responsible for the

reduced cell density observed after 72 h IFN-α
exposure. It has been reported that IFN-α effects on
neurons are mediated in part by the production of
reactive oxygen intermediates (Hori et al., 1998).
Indeed, among the stimuli that can induce cells to
undergo apoptotic death, one of the most reproducible
is mild oxidative stress (Slater et al., 1995). It has long
been known that increased levels of ROS such as H2O2

and the superoxide anion O2
•− occur in neurons under-

going apoptotic death (Greenlund et al., 1995).
Elevated ROS production is now recognized as a
necessary event of apoptosis, by generating a cellular
pro-oxidative state (Franklin, 2011). Elevated pro-
duction of ROS occurring in neurons has been consist-
ently linked to the origin and pathology of several
diseases, including neurodegenerative and psychiatric
disorders as well as in normal ageing (Finch, 2007;
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Halliwell and Gutteridge, 2007; Leonard and Maes,
2012). We found a significant increase in production
of H2O2 and mtO2

•− after 72 h exposure to IFN-α,
suggesting that impaired pro-oxidant state contributes
to undergoing apoptosis in SH-SY5Y cells. According
with this hypothesis, we demonstrated that co-
treatment with the antioxidant membrane permeable
NAC was able to counter many of the detrimental
IFN-α-induced effects in our in vitro model of human
neurons. In these cells, NAC co-administration par-
tially counteracted IFN-α-induced effects on cell den-
sity, mitochondrial metabolism and cell morphology,
while it blocked the effects of ROS production
and apoptosis, as already described in other models
(Cossarizza et al., 1995). Moreover, after 72 h, NAC
alone or in combination with IFN-α increased Bcl-2

expression and decreased the Bax:Bcl-2 ratio towards
an increased cell resistance. Inhibition of Bax induction
following an oxidative stress by NAC was already
demonstrated in these cells (Watcharasit et al., 2010).
Finally, whereas NAC alone did not affect BDNF
expression after 72 h exposure, NAC co-administration
prevented the reduction in BDNF expression observed
after IFN-α treatment, thus contributing to maintaining
the neurotrophic support and further strengthening
the role for oxidative stress and inflammation in
regulating BDNF levels. In cells, NAC is rapidly
metabolized to intracellular glutathione (GSH). GSH
is the primary endogenous antioxidant in the brain
with an important role in the detoxification and in
the prevention from damage due to ROS. Therefore,
an NAC protective effect from IFN-α-induced toxicity
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in SH-SY5Y cells may be in part due to activation of the
GSH redox-cycling pathway, ROS suppression, pre-
vention of Bax induction and apoptosis regulation.
NAC has been shown to have effects on antioxidant
status, glutamate transmission, inflammation and
neurogenesis (Dean et al., 2012). It has been recently
demonstrated that NAC may prevent memory deficits
in models of neurodegenerative conditions or ageing
by counteracting oxidative damage (Smaga et al.,
2012). Moreover, NAC could prevent depressive-like
behaviour induced by exposure to negative challenges
by counteracting stress-induced oxidative damage in
the prefrontal cortex, the hippocampus and the amyg-
dala, brain areas most involved in depression (Arent
et al., 2012).

The use of NAC, together with other mitochondrial
modulators has been suggested for the management of
bipolar disorder (Nierenberg et al., 2013). Recent clini-
cal studies have demonstrated a robust effect of NAC
in treating depressive symptoms (Magalhães et al.,
2011; Berk et al., 2012).

In conclusion, we demonstrate that neurons are a
direct target of IFN-α-induced neurotoxic effects. Of
coursewe can only speculate that these in vitro observed
molecular events induced by IFN-α exposure may be in
part responsible for IFN-α-induced neurodegeneration
and/or psychiatric side-effects. Nevertheless, it is inter-
esting to propose that NAC, a safe drug also effective
in treating liver failure, could be used to prevent
IFN-α-induced effects. Although evidence about the
ability of NAC to penetrate the BBB are conflicting
(McLellan et al., 1995; Neuwelt et al., 2001), peripheral
administration of NAC prevents GSH depletion in the
brain (Berk et al., 2008a, b) thus exerting a protective
effect against pro-oxidative state induced by different
challenges (Scapagnini et al., 2012). Further clinical
studies may support a protective effect for NAC in
preventing severe side-effects of IFN-α.
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