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Abstract
Background: Ankrd2 is a stress responsive protein mainly expressed in muscle cells. Upon 
the application of oxidative stress, Ankrd2 translocates into the nucleus where it regulates the 
activity of genes involved in cellular response to stress. Emery-Dreifuss Muscular Dystrophy 2 
(EDMD2) is a muscular disorder caused by mutations of the gene encoding lamin A, LMNA. As 
well as many phenotypic abnormalities, EDMD2 muscle cells also feature a permanent basal 
stress state, the underlying molecular mechanisms of which are currently unclear. Methods: 
Experiments were performed in EDMD2-lamin A overexpressing cell lines and EDMD2-affected 
human myotubes. Oxidative stress was produced by H

2
O

2
 treatment. Co-immunoprecipitation, 

between Ankrd2 and forms of lamin A; cellular sensibility to stress was monitored by the 
analysis of Reactive Oxygen Species (ROS) release and cell viability. Results: Our data 
demonstrate that oxidative stress induces the formation of a complex between Ankrd2 and 
lamin A. However, EDMD2-lamin A mutants were able to bind and mislocalize Ankrd2 in the 
nucleus even under basal conditions. Nonetheless, cells co-expressing Ankrd2 and EDMD2-
lamin A mutants were more sensitive to oxidative stress than the Ankrd2-wild type lamin A 
counterpart. Conclusions:
patients affected by EDMD2, Ankrd2 has an unusual nuclear localization. By introducing a 
plausible mechanism ruling this accumulation, our data hint at a novel function of Ankrd2 in 
the pathogenesis of EDMD2-affected cells.
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Introduction

Ankrd2, Ankyrin repeat protein 2, is a mechanosensing protein, belonging to the MARP 
(Muscle Ankyrin Repeat Protein) family and is mainly expressed in skeletal muscle [1-3]. 

factor, that ensures Ankrd2 expression to be low in cycling myoblasts, however its expression 
increases upon muscle differentiation [4]. In cycling myoblasts, Ankrd2 is sharply nuclear, 
whereas in forming myotubes it has a typical cytonuclear 
its subcellular localization and expression is due to the different roles covered by Ankrd2 
during myogenesis: an earlier nuclear function, and a late sarcomeric one [5]. In the nucleus, 
Ankrd2 binds to multiple transcription factors, such as YB1, ID3, PAX6, LHX2 and MECP2 
[6-8], as well as p53, and PML [6]. In the cytoplasm, Ankrd2 interacts with proteins involved 
in cell signaling, such as Akt2 [9], and PLC [7], but also with sarcomeric proteins, such as 
telethonin [6], titin [10] and ZASP6 [11]. 

Ankrd2 shuttling in the nucleus may also be regulated by several types of stress. Oxidative 
stress [9], as well as chronic immobilization [12], exercise [13], or mechanical forces [10] 
promote the overexpression of Ankrd2 and its concomitant nuclear translocation. In these 
conditions, by down-regulating MyoD, Myogenin and their target Myh3 [5], nuclear Ankrd2 

stress. The tight relation between its role of stress sensor and coordinator of differentiation, 

Lamin A, its precursor prelamin A, and lamin C are splicing products encoded by the 
LMNA gene [14]. In the nucleus, along with B-type lamins, they give rise to the nuclear lamina, 
an elastic network linked to the inner nuclear membrane. By interacting with structural and 
enzymatic molecules, lamin A/C are able to comply with several functions, including nuclear 
and DNA protection against mechanical stress, shuttling of proteins from the cytoplasm to 

cycle and/or differentiation [15-18]. In muscle cells, by interacting with the LINC complex 
proteins, lamin A/C is also connected to sarcomeric proteins [19, 20]. 

As lamin A/C is so deeply involved in many pleiotropic functions, mutations in the 
LMNA gene often result in their alteration, with deleterious consequences for cells and tissue 
physiology. The disorders due to LMNA

systemic, as progeroid syndromes [14]. 
LMNA-related muscle laminopathies cover a wide number of pathologies, the most 

known of which is Emery-Dreifuss Muscular Dystrophy 2 (EDMD2) [21, 22]. EDMD2 is 
characterized by early contractures, progressive muscle atrophy and weakness, with cardiac 
defects that cause conduction system disorders and dilated cardiomyopathy and may lead 
to sudden death; in particular, several pathogenetic variants of LMNA, mapping on diverse 

LMNA result in a 

also suggest an impairment of signaling mechanisms affecting the regulation of muscle-

to altered levels of reactive oxygen species and a higher susceptibility to oxidative stress 
[26]. Multiple evidence points to mutations on lamin A/C, and on the resulting dysfunctional 
lamina, to be indeed responsible for an altered redox homeostasis [27]. Beside lamin A/C, 
also prelamin A, the precursor of lamin A longer for 15 amino acids, plays a fundamental 
role in muscle cells. We have in the past demonstrated that in normal conditions, prelamin 
A is accumulated during muscle cell differentiation [28]. Moreover, by interacting with LINC 
complex, farnesylated-prelamin A, one intermediate of lamin A processing [29], contributes 
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pathogenic mechanisms of dystrophic muscle cells accumulating a mutated form of prelamin 
A [30].

In this study, we present evidence of the formation of a complex made of Ankrd2, mature 
lamin A and farnesylated prelamin A, suggesting an involvement of lamin A and prelamin 
A in Ankrd2 nuclear translocation observed during the arrival of certain stimuli, such as 
myogenic stimulation or stress conditions. In an attempt to assess whether mutations of 
LMNA causative of EDMD2 might affect Ankrd2 binding to lamin A, we unexpectedly found 
that pathological EDMD2-lamin A mutations positively affect this binding and promote 

a relevant role in the pathogenesis of this condition by increasing cellular sensibility to 
oxidative stress.

Materials and Methods

Cultures, transfection and treatments

Human muscle cultures were obtained as previously described [31] from consenting patients 

affected donor in which a novel LMNA mutation (c.1517A>C) was diagnosed (Cenni et al, manuscript in 

preparation). All the local and EU ethical issues were respected. 

Human embryonic kidney (HEK) 293T cells and C2C12 myoblasts were cultured in DMEM-High Glucose 

(Life-Technologies, Netherlands) supplemented with 10% of heat-inactivated Fetal Calf Serum (EuroClone, 

Leeds, U.K.). C2C12
 
were induced to differentiate in DMEM-HG plus 2% Horse Serum (Euroclone). HEK 293T 

were transfected with Fugene6 (Promega Madison, USA), and C2C12 with Lipofectamine-3000 (Invitrogen, 

Waltham, USA). 

Oxidative stress was induced by H
2
O

2
M 

for HEK 293T and C2C12 cells for the indicated times. Lower H
2
O

2 
concentration (f.c. 100µM) was used for 

primary muscle cultures, to exclude sublethal effects. 

Plasmids

For Ankrd2: Flag tagged human Ankrd2 was previously described in [9]. GFP-tagged human Ankrd2 

cDNA, encoding for the S-Ankrd2 isoform of 333 aminoacids, described by Jasnic-Savovic et al. [3], was 

cloned into the pCDNA 3.1 eukaryotic expression vector (Invitrogen). For Flag-lamin A: Flag-lamin A WT 

[32], Flag-lamin A WT cDNA was used as a template to generate mutants C661M, L647R, R401C, R527P and 

H506P by means of QuikChange strat egy (Agilent Technologies, Santa Clara, USA). LA L647R was used to 

sequencing (BMR, Padua, Italy). Mutagenesis primers (Invitrogen) used are shown in  Suppl. Table S1 (for 

all online suppl. material, see www.karger.com/doi/10.1159/000477309).

Preparation of protein extracts and co-immunoprecipitation

Total lysates were prepared in AT lysis buffer (20mM Tris-HCl 7.0, 1% NP-40, 150mM NaCl, 10% 

glycerol, 10mM EDTA, 20mM NAF, 5mM Na
4
P

2
O

7
, 1mM Na

3
VO

4
, 1mM PMSF and protease inhibitors (Thermo-

For nuclear extraction: transfected-HEK 293T were trypsinized and resuspended in hypotonic buffer 

(10mM Tris-HCl pH 7.8, 5mM MgCl
2
). Then, 0.3% Triton was added. Cells were then sheared through a 22-G 

needle. Nuclei were recovered by centrifugation, lysed in AT lysis buffer and cleared by centrifugation. The 

purity of nuclei was analyzed by immunoblot detection of -tubulin.

For co-immunoprecipitation experiments, cells were lysed in CC buffer (50mM Tris-HCl 8.0, 150mM 

NaCl, 1% NP40, 0.1% SDS and protease inhibitors). Lysates (1-2mg) were incubated with 2 g of antibody at 

http://dx.doi.org/10.1159%2F000477309
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Immunochemical analysis

50 g of lysates were resolved on SDS-PAGE. Proteins were blotted onto nitrocellulose (BioRad). For the 

detection of human or mouse Ankdr2, the following antibodies were used: polyclonal anti Ankrd2, (PtgLab 

Chicago, USA) and monoclonal anti-Ankrd2, clone YAS11 (LS-Bio Seattle, USA). As stated by the companies, 

these two antibodies have been raised against epitopes shared by the S- and the M- Ankrd2 isoforms. Other 

antibodies were: anti -Akt SC-1619, -Akt SC-1618, -Lamin A/C SC-6215, -Lamin A SC-6214, -GFP, -PARP-1 

SC-7150, -Bcl-2 SC-7382, caspase-3 SC-7148, BAX sc-7480 (all Santa Cruz, USA). 

Denmark, or Santa Cruz, USA). Coverslips were washed and mounted with an antifade/DAPI reagent 

the NIS-Elements AR-software. 

Measurement of intracellular ROS level

HEK 293T were transfected according to the experimental conditions. 

interference, whenever required, a vector encoding Flag-tagged Ankrd2 was used to overexpress Ankrd2 

in these experiments. The day before the experiment, cells were splitted and 5x104 cells were seeded in 

triplicate in a 96-wells culture plate. The next day, cells were washed and incubated with 15 M DCFDA 

2
O

2
 or left 

96-wells culture plate, differentiated for three weeks and then processed as already described.

All the images shown are representative of at least three independent experiments carried out under 

the same conditions. 

Adobe-Photoshop CS 8.0 (Adobe-Systems). Densitometric and statistical analysis were performed by ImageJ 

and GraphPad Prism5 software.

Results

Ankrd2 interacts with lamin A and prelamin A, and is mislocated from the cytoplasm to the 
nucleus by farnesylated prelamin A 
Ankrd2 and LMNA products have several features in common: they are upregulated 

during muscle differentiation, have a nuclear localization (which is constitutive for lamin 
A/C and regulated for Ankrd2), and interact with chromatin and transcription factors, such 
as p53. Thus, we wondered whether these proteins might interact with each other. HEK 293T 
cells, which do not endogenously express Ankrd2, and have negligible amounts of endogenous 
lamin A or C [33], were co-transfected with vectors encoding GFP-Ankrd2 and Flag-tagged 
constructs encoding wild-type lamin A (LA WT) or some unprocessable intermediates 
of lamin A maturation, such as non-farnesylable (LA C661M), and carboxymethylated-
farnesylated prelamin A (LA L647R). A scheme of lamin A maturation steps and mutants 
used in this work is depicted in Fig. S1, see supplementary material.

Cell lysates of Flag-LA constructs transfected in HEK293T cells were immunoprecipitated 
and analyzed for Ankrd2. Results shown in Fig. 1A demonstrate that Ankrd2 is able to 
complex with all the forms of lamin A tested. However, more Ankrd2 was found in prelamin 
A immunoprecipitates, in particular in the LA L647R one. 

by prelamin A accumulation, HEK 293T cells were transfected with GFP-Ankrd2 alone or 
in combination with Flag-LA constructs, and subjected to cellular fractionation. Results 
shown in Fig. 1B, revealed that the simultaneous co-expression with LA C661M and even 
more so with LA L647R increased Ankrd2 accumulation in the nuclear fraction, compared 
to what was observed when it was co-expressed with LA WT (respectively of ~45% and 
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Fig. 1. Lamin A and farnesylated prela-

min A interact with Ankrd2, but only 

farnesylated prelamin A shifts Ankrd2 

into the nucleus. HEK 293T cells were 

co-transfected with GFP-Ankrd2 and the 

indicated Flag (Fl)-lamin A constructs, 

encoding wild type mature lamin A (LA 

WT), non-farnesylable (LA C661M) and 

carboxymethylated-farnesylated prela-

min A (LA L647R), and with empty vec-

tor (EV) as control, After 24 hours, cells 

were processed for: A) Co-immunopre-

cipitation assay: lamin A and prelamin 

A forms were immunoprecipitated from 

total cell lysates (T.L.) by an anti-Flag an-

tibody. Pellets were resolved on a 10% 

SDS-PAGE and subjected to immunoblot 

analysis. Representative western blots 

are shown. Bars were obtained by nor-

malizing GFP-Ankrd2 to Flag densito-

metric values from six independent co-

immunoprecipitation assays. Plots are 

mean ± SD (n = 6). *p < 0.05 vs. Ankrd2 

amount co-immunoprecipitated with LA 

WT. Western blots directed against GFP-

Ankrd2 (MW: 67kDa), and densitometric 

analysis revealed that Ankrd2 preferen-

tially binds to farnesylated prelamin A. 

Note that the unprocessable prelamin A 

species, i.e. LA C661M and LA L647R are 

about 15 aa longer than LA WT, and thus run slower. B) Nuclear extraction: Nuclear extracts isolated from 

transfected cells were lysed, resolved on SDS–PAGE and immunoblotted with an anti–GFP antibody. As as-

sessed by corresponding total lysates, GFP-Ankrd2 was equally transfected in each sample. Purity of iso lated 

nuclei was checked by tubulin. HDAC2 was used as an equal loading control of nuclear lysates. Of note, 

when expressed alone, in HEK 293T cells (which express negligible levels of lamin A/C) GFP-Ankrd2 is ac-

obtained by normalizing densitometric values of GFP-Ankrd2 in the nucleus to those in total lysates from 

the corresponding sample. Plots are mean ± SD (n = 5). *p < 0.05 vs. GFP-Ankrd2 amount obtained from 

GFP-Ankrd2 (green) localization was evaluated in combination with the indicated Flag (Fl)-lamin A forms 

stained in red by an anti Cy3-conjugated secondary antibody against the anti-Flag. Nuclei were counter-

stained with DAPI (blue). Bar 10 

gain more insight into GFP-Ankrd2 nuclear localization. As previously reported, Fl-LA L647R accumulation 

leads to the formation of nuclear lamina thickening, and is predominantly localized in the nucleoplasm, as 

well as the nuclear rim. Fl-LA C661M unprocessable prelamin A predominantly accumulated at intranuclear 

aggregates while a minor percentage of cells, showed a nuclear lamina distribution. The overexpression of 

Fl-LA L647R mutant led to the accumulation of GFP-Ankrd2 in the nuclei of 60±5% of co-transfected cells. It 

has to be reported that in a small percentage (8±2%) of Fl-LA C661M co-transfected cells, GFP-Ankrd2 was 

interestingly localized at the nuclear rim. 

~54% more, Fig. 1B). Of note, in HEK 293T cells expressing GFP-Ankrd2 alone, the amount 
of nuclear Ankrd2 was similar to that observed with the prelamin A form, maybe because of 
the absence of a normal nuclear lamina typical of these cells [33]. Increasing the detergent 
concentration in the extraction buffer (up to 1% Triton X-100), did not affect LA L647R-

http://dx.doi.org/10.1159%2F000477309
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induced Ankrd2 accumulation in the nuclear fraction, indicating that Ankrd2 was not bound 
to the outer nuclear membrane (not shown). Further fractionation revealed that Ankrd2 
was accumulated in the insoluble nuclear fraction (In), containing the nuclear matrix and 
chromatin, after LA L647R, but not WT, expression (see supplementary material, Fig. S2).

cytoplasmic and weakly nuclear. However, co-expression with the LA L647R mutant led 
Ankrd2 to be recruited to the nucleus in 60±5% of the transfected cells. Limited localization 
changes compared to control (Ankrd2-LA WT co-expressing cells) were detectable by co-
expressing LA C661M (read legend of Fig. 1C). 

Ankrd2 interacts strongly with EDMD2 mutated forms of farnesylated prelamin A
EDMD2 is a genetic disorder due to mutations of the LMNA gene encoding lamin A, 

impairing the development and functions of striated muscles. To get more insight into the 
role of the interaction between Ankrd2 and mutated lamin A in the pathophysiology of this 
disease, some forms of EDMD2-mutated lamin A were produced from LA WT, and their 

LMNA mutations considered were: 

that is c.1517A>C leading to the p.H506P mutation, responsible for an EDMD2 associated to 
cardiac conduction defects (Cenni et al. manuscript in preparation). 

HEK 293T were co-transfected with vectors encoding GFP-Ankrd2 and the various forms 
of EDMD2-mutated lamin A. After 24 hours, the Flag constructs were immunoprecipitated 
from total lysates and then analyzed for Ankrd2. Results demonstrated that compared to LA 
WT, the presence of the EDMD2 mutations positively modulated the binding between lamin 
A and Ankd2 (Fig. 2A and 2B). 

We next tested whether the introduction of the same mutations in the unprocessable 
prelamin A mutant could affect the interaction between Ankrd2 and prelamin A already 
reported (Fig. 1A). To this aim, the double mutants L647R/R401C, L647R/H506P and 
L647R/R527P (hereafter indicated as dm R401C, dm H506P and dm R527P), were 
created and co-expressed with GFP-Ankrd2. Overexpressing cells were lysed and prelamin 
A forms immunoprecipitated.Results demonstrated that double lamin A mutants co-
immunoprecipitated an amount of Ankrd2 higher than that observed with LA WT or single 
EDMD2-lamin A mutants (Fig. 2A and 2B), or with LA L647R (see supplementary material, 
Fig. S3).  

To evaluate whether lamin A mutants were also able to recruit Ankrd2 to the nucleus, 

all the EDMD mutated-lamin A forms tested were able to induce a portion of total Ankrd2 to 

To verify that the interaction between Ankrd2 with wild-type and mutated lamin A 
forms also occurs in a muscle model, C2C12 mouse muscle cells were cultured on coverslips, 
transfected with vectors encoding the various forms of Flag-tagged lamin A forms and 
differentiated for two days. Cells were blocked and slides incubated with anti-Flag antibody 
to stain transfected cells, and with anti-Ankrd2 antibody to stain endogenous Ankrd2. As 
shown in Fig. 2D, in mock and LA WT-transfected cells, Ankrd2 stained both the cytoplasm and 

EDMD2-lamin A, Ankrd2 localization became more nuclear (Fig. 2D). 

In C2C12 myotubes, H2O2 increases the binding between endogenous Ankrd2 and lamin A
As previously reported, oxidative stress induces a portion of Ankrd2 to translocate from 

the cytoplasm to the nucleus, affecting the activity of its effectors [9]. In an attempt to evaluate 
whether oxidative stress could modulate the binding between Ankrd2 and lamin A during 
Ankrd2 nuclear crossing, C2C12 cultured myotubes were stressed by H

2
O

2
 stimulation (f.c. 

450 M) up to 5 hours, lysed and endogenous lamin A/C immunoprecipitated from total 
lysates. Fig. 3A shows that H

2
O

2
 stimulation positively promoted the interaction between 

http://dx.doi.org/10.1159%2F000477309
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Fig. 2. Ankrd2 tightly 

interacts with EDMD2-

mutated forms of la-

min A and prelamin A. 

A) Co-immunoprecipi-

tation analysis of HEK 

293T cells transfected 

with GFP-Ankrd2 and 

Flag-lamin A con-

structs encoding wild 

type lamin A (LA WT), 

EDMD2 forms of lamin 

A, that is LA R401C, LA 

H506P and LA R527P, 

and EDMD2-forms of 

prelamin A, that is dou-

ble mutants L647R/

R401C, L647R/H506P 

and L647R/R527P 

(dm R401C, dm H506P 

and dm R527P). Af-

ter 18-24 hours from 

transfection, cells were 

lysed and lamin A spe-

cies immunoprecipi-

tated from total lysates 

(T.L.) by anti–Flag an-

tibody. GFP-Ankrd2 

amount was then 

immunocomplexes. Representative western blots are shown. B) Bar graph of A obtained by normalizing 

GFP-Ankrd2 to Flag densitometric values from three independent immunoprecipitation assays. Plots are 

mean ± SD (n = 3). *p -

rescence analysis: GFP-Ankrd2 localization was evaluated in cells overexpressing Flag (Fl-) tagged EDMD2 

mutant forms of lamin A (LA R401C, LA H506P and LA R527P ) and prelamin A (dm R401C, dm H506P and 

dm R527P). Mutated lamin A overexpressing cells were detected by anti-Flag staining (red), bar 10 m. 

-

factual data due to accumulation of transfected proteins, the same experiments were performed with serial 

dilutions of expression vectors (range of transfecting DNA used was from 0.2 to 1.5 g/well for a 6-well 

LA R401C, LA H506P and LA R527P and induced to differentiate in differentiation medium. After two days 

-

dogenous Ankrd2 (green) and Flag tagged EDMD2-lamin A mutants (stained with anti-Flag/cy3-conjugated 

antibody from Sigma). Bar 10 m. Similar results were obtained by serial dilution of transfected cDNA vec-

exogenous lamins. Representative blots from three independent experiments are shown.

Ankrd2 and lamin A/C. It should be noted that Ankrd2 did co-immunoprecipitate with 

Interestingly, after three hours of treatment, the amount of Ankrd2 bound to lamin A/C 
started decreasing. 

C2C12 myotubes were grown on coverslips and cultured and treated as before. At the end of 

http://dx.doi.org/10.1159%2F000477309
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Fig. 3. H
2
O

2
 stimu-

lation positively 

modulates the 

binding between 

wild-type forms 

of mature lamin 

A and prelamin A 

but not that with 

o v e r e x p r e s s e d 

EDMD2 mutated 

forms of lamin A. 

To evaluate wheth-

er H
2
O

2
 modulates 

the binding of en-

dogenous Ankrd2 

and lamin A/C 

also in a muscle 

model: A) C2C12 

cells were seeded 

in p100 plates 

with coverlips in-

side, differentiated 

for 2 days and ex-

posed to 450 M 

H
2
O

2
 for the indi-

cated times, or left 

untreated. At the 

end of every treat-

ment, cells were 

lysed and endog-

enous lamin A/C 

immunoprecipi-

tated by an anti-la-

min A/C antibody 

(SC-6215, directed 

against lamin A/C 

and prelamin A) 

from total lysates 

(T.L.). As a control, 

anti IgG sera was 

incubated with 

same amount of 

untreated total ly-

sate. H
2
O

2
 stimula-

-

nocomplexes were immunoblotted with an anti Ankrd2 antibody (polyclonal). Representative western blots 

are shown. Bar graph was obtained by normalizing immunoprecipitated Ankrd2 to lamin A/C densitometric 

values from three independent experiments. Plots are mean ± SD (n = 3). *p -

tained from untreated complexes. H
2
O

2
 stimulation promoted the interaction between Ankrd2 and lamin 

stress, coverslips from A) treated for 3 hours with H
2
O

2
-

cence analysis and incubated with antibodies directed against endogenous Ankrd2 (green) and endogenous 

lamin A/C (red). Partial nuclear co-localization of Ankrd2 and lamin A increases upon stimulation, as sug-

gested by the yellow signal. To check whether H
2
O

2
 affects the extent of the interaction between Ankrd2 
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shows that in untreated controls (NT), Ankrd2 was mainly cytosolic and faintly nuclear in 
70% of the myotubes. In this context, it was also evident that the signals of Ankrd2 and lamin 
A/C merged at the nuclear rim (see the yellow staining at the nuclear rim Fig. 3B, NT). In 
the remaining percentage, consistent with the active role of Ankrd2 in coordinating muscle 
differentiation from the nuclei [4], Ankrd2 was also localized inside the nuclei (not shown).

Myotube exposure to oxidative stress induced a partial translocation of Ankrd2 
to the nucleus, clearly detectable after three (Fig. 3B, H

2
O

2

stimulation. Under these conditions, the merged signal from Ankrd2 and lamin A/C staining 
at the nucleus became clearer (Fig. 3B, H

2
O

2
).

results suggest that the increased binding between Ankrd2 and lamin A observed upon the 
application of oxidative stress, probably contributes to the increase in nuclear localization 
of Ankrd2.

We next tested if oxidative stress might modulate also the interaction between Ankrd2 
and the EDMD2 mutated forms of lamin A. HEK 293T were transfected with GFP-Ankrd2 in 
combination with Flag-tagged constructs encoding LA WT, LA L647R, and single or double 
EDMD2-lamin A mutants. Cells were subjected to stress by H

2
O

2
 stimulation for a short (30 

minutes) or a longer (3 hours) exposure, and Flag immunoprecipitated from total lysates. 
Results shown in Fig. 3C and 3D revealed that short exposure to H

2
O

2
 stimulation (30 min) 

upregulated Ankrd2 binding to LA WT or farnesylated prelamin A, whereas it reduced 
Ankrd2 binding to mutated forms of lamin A (Fig. 3C and 3D). Interestingly, longer H

2
O

2
 

exposure decreased Ankrd2 binding to all the WT and mutant lamin A forms considered, 
except for the double mutants dm R401C and dm R527P (Fig. 3C and 3D).

To get more insight into Ankrd2 subcellular distribution following H
2
O

2
 stimulation, 

HEK 293T cells were co-transfected with Ankrd2 and lamin A wild type (LA WT) or double 
mutants, and treated with H

2
O

2
 as before. Cells were collected after 30 minutes and 3 hours 

Results shown in Fig. 3E demonstrated that in Ankrd2-LA WT co-transfected cells, the 
application of stress immediately induced Ankrd2 to shuttle to the nucleus. However, the 
presence of Ankrd2 in the nucleus was not enduring, as longer H

2
O

2
 exposure reduced its 

amount (Fig. 3E). This evidence suggests that upon the application of H
2
O

2
, Ankrd2 crosses 

and mutated forms of lamin A or prelamin A, HEK 293T cells were transfected with GFP-Ankrd2 and the 

indicated forms of Flag (Fl-) tagged lamin A (C) and prelamin A (D) constructs. After 48 hours, cells were 

stimulated with 450 µM H
2
O

2
 for the indicated times, and Flag-tagged proteins were immunoprecipitated 

by anti-Flag antibody. Immunocomplexes were resolved by a 8% SDS-PAGE and GFP-Ankrd2 amount was 

2
O

2
H2AX, 

from Abcam). Representative blots are shown. Bar graphs were obtained by normalizing GFP-Ankrd2 to 

Flag densitometric values from three independent experiments. Plots are mean ± SD (n = 3). *p < 0.05 with 

black asterisks vs. GFP-Ankrd2 amount obtained from precipitates with the same lamin A construct un-

treated samples. *p < 0.05 with red asterisks vs. GFP-Ankrd2 amount obtained from precipitates with LA 

WT for C) and with LA L647R for D). E) To evaluate whether GFP-Ankrd2 accumulation into the nuclear frac-

tion following H
2
O

2
 stimulation might be affected by mutated lamin A overexpression, HEK 293T cells were 

transfected with GFP-Ankrd2 and the reported Flag tagged double mutants forms of lamin A (dm R401C, dm 

H506P and dm R527P) and with Fl-lamin A WT (WT) as the control. After 24 h of transfection, cells were 

subjected to nuclear extraction. Total lysates and nuclear extracts were resolved by 10% SDS-PAGE and 

blotted with the reported anti-Ankrd2 antibody. Lamin B1 was used as equal loading control of total and 

nuclear lysates. Purity of the nuclear fraction was validated by the absence of -tubulin (not shown). Repre-

sentative blots are shown. Bars graphs were obtained from densitometric analysis of nuclear GFP-Ankrd2 of 

three independent experiments, values were normalized to nuclear lamin B1 and indicate means ± S.D (n= 

3). *p < 0.05 vs. GFP-Ankrd2 nuclear amount obtained from the same lamin A construct-transfected control 

(untreated) samples. *p < 0.05 with red asterisks vs. GFP-Ankrd2 nuclear amount obtained from LA WT 

transfected and untreated cells.
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the nuclear lamina, by interacting with lamin A, accumulating in the nucleus for a certain 
time frame and then cycling back into the cytoplasm shortly after. 

A-EDMD2- lamin A-mutants. Under these experimental conditions in fact, the amount of 
nuclear Ankrd2 was clearly higher than that observed in control cells (Ankrd2-LA WT co-
transfected one) and what is more, persistent H

2
O

2
 stimulation did not reduce Ankrd2 amount 

mutated lamin A (Fig. 3D). Of note, in LA dm R527P co-transfectants, upon three hours of 
treatment, the amount of nuclear Ankrd2 remarkably decreased (Fig. 3E). Albeit substantial, 
this reduction resulted in a nuclear retention of Ankrd2 that was higher than that observed 

Ankrd2 localization in primary muscle cultures from EDMD2-affected human donors
With the purpose of investigating whether Ankrd2 subcellular localization is impaired 

also in myotubes from EDMD2-affected patients, human muscle cultures obtained from 
healthy donors and donors suffering from an EDMD2 form with severe conduction defects, 
were grown, differentiated and processed for an ex vivo analysis of Ankrd2 localization. 
Ankrd2 immunostaining revealed that Ankrd2 had a similar cytoplasmic localization both 
in healthy and in pathological samples. Analysis of Ankrd2 nuclear staining of both samples 
revealed that Ankrd2 partially co-localized with lamin A/C at the nuclear lamina. However, 

Fig. 4. Analysis of Ankrd2 subcellular lo-

calization and ROS release upon oxidative 

stress stimulation in human cultured EDMD2 

muscle cells. A) Primary human muscle cul-

tures from healthy (Control) and EDMD2 

donors (EDMD2 a and b) (LMNA mutation: 

c.1517A>C/p.H506P) were cultured and dif-

ferentiated on coverslips. After 3 weeks, cells 

stained for Ankrd2 (green) and lamin A/C 

(red); chromatin was counterstained with 

DAPI. Bar 10 -

clei (indicated by arrowheads) were magni-

co-localization signals between Ankrd2 and 

lamin A/C are evidenced by arrows. Repre-

sented EDMD2 myotubes highlight differenc-

es in nuclear morphology that can be found 

in the culture. In particular: a) shows little or 

no dysmorphic nuclei, while b) shows highly 

dysmorphic nuclei. B) Primary human mus-

cle cultures from the healthy and EDMD2 

donors of A) were cultured in triplicates in 

When similar levels of differentiation were 

-

cein-diacetate (DCF-DA), stimulated with 100 M H
2
O

2
 and ROS levels immediately measured as described. 

In unstimulated conditions, healthy and EDMD2 myotubes released similar amount of ROS. However, fol-

lowing 90 minutes of H
2
O

2 
exposure, ROS released from EDMD2 myotubes was 30% greater than those from 

control samples. Graph represents the mean ±SD (n=3), *p < 0.05 vs. control muscle cells treated under the 

same conditions. C) To demonstrate the levels of Ankrd2 expression, at the end of the experiment control 

and EDMD2 cultures were lysed in 40 l of SDS-buffer, loaded on a 12% SDS-PAGE, and immunoblotted with 

antibodies against Ankrd2. -tubulin was used to demonstrate equal loading. 
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whereas in healthy conditions Ankrd2 was poorly localized at the nuclear rim of 70% of total 
nuclei (Fig. 4A, Control), in nuclei of pathological myotubes Ankrd2 antibody stained a higher 

with the results shown in Fig. 2, on the nuclear recruitment of Ankrd2 in HEK 293T and 
C2C12 muscle cells overexpressing EDMD2 mutated forms of lamin A or prelamin A. Finally, 
nuclear dysmorphism was clearly detectable in EDMD2 myotubes (about more than the half 
of the culture). In these conditions, although the loss of nuclear boundaries was evident (Fig. 
4A, EDMD2-b), the partial co-localization of Ankrd2 and lamin A/C in proximity of nuclear 
aberrant structures A/C was still clearly detectable (Fig. 4A, EDMD2-b).

patient responded to H
2
O

2
 stimulation by increasing the amount of ROS release of about 

30%, compared to the control (Fig. 4B). At the end of the assay, the analysis of the cell lysates 
revealed similar level of Ankrd2 expression (Fig. 4C). The results shown in Fig. 4A and 4B and 
the fact that Ankrd2 is a stress responsive protein led us to hypothesize that the localization 
of Ankrd2 in the nuclei of EDMD2 cells might be involved in their altered stress response.  

Concomitant expression of Ankrd2 and pathological lamin A forms affect ROS release and 
cell viability in response to stress stimulation 
In dystrophic muscle cells, the dysfunctional nuclear lamina caused by the accumulation 

of mutated lamin A, leads to an anomalous increase of the amount of cellular ROS, dramatically 
concurring with the impairment of the pathology [26]. Therefore, we wondered whether the 
forms examined in this work were able to increase the cellular susceptibility to stress. HEK 
293T overexpressing wild-type or EDMD2 lamin A forms were stimulated with H

2
O

2
, and the 

Results shown in Fig. 5A demonstrate that following H
2
O

2
 stimulation, LA dm 

R527P-overexpressing cells released an amount of ROS higher (~ 12%) than the LA WT 

although the LA double mutant overexpression was always much more effective than the 
single counterparts (not shown). 

With the aim of demonstrating whether the observed ROS increase might be affected 
by Ankrd2 accumulation in the nucleus, HEK 293T cells were co-transfected with vectors 
encoding Ankrd2 and lamin A WT or mutated forms, stressed and assayed for ROS release 
as before. Surprisingly, co-expression of Ankrd2 and LA dm R527P increased the amount of 
ROS released by more than 20% compared to cells expressing LA dm R527P alone (Fig. 5A), 
more than 35% compared to cells expressing LA WT alone, and more than 30% compared to 
cells expressing Ankrd2 and LA WT. The analysis of the corresponding lysates revealed that 
all the samples were properly transfected (Fig. 5B). 

To investigate whether the simultaneous expression of Ankrd2 and LA dm R527P was 
also able to affect cell viability in response to stress, HEK 293T cells were transfected as 
before and subjected to stress at various time points. At the end of every treatment, viable 
cells were counted by Trypan blue exclusion. Simultaneous expression of Ankrd2 and LA 
dm R527P halved cellular viability ~3 hours before that of cells expressing LA dm R527P 
alone or Ankrd2 in combination with LA WT (Fig. 5C). Immunochemical analysis of the same 
samples indicated that cell death had apoptotic features (Fig. 5D). 

Taken together, these data demonstrate that the dysfunctional nuclear lamina, together 
with the nuclear recruitment of Ankrd2, induced by mutated lamina itself, synergistically act 
to increase cellular susceptibility to stress. 

Discussion

The results presented in this study point to Ankrd2 as a new interactor of lamin A 
and its precursor prelamin A. In particular, our results reveal that prelamin A is able to 
complex with higher amounts of Ankrd2 compared to mature lamin A, suggesting that in 
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Fig. 5. Analysis of the response to 

oxidative stress in cells co-expressing 

Ankrd2 and EDMD2-mutant form of 

prelamin A. A) HEK 293T cells were 

transfected with constructs encod-

ing Flag (Fl-) tagged lamin A WT (LA 

WT) or LA dm R527P, chosen as an 

EDMD2-mutated prelamin A represen-

tative mutant, plus, where indicated, 

Flag tagged Ankrd2, and loaded with 

DCFDA. As control of toxicity, untrans-

fected cells (Not Transfected) were 

subjected to the same test. Cells were 

next exposed to stress by H
2
O

2
 stimu-

lation (f.c. 450 M) and the amount of 

ROS released immediately evaluated 

as the amount of oxidized DCF (DCF-

HDA). The graph reports ROS values 

in untreated conditions (-) and after 

25 minutes from H
2
O

2
 application from 

triplicate readings. Data are the mean 

from three independent experiments 

(one of which is shown here) ± SD. Sta-

respect to the control (LA WT- trans-

fected cells) value were determined by 

p < 0.05). Expres-

sion of Fl-LA dm R527P increased the 

amount of ROS by 12% compared to 

the control (cells expressing Fl-LA WT 

alone), whereas co-expression of Fl-

Ankrd2 and Fl-LA dm R527P increased 

the amount of ROS by more than 35% 

compared to the control, and more 

than 30% compared to Fl-LA WT and 

Fl-Ankrd2. B) At the end of the experi-

ment, samples were lysed and subject-

ed to Western blot analysis to detect 

p100 were transfected as before. The next day, cells were trypsinized and plated at a density of 0.5x106/well 

onto a 6-well plate. After 24 hours cells were subjected to oxidative stress by 450 M H
2
O

2
 stimulation. After 7 

and 24 hours, cell viability was assessed by the Trypan blue assay. Dotted lines indicate the time at which cells 

halve their number. Graphs are presented with the percent cell viability ±SD for the respective independent 

experiments (n= 3). D) To verify apoptotic cell death, HEK 293T cells of C) were collected at the end of each 

treatments and lysed. Total lysates were immunoblotted with antibodies directed against PARP-1, caspase-3 

and BAX.  Equal levels of transfection of GFP-Ankrd2 and Flag lamins are shown -

donors, in untreated cells (Untr.), the nuclear lamina is principally made of mature lamin A. In these condi-

tions, Ankrd2 poorly binds to lamin A, and is weakly found in the nuclei of cells. Ankrd2 shuttling to the 

nucleus, which is observed upon mechanical, or oxidative (H
2
O

2
) stress application, or muscle differentiation, 

probably occurs also as a consequence of prelamin A accumulation at the nuclear lamina (observed under the 

same conditions by other Authors, see text), which in turn interacts with Ankrd2 resulting in Ankrd2 nuclear 

recruitment. In pathological conditions (EDMD2), nuclear lamina mainly consist of mutated prelamin A and 

lamin A, which are able to recruit Ankrd2 even in the absence of stimulation.
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in vivo conditions, this intermediate might form a stronger interaction with Ankrd2. We are 
currently involved in interaction studies to assess the nature of Ankrd2 binding to lamin A or 
farnesylated prelamin A, whether it is direct or mediated by other molecules. 

nucleus of the cells. In an attempt to assess whether Ankrd2 subcellular localization might be 
affected by its interaction with prelamin A, we also demonstrated that when overexpressed 
with this precursor, and not with mature lamin A, Ankrd2 partially redistributes to the 
nucleus (Fig. 1 and S2, see supplementary material). Interestingly, we proved that the 
interaction between Ankrd2 and farnesylated prelamin A, or mature lamin A, is not static 
but positively modulated by oxidative stress application which, as already reported, induces 
Ankrd2 translocation into the nucleus. In particular, in the last years, farnesylated prelamin 
A has been indicated as more than a simple precursor fastly processed to give lamin A. 
Recent studies have in fact demonstrated the centrality of the role played by prelamin A 
in some cellular events, such as myogenesis, that requires the accumulation of prelamin 
A to coordinate proper nuclear positioning in muscle cells [28, 30], or the oxidative stress 
response, in which elevated levels of prelamin A by inducing DNA damage, lead to premature 
cellular senescence [37, 38]. Our evidence thus suggest the existence of a multimeric complex 
consisting of Ankrd2, mature lamin A and prelamin A, the composition of which is ruled by 
cellular conditions. In non-pathological conditions, at the steady state, this complex features 
a huge amount of mature lamin A which weakly binds to Ankrd2, thus causing Ankrd2 to 
be poorly accumulated at the nuclear level. Following the application of stress, or myogenic 
stimuli arrival, the multimeric complex changes its composition, accumulating prelamin A 
that in turn acts by pulling in Ankrd2. At this point, after being brought closer to the nucleus, 
through mechanisms still to be elucidated, Ankrd2 translocates into the nucleus. 

In an attempt to assess Ankrd2 involvement in the pathophysiology of EDMD2, a muscle 
disorder associated with mutations in the LMNA gene, Ankrd2 was assayed for its ability 
to bind some mutated forms of lamin A causative of this pathology. Our results prove that 
compared to wild type counterparts, EDMD2-mutated forms of lamin A or prelamin A form a 

interactions are not increased by stress stimulation (Fig. 2A and 2B). Nevertheless, in vivo 
analysis revealed that all the EDMD2-forms of lamin A tested are also able to affect the regular 
localization of Ankrd2, inducing a partial recruitment of Ankrd2 to the nucleus (Fig. 2C, 2D 
and 3E). It is interesting to note, that the mutant forms of lamins appeared to cause two 
distinct nuclear phenotypes for Ankrd2, that is a diffuse nuclear staining and punctate foci. 
Although at the moment we are unable to assess what are the downstream consequences of 
these Ankrd2 nuclear patterns, we exclude that they might be related to the relative levels of 
exogenous proteins, but rather to the severity of the lamin A mutation.

According to the latest evidence, it was reasonable to speculate that also in pathological 
muscle cells, Ankrd2 is sequestered and mislocated in the nucleus by mutated lamin A. 

an EDMD2 affected donor, and opposite to unaffected myotubes, Ankrd2 is typically found in 
a high percentage of nuclei (Fig. 4A). 

Going back to our multimeric complex model, in pathological conditions, the complex 
Ankrd2-lamin A-prelamin A is enriched in mutated lamin A or prelamin A which, as 

constitutively localized at the nuclear level, also in the absence of stimuli (a schematic 
cartoon is depicted in Fig. 5E). 

Very recently, it has been reported that, besides the S-Ankrd2 isoform studied in this 
paper, nuclei of primary differentiated myotubes also feature a longer Ankrd2 isoform, 
that is M-Ankrd2, which is identical to the S- one except for a unique region of 27 amino 

affected myotubes might be due to the stronger interaction formed between S-Ankrd2 and 
the EDMD2-lamin A. Future experiments are planned to investigate whether and how lamin 
A also interacts with the M-Ankrd2 isoform. 
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In dystrophic muscle cells, the accumulation of mutated lamin A leads to an anomalous 
increase of the amount of cellular ROS in response to mechanical [36] or oxidative stress 
[27, 39-41], concurring to the impairment of the pathology [26]. This evidence has also been 

investigating whether 
the nuclear recruitment of Ankrd2 concomitant with EDMD2-lamin A overexpression 
might affect the cellular response to oxidative stress, our results prove that the combined 
expression of Ankrd2 and EDMD2 - lamin A is toxic, as it resulted in an increase of cellular 
sensibility to stress (Fig. 5A) associated to a premature apoptotic cell death (Fig. 5C and 5D). 
Evidence is necessary to verify the exact connection between Ankrd2 nuclear accumulation 
and increased ROS release in response to stress. Supported by our data, we therefore suggest 
that the nuclear accumulation of Ankrd2 observed in human EDMD2 muscle cells might 
contribute to generate the abnormal response to oxidative stress observed in Fig. 4B. 

Ankrd2 resulting in a general disorganization within the sarcomere [42]. Similarly, recent 

In this context, it should be interesting to evaluate if and how the nuclear accumulation of 

Ankrd2 molecules from the sarcomeric fraction, or maybe by affecting the expression of 
genes involved in the formation of functional sarcomeres, or both. To us, this is an interesting 
issue that undoubtedly warrants further investigations. 

All in all, by suggesting a molecular mechanism ruling the anomalous nuclear 
accumulation of Ankrd2 during the expression of some EDMD2-associated forms of lamin 

functions of lamin A, laying the foundations for future investigations related to the 
pathophysiology of EDMD2. 

Acknowledgments 

(Associazione Italiana Progeria Sammy Basso) and Fondazione Del Monte Grant 20.07.2015.

and A. Valmori IGM-CNR Bologna and D. Zini and S. Grasso IOR, for technical assistance. The 
authors also thank all the members of the Italian Network for Laminopathies (www.igm.cnr.
it/1/laminopatie/).

Disclosure Statement

References

1 Moriyama M, Tsukamoto Y, Fujiwara M, Kondo G, Nakada C, Baba T, Ishiguro N, Miyazaki A, Nakamura K, 

repeated protein homologous to CARP. Biochem Biophys Res Commun 2001;285:715-723.

2 Ishiguro N, Baba T, Ishida T, Takeuchi K, Osaki M, Araki N, Okada E, Takahashi S, Saito M, Watanabe M, 

Nakada C, Tsukamoto Y, Sato K, Ito K, Fukayama M, Mori S, Ito H, Moriyama M: Carp, a cardiac ankyrin-

repeated protein, and its new homologue, Arpp, are differentially expressed in heart, skeletal muscle, and 

rhabdomyosarcomas. Am J Pathol 2002;160:1767-1778.

http://dx.doi.org/10.1159%2F000477309


Cell Physiol Biochem 2017;42:169-184
DOI: 10.1159/000477309
Published online: May 18, 2017 183

Angori et al.: Ankrd2 is a Novel Interactor of Lamin A and Prelamin A

Cellular Physiology 

and Biochemistry

Cellular Physiology 

and Biochemistry
© 2017 The Author(s). Published by S. Karger AG, Basel

www.karger.com/cpb

3 Jasnic-Savovic J, Krause S, Savic S, Kojic A, Kovcic V, Boskovic S, Nestorovic A, Rakicevic L, Schreiber-Katz 

O, Vogel JG, Schoser BG, Walter MC, Valle G, Radojkovic D, Faulkner G, Kojic S: Differential expression and 

localization of Ankrd2 isoforms in human skeletal and cardiac muscles. Histochem Cell Biol 2016

4 Bean C, Salamon M, Raffaello A, Campanaro S, Pallavicini A, Lanfranchi G: The Ankrd2, Cdkn1c and calcyclin 

genes are under the control of MyoD during myogenic differentiation. J Mol Biol 2005;349:349-366.

5 Bean C, Facchinello N, Faulkner G, Lanfranchi G: The effects of Ankrd2 alteration indicate its involvement in 

cell cycle regulation during muscle differentiation. Biochim Biophys Acta 2008;1783:1023-1035.

6 Kojic S, Medeot E, Guccione E, Krmac H, Zara I, Martinelli V, Valle G, Faulkner G: The Ankrd2 protein, a link 

between the sarcomere and the nucleus in skeletal muscle. J Mol Biol 2004;339:313-325.

7 Belgrano A, Rakicevic L, Mittempergher L, Campanaro S, Martinelli VC, Mouly V, Valle G, Kojic S, Faulkner G: 

Multi-tasking role of the mechanosensing protein Ankrd2 in the signaling network of striated muscle. PLoS 

One 2011;6:e25519.

8 Mohamed JS, Lopez MA, Cox GA, Boriek AM: Ankyrin repeat domain protein 2 and inhibitor of DNA binding 

3 cooperatively inhibit myoblast differentiation by physical interaction. J Biol Chem 2013;288:24560-

24568.

9 Cenni V, Bavelloni A, Beretti F, Tagliavini F, Manzoli L, Lattanzi G, Maraldi NM, Cocco L, Marmiroli S: 

exposure to H(2)O(2). Mol Biol Cell 2011;22:2946-2956.

10 Miller MK, Bang ML, Witt CC, Labeit D, Trombitas C, Watanabe K, Granzier H, McElhinny AS, Gregorio CC, 

based stress response molecules. J Mol Biol 2003;333:951-964.

11 Martinelli VC, Kyle WB, Kojic S, Vitulo N, Li Z, Belgrano A, Maiuri P, Banks L, Vatta M, Valle G, Faulkner G: 

ZASP interacts with the mechanosensing protein Ankrd2 and p53 in the signalling network of striated 

muscle. PLoS One 2014;9:e92259.

of Ankrd2, a novel skeletal muscle gene coding for a stretch-responsive ankyrin-repeat protein. Genomics 

2000;66:229-241.

13 Lehti TM, Silvennoinen M, Kivela R, Kainulainen H, Komulainen J: Effects of streptozotocin-induced 

diabetes and physical training on gene expression of titin-based stretch-sensing complexes in mouse 

striated muscle. Am J Physiol Endocrinol Metab 2007;292:E533-542.

14 Worman HJ: Nuclear lamins and laminopathies. J Pathol 2012;226:316-325.

15 Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, 

Khuon S, Collins FS, Jenuwein T, Goldman RD: Mutant nuclear lamin A leads to progressive alterations of 

epigenetic control in premature aging. Proc Natl Acad Sci U S A 2006;103:8703-8708.

16 Cenni V, Capanni C, Mattioli E, Columbaro M, Wehnert M, Ortolani M, Fini M, Novelli G, Bertacchini J, 

Maraldi NM, Marmiroli S, D'Apice MR, Prencipe S, Squarzoni S, Lattanzi G: Rapamycin treatment of 

Mandibuloacral dysplasia cells rescues localization of chromatin-associated proteins and cell cycle 

dynamics. Aging (Albany NY) 2014;6:755-770.

17 Krishnan V, Chow MZ, Wang Z, Zhang L, Liu B, Liu X, Zhou Z: Histone H4 lysine 16 hypoacetylation is 

Acad Sci U S A 2011;108:12325-12330.

18 Mattout-Drubezki A, Gruenbaum Y: Dynamic interactions of nuclear lamina proteins with chromatin and 

transcriptional machinery. Cell Mol Life Sci 2003;60:2053-2063.

19 Mejat A, Misteli T: LINC complexes in health and disease. Nucleus 2010;1:40-52.

20 Warren DT, Zhang Q, Weissberg PL, Shanahan CM: Nesprins: intracellular scaffolds that maintain cell 

architecture and coordinate cell function? Expert Rev Mol Med 2005;7:1-15.

21 Azibani F, Muchir A, Vignier N, Bonne G, Bertrand AT: Striated muscle laminopathies. Semin Cell Dev Biol 

2014;29:107-115.

22 Emery AE: Emery-Dreifuss muscular dystrophy - a 40 year retrospective. Neuromuscul Disord 

2000;10:228-232.

23 Bonne G, Di Barletta MR, Varnous S, Becane HM, Hammouda EH, Merlini L, Muntoni F, Greenberg CR, Gary 

F, Urtizberea JA, Duboc D, Fardeau M, Toniolo D, Schwartz K: Mutations in the gene encoding lamin A/C 

cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 1999;21:285-288.

http://dx.doi.org/10.1159%2F000477309


Cell Physiol Biochem 2017;42:169-184
DOI: 10.1159/000477309
Published online: May 18, 2017 184

Angori et al.: Ankrd2 is a Novel Interactor of Lamin A and Prelamin A

Cellular Physiology 

and Biochemistry

Cellular Physiology 

and Biochemistry
© 2017 The Author(s). Published by S. Karger AG, Basel

www.karger.com/cpb

24 Bonne G, Leturcq F, Ben Yaou R: Emery-Dreifuss Muscular Dystrophy; in Pagon RA, Adam MP, Ardinger 

HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K (eds): 

GeneReviews(R). Seattle (WA), 1993

25 Dahl KN, Ribeiro AJ, Lammerding J: Nuclear shape, mechanics, and mechanotransduction. Circ Res 

2008;102:1307-1318.

26 Tidball JG, Wehling-Henricks M: The role of free radicals in the pathophysiology of muscular dystrophy. J 

Appl Physiol (1985) 2007;102:1677-1686.

27 Sieprath T, Darwiche R, De Vos WH: Lamins as mediators of oxidative stress. Biochem Biophys Res 

Commun 2012;421:635-639.

28 Capanni C, Del Coco R, Squarzoni S, Columbaro M, Mattioli E, Camozzi D, Rocchi A, Scotlandi K, Maraldi 

N, Foisner R, Lattanzi G: Prelamin A is involved in early steps of muscle differentiation. Exp Cell Res 

2008;314:3628-3637.

29 Sinensky M, Fantle K, Trujillo M, McLain T, Kupfer A, Dalton M: The processing pathway of prelamin A. J Cell 

Sci 1994;107:61-67.

30 Mattioli E, Columbaro M, Capanni C, Maraldi NM, Cenni V, Scotlandi K, Marino MT, Merlini L, Squarzoni S, 

Lattanzi G: Prelamin A-mediated recruitment of SUN1 to the nuclear envelope directs nuclear positioning 

in human muscle. Cell Death Differ 2011;18:1305-1315.

31 Cenni V, Sabatelli P, Mattioli E, Marmiroli S, Capanni C, Ognibene A, Squarzoni S, Maraldi NM, Bonne G, 

Columbaro M, Merlini L, Lattanzi G: Lamin A N-terminal phosphorylation is associated with myoblast 

activation: impairment in Emery-Dreifuss muscular dystrophy. J Med Genet 2005;42:214-220.

32 Capanni C, Mattioli E, Columbaro M, Lucarelli E, Parnaik VK, Novelli G, Wehnert M, Cenni V, Maraldi NM, 

Squarzoni S, Lattanzi G: Altered pre-lamin A processing is a common mechanism leading to lipodystrophy. 

Hum Mol Genet 2005;14:1489-1502.

33 Pan Y, Garg A, Agarwal AK: Mislocalization of prelamin A Tyr646Phe mutant to the nuclear pore complex in 

human embryonic kidney 293 cells. Biochem Biophys Res Commun 2007;355:78-84.

34 Dittmer TA, Misteli T: The lamin protein family. Genome Biol 2011;12:222.

35 Pekovic V, Gibbs-Seymour I, Markiewicz E, Alzoghaibi F, Benham AM, Edwards R, Wenhert M, von Zglinicki 

T, Hutchison CJ: Conserved cysteine residues in the mammalian lamin A tail are essential for cellular 

responses to ROS generation. Aging Cell 2011;10:1067-1079.

36 Muchir A, Worman HJ: Emery-Dreifuss muscular dystrophy. Curr Neurol Neurosci Rep 2007;7:78-83.

37 Ragnauth CD, Warren DT, Liu Y, McNair R, Tajsic T, Figg N, Shroff R, Skepper J, Shanahan CM: Prelamin 

A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging. 

Circulation 2010;121:2200-2210.

activation of the DNA damage response and senescence-associated secretory phenotype in vascular 

smooth muscle cells. Circ Res 2013;112:e99-109.

39 Richards SA, Muter J, Ritchie P, Lattanzi G, Hutchison CJ: The accumulation of un-repairable DNA damage in 

cysteine. Hum Mol Genet 2011;20:3997-4004.

40 Verstraeten VL, Caputo S, van Steensel MA, Duband-Goulet I, Zinn-Justin S, Kamps M, Kuijpers HJ, Ostlund 

C, Worman HJ, Briede JJ, Le Dour C, Marcelis CL, van Geel M, Steijlen PM, van den Wijngaard A, Ramaekers 

FC, Broers JL: The R439C mutation in LMNA causes lamin oligomerization and susceptibility to oxidative 

stress. J Cell Mol Med 2009;13:959-971.

41 Caron M, Auclair M, Donadille B, Bereziat V, Guerci B, Laville M, Narbonne H, Bodemer C, Lascols O, Capeau 

J, Vigouroux C: Human lipodystrophies linked to mutations in A-type lamins and to HIV protease inhibitor 

therapy are both associated with prelamin A accumulation, oxidative stress and premature cellular 

senescence. Cell Death Differ 2007;14:1759-1767.

42 Barash IA, Bang ML, Mathew L, Greaser ML, Chen J, Lieber RL: Structural and regulatory roles of muscle 

ankyrin repeat protein family in skeletal muscle. Am J Physiol Cell Physiol 2007;293:C218-227.

43 Davidson PM, Lammerding J: Broken nuclei--lamins, nuclear mechanics, and disease. Trends Cell Biol 

2014;24:247-256.

http://dx.doi.org/10.1159%2F000477309

	CitRef_1: 
	CitRef_2: 
	CitRef_3: 
	CitRef_4: 
	CitRef_5: 
	CitRef_6: 
	CitRef_7: 
	CitRef_8: 
	CitRef_9: 
	CitRef_10: 
	CitRef_12: 
	CitRef_13: 
	CitRef_11: 
	CitRef_14: 
	CitRef_15: 
	CitRef_16: 
	CitRef_17: 
	CitRef_18: 
	CitRef_19: 
	CitRef_20: 
	CitRef_21: 
	CitRef_22: 
	CitRef_23: 
	CitRef_25: 
	CitRef_26: 
	CitRef_27: 
	CitRef_28: 
	CitRef_29: 
	CitRef_30: 
	CitRef_31: 
	CitRef_32: 
	CitRef_33: 
	CitRef_34: 
	CitRef_35: 
	CitRef_36: 
	CitRef_37: 
	CitRef_38: 
	CitRef_39: 
	CitRef_40: 
	CitRef_41: 
	CitRef_42: 
	CitRef_43: 


