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Abstract

We present and solve a rich vehicle routing problem based on a practical distribution problem faced

by a third-party logistics provider, whose aim is to deliver pharmaceutical products to healthcare

facilities in Tuscany. The problem is characterized by having multiple depots, a heterogeneous

fleet of vehicles, flexible time windows, periodic demands, incompatibilities between vehicles and

customers, a maximum duration for the routes, and a maximum number of customers per route.

A multi-start iterated local search algorithm making use of several neighborhoods is proposed to

solve the problem. The algorithm has been tested on a large number of instances and obtained

good results, both on the real case study and on a number of vehicle routing variants encountered

in the literature.
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1. Introduction

Vehicle routing constitutes a well-known class of combinatorial optimization problems that

have been the subject of countless studies since the late 1950’s. This is justified by their high

potential of applications in many real-life situations, especially in the distribution of goods and

in supply chain management, see, e.g., Golden et al. [1], Schmid et al. [2], and Toth and Vigo [3].

For instance, applications in the solid waste, beverage, food, dairy, and newspaper industries can

be found in Golden et al. [4] and Coelho et al. [5]. In its basic definition, the capacitated Vehicle

Routing Problem (VRP) aims at designing a set of minimum cost routes starting from and ending

at a single depot, each route consisting of a sequence of customers to be visited once, in such a way

that the total demand of the customers in each route does not exceed the vehicle capacity.

With respect to the basic model, VRPs faced by companies are often characterized by additional

constraints, concerning operational aspects such as labor laws, market and environmental regulations,

political decisions, contracts with customers, and so on. These details usually characterize the
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problem as a Rich Vehicle Routing Problem (RVRP). As defined by Lahyani et al. [6], RVRPs

extend the academic problems by considering additional strategic and tactical aspects, as well as

operational restrictions. In addition, according to Caceres-Cruz et al. [7], a RVRP must represent

the most relevant attributes of a real-life vehicle routing distribution system, such as heterogeneity,

multi-periodicity, and diversity of users and policies. A list and discussion of many of these

characteristics can be found in Drexl [8].

In this paper, we present and solve a RVRP based on a practical distribution problem faced by

an Italian third-party logistics (3PL) provider, whose aim is to deliver pharmaceutical products to

hospitals and healthcare facilities in Tuscany. The problem is characterized by having: (i) multiple

depots from where the vehicles may depart; (ii) a heterogeneous fleet of vehicles involving different

capacities; (iii) customer time windows; (iv) time window flexibility, which can be obtained by

installing warehouses dedicated to short pharmaceutical storage at some hospitals; (v) periodic

demands distributed over a 6-day period; (vi) incompatibilities between vehicles and customers,

due to, e.g., mountainous territory or city centers; (vii) a maximum time duration for each route;

and (viii) a maximum number of customers that can be served per route.

To the best of our knowledge the proposed RVRP has never been addressed in the literature.

The combination of these constraints makes the problem very interesting to study. Not only it

models a real-world situation, but it also generalizes many other VRPS, such as, e.g., the VRP with

time windows, the multi-depot VRP, and the multi-depot VRP with time windows. Because of

these generalizations, it is easy to see that the proposed RVRP is NP-hard. In addition, the real-life

instances that we solve are large and involve a few hundred customers. Hence, we decided to adopt

a heuristic method. In particular, we developed an Iterated Local Search (ILS) that invokes, in

sequence, constructive algorithms, local search procedures, and a perturbation phase. To speed up

the local search and improve convergence towards good solutions, the ILS makes use of auxiliary

data structures and accepts infeasible solutions at the expense of additional penalty costs. It also

uses a multi-start method to further diversify the search. Due to the generality of the RVRP that

it solves, the ILS is capable of effectively addressing many other VRP variants.

The remainder of this paper is organized as follows. Section 2 presents a brief review of the

literature on vehicle routing problems associated with our case study. Section 3 gives a formal

description of the problem. In Section 4 the proposed ILS is described in details. The algorithm

is evaluated in Section 5 by means of extensive computational experiments, and conclusions are

finally drawn in Section 6.

2. Literature review

The literature review presented in this section is divided into two parts: the first part focuses

on practical VRP applications for pharmaceutical and healthcare distribution; whereas the second

part is dedicated to recent RVRP applications and solution methodologies.
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2.1. Pharmaceutical distribution

Liu et al. [9] studied a periodic pickup-and-delivery problem (PDP) for delivering drugs or

medical devices from depots to patients’ homes, or for delivering blood samples from patients’ homes

to laboratories, with the objective of minimizing the length of the longest route. They proposed a

tabu search (TS) algorithm making use of multiple local search procedures, and computationally

evaluated it on real-life data and classical instances from the literature. A non-periodic variant of

the problem seeking the minimization of the total routing cost was earlier presented in Liu et al.

[10] and solved by means of TS and genetic algorithms.

Magalhães and de Sousa [11] presented a pharmaceutical distribution case study arising in a

dynamic multi-period environment, aiming at minimizing the delivery time and making use of a

heterogeneous fleet of vehicles. In addition to the classical VRP challenges, decisions related with

the postponement of deliveries while waiting for the arrival of new demands are also considered.

The authors adopted a heuristic algorithm based on the cluster-first route-second principle, in which

clusters are determined according to customer locations and vehicle capacities, while routes are

built by using the least-cost insertion criterion. Once all routes are built, a local search procedure

based on 2-opt exchanges is performed. This approach was able to reduce the average delivery time

by about 8% when compared to the manual procedure adopted by the company.

Still in the context of pharmaceutical distribution, Ceselli et al. [12] studied a combined facility

location and vehicle routing problem for delivering drugs (vaccines or treatments) either to citizens

or to distribution centers (DC), with the aim of maximizing the total demand satisfied within a

given deadline. In this application, DCs are supply facilities where customers have to go by their

own means to have their demands attended. The opening of DCs is conditioned by a budget limit,

and the customers that can be served by them are restricted by range and capacity constraints.

In addition, customers visited at home are served by a heterogeneous fleet of vehicles, departing

from multiple depots. The authors presented a set covering formulation and solved it by means of

a branch-and-price-and-cut algorithm. Computational experiments were performed on artificial

and realistic data considering the delivery of medicines in a scenario of bioterrorism emergency. A

similar pharmaceutical distribution problem with DCs and traditional routes was earlier studied by

Escúın et al. [13], who focused on a time-dependent environment in which a given number of DCs

must be located to cover the largest number of customers by means of vehicle routes. Additional

routes departing form a main depot are designed to supply DCs and customers not serviced by any

DC. A mathematical model and an algorithm based on variable neighborhood search and TS were

proposed, and a real case involving 211 pharmacies and 6 DCs was solved.

Motivated by the increasing competition in the pharmaceutical industry and the necessity for

well-designed supply chains, Martins et al. [14] proposed an optimization-simulation approach

for the so-called wholesalers network redesign problem, by taking into account both operational

costs and service level. In a first stage, strategic-tactical decisions (e.g., location and capacity

of warehouses, and allocation of customers to warehouses) are taken by solving a mixed integer
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programming model. Then, in a second stage, a discrete event simulation model is adopted to

evaluate and analyze the impact of the first stage solution in the wholesaler’s daily activities. This

approach was applied to redesign an existing supply chain network, and showed that simply changing

a warehouse to a cross-docking may lead to savings of about 4% at the operational level. An

attended home healthcare VRP with time windows and fuzzy demands was addressed by Shi et al.

[15]. They developed a hybrid genetic algorithm integrated with stochastic simulation methods,

and reported experimental results on a number of benchmark instances from the literature. Other

recent studies on pharmaceutical distribution problems can be found in Fei et al. [16], Nsamzinshuti

et al. [17], and Cieśla and Mrówczyńska [18].

2.2. RVRP applications and solution methodologies

The books of Golden et al. [1] and Toth and Vigo [3] are main references for the theory and

practice on RVRPs. Since their publication, several interesting applications have been reported in

the literature and solved with accurate methodologies. This section reviews recent applications

that are related to our case study although not explicitly devoted to the solution of healthcare

problems.

Inspired by the problem faced by a transport carrier, Mancini [19] dealt with a multi-depot

periodic VRP with heterogeneous fleet, site-dependent constraints, and maximum duration for

the routes. Customers have to be visited only once in the time period, and routes may finish in a

depot different from their departure one. The author proposed a mathematical formulation and

an adaptive large neighborhood search (ALNS) algorithm. The ALNS makes use of four destroy

operators and repairs the solutions by solving to optimality a restricted mathematical model.

Computational experiments performed on instances ranging from 50 to 75 customers showed that

the ALNS was able to produce solutions which were 22% better on average than those obtained by

the mathematical model (within a time limit of 1 hour).

A VRP with multiple time windows, heterogeneous fleet, and site-dependent incompatibility

constraints was studied by Amorim et al. [20] in the context of food distribution in Portugal.

Vehicles are classified as refrigerated trucks or dry trucks, and products are classified as dry, fresh,

or cold. The vehicles allowed to visit a customer depend on the type of product demanded and on

the customer’s location. Moreover, customers may require to be serviced only during the morning

(e.g., hospitals), or not to be serviced at lunch time. To solve the problem the authors used an

ALNS metaheuristic composed by four destroy operators and six repair operators. The ALNS was

able to improve the solution adopted by the company, reducing the costs by about 17%. Detti et al.

[21] also present an application involving a heterogeneous fleet and incompatibility constraints.

The authors study a PDP for transporting patients from pickup locations to healthcare facilities,

and solve it by means of a mixed-integer linear programming model and by heuristic algorithms

based on TS and variable neighborhood search (VNS).

Other studies on RVRPs with multi-depot and/or time window constraints have been presented
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by Alinaghian and Shokouhi [22] and by Bruck et al. [23]. The former studied a problem with multi-

compartment vehicles that has applications in fuel distribution and oil collection, and proposed a

mathematical model and a hybrid ALNS algorithm to solve the problem. The latter developed

an integrated heuristic approach to solve a practical attended home service problem faced by an

Italian service provider of gas, electricity and water.

De Armas et al. [24] proposed a general VNS to minimize the total traveled distance and balance

the difference between the longest and shortest routes of an RVRP with multiple time windows,

heterogeneous fleet, site-dependent constraints, and customer priorities. The proposed algorithm

was evaluated by solving real instances provided by a company from the Canary Islands, and also

by solving benchmark instances for the VRP with time windows. It improved the solutions adopted

by the company, generating more balanced routes and reducing the total traveling distance by

about 30%. The approach was later extended in De Armas and Melián-Batista [25] to deal with a

dynamic version of the problem in which customer demands are dynamically revealed over time.

The aforementioned works illustrate the variety and specificities of problems derived from real-

life contexts. Some researchers proposed general framework algorithms with the purpose to address

a wide class of VRP variants. Motivated by the request of a company developing software planning-

tools for 3PL providers, Ceselli et al. [26] developed a column generation algorithm for solving

vehicle routing problems that include several features, such as time windows, multiple depots, split

deliveries, maximum route length and duration, drivers’ resting periods, incompatibilities between

goods, depots, vehicles, and customers, among others. The objective function is also flexible and

may consider the total distance traveled, the number of pallets loaded, the total weight, the total

volume, the total value, and the number of stops. The pricing problem is a resource-constrained

elementary shortest-path, which they solved by means of a bounded bidirectional dynamic program.

Relevant heuristic frameworks for solving practical RVRPs containing many of the characteristics

cited before, or, in general, multi-attribute VRPs were presented by Derigs and Vogel [27], Vidal

et al. [28], and Penna et al. [29], among others.

3. Problem description

We first provide a formal definition of the general problem that we are studying in Section 3.1.

We then explain the details of the case study in Section 3.2.

3.1. General problem definition

We are given a graph G = (N,A), with a set of nodes N and set a of arcs A = {(i, j) : i, j ∈
N, i 6= j}. A traveling distance dij and a traveling time tij are associated with each arc (i, j) ∈ A,

and a time window [ei, li] with each node i ∈ N , with ei being the earliest arrival time and li the

latest. Vehicles can arrive earlier than ei, but have to wait until ei before starting their delivery

operation. The set of nodes is divided into depots (D) and customers (C). Furthermore, depots are

divided in main depots (M) and auxiliary depots (A), and customers (C) in small customers (S)
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and hospitals (H), implying N = D ∪ C = (M∪A) ∪ (S ∪ H). The main characteristics of each

node type are:

• Main depots (M) are managed and supplied by a regional entity and have homogeneous time

windows. They are the starting points of all pharmaceutical products.

• Auxiliary depots (A) are managed and supplied by the 3PL operator in charge of delivering

the pharmaceutical products. They can be supplied with products coming from a main depot,

through the use of a large truck in an exclusive route (from the main depot to the auxiliary

depot, without visiting other nodes). These routes can be performed one business day before

the expedition of the products to the customers, but not earlier (this limit is imposed by the

regional entity). The time windows of the auxiliary depots are wider than those of the main

depots, allowing a better operability.

• Small customers (S) include healthcare facilities, clinics, and other related establishments,

and are characterized by quite large time windows and low volume of demands.

• Hospitals (H) are characterized by tighter time windows and much higher demands than

the small customers. A subset H∗ of hospitals differ from small customers also in the

possibility of accepting anticipated deliveries, as they are equipped with warehouses where

the pharmaceutical products can be stored for up to one day in advance with respect to their

requested delivery.

Each customer may require deliveries in multiple days. Let P = {1, 2, . . . , |P|} denote the set

of periods for which transportation must be planned. The demand to be delivered to a customer

i ∈ C in a period p ∈ P consists of a volume qip and is associated with a service time sip. Each

customer should be visited exactly once in each period having qip > 0.

Let V = {1, . . . , |V|} be the set of vehicle types. Each vehicle type v ∈ V has a capacity Qv, and a

cost hv proportional to the traveled distance. Customer/vehicle incompatibility constraints should be

taken into account. For instance, customers located in mountainous territory or city centers cannot

be visited by large trucks. Formally, by assuming that V is sorted in decreasing order of capacity,

the subset of vehicles allowed to visit a customer i ∈ C is denoted by Vi = {νi, νi + 1, . . . , |V|},
where νi is the largest vehicle allowed to visit i. Vehicles can be located either at a main depot or

at an auxiliary depot, and must return to their depot at the end of the route.

Based on labor regulations imposed on the 3PL operator, the total duration of each route

cannot exceed a limit H, and the number of customers to be visited in a route cannot exceed an

input parameter K.

The capacity of the vehicle used to supply the auxiliary depots is Q1 (i.e., the largest truck),

and the cost of each exclusive route to supply the auxiliary depot from the closest main depot is

ωk, for k ∈ A.

Let us denote by s a generic solution respecting all problem constraints and by Rp(s) the set

of routes adopted in period p by solution s. Let also σ = {σ1, σ2, . . . , σ|σ|} denote a generic route

starting and ending at the same depot (i.e., σ1 = σ|σ|), v(σ) the type of vehicle associated with the
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route σ, and Lpk(s) the total demand to be delivered in period p by vehicles departing from the

auxiliary depot k ∈ A in solution s. The cost of s can be computed as

z(s) =
∑
p∈P

∑
σ∈Rp(s)

|σ|−1∑
i=1

hv(σ)dσi,σi+1 +
∑
p∈P

∑
k∈A

ωk

⌈Lpk(s)
Q1

⌉
. (1)

The first term in the function computes the cost that depends on vehicle type and traveling distance,

while the second term computes the cost to supply the auxiliary depots, where
⌈
Lpk(s)
Q1

⌉
is the

number of trips required to supply the depot k at period p. The objective of our RVRP consists in

routing the vehicles on each period to fulfill customer demands, while respecting constraints and

minimizing (1). Following the notation commonly adopted to classify VRPs (see [3]), this RVRP

can be classified as a multi-depot, heterogeneous fleet, periodic and site-dependent VRP with time

windows.

3.2. Case study

The RVRP that we study was motivated by a public tender issued by the Italian state to select a

3PL operator to distribute pharmaceutical products to healthcare facilities in Tuscany. Companies

interested in participating in the tender were asked to submit a technical proposal for the provision

of the service, specifying the details of the proposed distribution systems, including location of the

auxiliary depots and of the warehouses within the hospitals (if any) and design of the possible routes

to be implemented to satisfy all demands. Some data concerning historical demands by customers

were provided. We filled these data by including coordinates and transportation distances. We also

clustered many of the customers into single locations (for example, all departments of a hospital

are clustered into a single delivery point for the vehicle). The case study also takes into account the

conditions imposed by the regional entity and the customers (e.g., customer demands per period,

location and time windows of the main depots), and the decisions taken by the 3PL on the basis of

tactical and strategic issues (e.g., the location and time windows of the auxiliary depots, the subset

of hospitals to be equipped with warehouses).

The problem that we obtained is graphically depicted in Figure 1. It involves two main depots,

two auxiliary depots, a few thousand customers clustered in a few hundred nodes that are spread

in an area (Tuscany) of about 23000 km2. The area is divided into three separate regions, each

of which forms an instance of our problem. The three regions are called center, northwest and

southeast in the following, and are depicted with three different colors in the figure. Although we

consider the option that customers can be supplied with products coming from any of the two

main depots and the two auxiliary depots, the instances are separated one from the other. Hence,

a route serving customers of a region cannot serve customers of other regions.

Customer demands are measured in number of packages and are distributed aver a 6-day time

horizon. Demands are quite high from Monday to Friday, and lower on Saturday. Six types of

vehicles can be used to attend the customer deliveries, with capacities raging from 144 to 726
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Figure 1: Region delimitations and node locations for the case study instances. Large yellow squares are the main
depots installed by the regional entity; large yellow circles are the auxiliary depots planned by the 3PL company;
small gray circles are the small customers; and green diamonds are the hospitals.

packages. Regarding the vehicle-customer incompatibilities, these depend on the size of vehicles,

and thus the definition of the largest vehicle allowed to visit each customer is enough to represent

these constraints. They particularly affect the southern and northern parts of the territory, which

are quite mountainous, and the city centers (especially Florence). The maximum number of visits of

a route cannot exceed 15, and the duration cannot exceed 8 hours. Finally, the time windows are set

as follows: main depots from 5:15 to 23:00; auxiliary depots from 4:00 to 0:00; small customers from

7:00 to 14:00; and hospitals from 7:00 to 10:00 if no warehouse is installed, but an additional time

window between 4:00 to 23:00 of the previous business day is allowed if the warehouse is installed.

4. Proposed Algorithm

To solve the RVRP of Section 3, we propose a Multi-Start Iterated Local Search (MS-ILS)

algorithm, which invokes for a certain number of iterations a classical ILS method (see, e.g.,
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Lourenço et al. [30]) based on a constructive procedure, local search, and a perturbation mechanism.

To speed-up the local search (LS) phase and improve convergence towards good solutions, MS-ILS

makes use of auxiliary data structures and accepts infeasible solutions (but penalizes them in the

objective function). The details of the method are provided in the next Sections 4.1 to 4.4.

4.1. Preliminaries and main algorithm framework

The solutions evaluated during the LS phase are obtained by concatenating subsequences of

vertices, and their costs are computed in amortized O(1) time by using the auxiliary data structures

proposed by Vidal et al. [31]. For every subsequence, the following information is stored: total

distance; minimum duration; cumulated load; earliest arrival time; latest arrival time; minimum

time-warp use (i.e., units of time violating the time window constraints) to fix time window

violations; largest vehicle allowed to attend the customers; and number of anticipated deliveries

performed. These structures are initialized before the LS for every route, and updated every time

the route is modified.

Due to the time window constraints and the maximum allowed duration for the routes, the LS

and perturbation procedures may have difficulty in generating feasible solutions, thus compromising

the convergence towards good solutions. We thus opted to accept infeasible solutions, but penalize

them with an additional cost in the objective function. Let us define, for a given route r and period

p, Tpr as the excess of time with respect to the total allowed route duration, and Wpr as the total

time window violation. The cost function of a generic solution s is then

z′(s) = z(s) +
∑
p∈P

∑
r∈Rp(s)

λ1Tpr +
∑
p∈P

∑
r∈Rp(s)

λ2Wpr, (2)

where z(s) is computed using (1), and λ1 and λ2 are the penalization costs associated to route

duration and time window violations, respectively.

An informal MS-ILS pseudo-code is given in Algorithm 1. The algorithm makes use of three

solutions: sbest is the incumbent, si is the best solution at a given iteration i, and s is the current

solution. It starts by initializing sbest at line 2. At each iteration i, s is generated (line 4) and

copied into si. Then, a LS is performed over s (line 7) and, if it improves si, the obtained solution

is copied to si (line 9). Thereafter, a perturbation is performed on si (line 11), and the modified

solution is stored in s. This ILS loop (lines 6-13) is repeated for ηils consecutive iterations without

improving si. When the ILS stop criterion is reached, if si is better than sbest, the incumbent

solution is updated (line 14). After ηiter re-starts, the algorithm returns the best found solution

(16).

4.2. Constructive procedure

An initial solution is constructed iteratively for each period by using Algorithm 2. Let LCp be

the set of customers to be visited in period p. Initially, for each hospital i belonging to LCp we
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Algorithm 1 Multi-Start Iterated Local Search

1: function MS-ILS(Instance)
2: sbest ← ∅; z′(sbest)←∞ . Initialization of an empty solution

3: for i = 1, . . . , ηiter do
4: si ← s← GenInitSol(Instance) . Constructive procedure

5: iterILS ← 1
6: while iterILS ≤ ηils do
7: s← LocalSearch(Instance, s) . Local Search

8: if z′(s) < z′(si) then . Acceptance criterion

9: si ← s; iterILS ← 0
10: end if
11: s← Perturbation(Instance, si) . Perturbation

12: iterILS ← iterILS + 1
13: end while
14: if z′(si) < z′(sbest) then sbest ← si . Incumbent solution

15: end for
16: return sbest;
17: end function

create a route starting from the closest depot and associated with the largest vehicle allowed to

visit i (line 6). Then, the remaining customers are inserted in the existing routes iteratively in a

random order (lines 9–16). They are inserted according to a greedy strategy, i.e., in the route and

position that leads to the lowest cost increase (line 11). In this step, only violations of the time

window constraints are accepted, but penalized according to (2). Customers that could not be

inserted in any existing route are served by new routes, which are created at line 13. The procedure

terminates when all the customers have been assigned to a route for each period in which they

need to be served, i.e., when LCp = ∅ for all p ∈ P.

Algorithm 2 Generate Initial Solution

1: function GenInitSol(Instance)
2: s← ∅ . Initialization of an empty solution

3: for p = 1 . . . |P| do
4: LCp ← Initialize the list of customers with demands on day p
5: for i ∈ LCp ∩H do
6: s← s ∪ CreateRoute(p, i, closestDepoti, νi) . νi is the largest vehicle allowed to visit i

7: LCp ← LCp \ {i}
8: end for
9: while LCp 6= ∅ do

10: i← SelectRandomCustomer(LCp)
11: GreedyInsertion(s, p, i)
12: if i was not inserted then
13: s← s ∪ CreateRoute(p, i, closestDepoti, νi)
14: end if
15: LCp ← LCp \ {i}
16: end while
17: end for
18: return s
19: end function
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4.3. Local Search

The local search (LS) procedure is composed by seven neighborhoods based on elementary

moves. Each elementary move generates a new solution by performing a single modification to the

current solution. The implemented neighborhoods are:

1. Relocate intra-route: modify the position of a customer in a route;

2. Swap intra-route: exchange the positions of two customers in the same route;

3. Relocate inter-route: move a customer from its current route to a different route in the same

period;

4. Swap inter-route: swap two customers served by two different routes in the same period;

5. Relocate TP : move a hospital from a route in period p, to a route in period p− 1 (or period

p+ 1), thus creating (or deleting) an anticipated delivery;

6. 2-opt : invert the order in which a subset of customers is visited in a given route;

7. restricted 2-opt* : exchange the last subsequence of customers of two different routes in the

same period.

The list comprises both inter-route neighborhoods (3, 4, 5, and 7) and intra-route ones (1, 2,

and 6). The neighborhoods are invoked according to the randomized variable neighborhood descent

(RVND) scheme proposed by Subramanian [32], as shown in Algorithm 3. For each period p, a list

NL of inter-route neighborhoods is initialized (line 3). Then, iteratively, a neighborhood N ∈ NL
is randomly selected (line 5) and the best solution s′ that it can produce is identified (line 6). If

the cost (computed according to (2)) of s′ does not improve the cost of the current solution s,

then N is removed from NL (line 11). Otherwise, s′ is possibly improved by means of intra-route

neighborhoods and is set as the new current solution (line 8), and NL is reinitialized (line 9).

When NL is empty, the RVND procedure terminates and the best found solution is returned. The

intra-route search at line 8 works as follows: it selects a random neighborhood from a pre-initialized

list of neighborhoods and identifies the best solution that it can produce. In case of improvement,

it replaces the current solution with the new one, and then executes a new local search by using the

same neighborhood. When no improvement is obtained or τmax moves have been performed with

the same neighborhood, then the neighborhood is removed from the list and a new neighborhood is

randomly selected. The procedure terminates when the list of neighborhoods is empty.

4.4. Perturbation

The main role of the perturbation procedure is to modify a local optimal solution to allow the

evaluation of new solutions in a subsequent local search phase, potentially leading to improvements

of the incumbent solution. To this aim, two procedures were adopted, but only one is executed

at each call according to a random choice. The first procedure executes ϕ random swap moves

involving two different routes. The second one randomly selects a route starting from an auxiliary

depot and forces it instead to start from a main depot – the one leading to the lowest cost. These

two procedures have the capacity to generate solutions that cannot be obtained by the elementary
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Algorithm 3 RVND

1: function RVND(Instance, s)
2: for p = 1 . . . |P| do
3: NL← list of all inter-route neighborhoods
4: while NL 6= ∅ do
5: N ← SelectRandomNeighborhood(NL)
6: s′ ← BestNeighbor(s,N)
7: if z′(s′) < z′(s) then
8: s← IntraRouteSearch(s′)
9: NL← list of all inter-route neighborhoods

10: else
11: NL← NL \N
12: end if
13: end while
14: end for
15: return s
16: end function

moves considered in the LS. In particular, the second perturbation guides the search to solutions

that avoid the transportation of freight from main to auxiliary depots.

5. Computational Experiments

The performance of the proposed MS-ILS algorithm is evaluated by solving the realistic instances

provided by the public tender, and also by solving artificial instances that we generated according

to the characteristics of the realistic ones. Details on the instances are provided in Section 5.1.

The experiments are divided into three parts. In the first part (Section 5.2), we evaluate the

performance of the MS-ILS on the considered instances. In the second part (Section 5.3), we

perform a sensitivity analysis that aims at estimating the gains that can be obtained by changing

the number and locations of hospital warehouses and auxiliary depots. The last part (Section 5.4)

reports additional computational experiments obtained by the MS-ILS on three VRP variants from

the literature.

All our algorithms were coded in C++ and executed on a single thread of an Intel Core

i5-5200U 2.2 GHz with 16 GB of RAM, running under Linux Mint 17.2 64-bit. To compute the

shortest distance between each pair of nodes, we used the digital map of the region available at the

free OpenStreetMap database (http://www.openstreetmap.org/). We read the map with the C

library shapelib (http://shapelib.maptools.org/) and compute the shortest paths by using the

library lemon (http://lemon.cs.elte.hu/trac/lemon). The following parameter values were

adopted for the MS-ILS: ηiter = 20, ηils = 20, and τmax = 100. In all the experiments, each instance

was solved 10 times.
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5.1. Testbed instances

A set of three realistic instances and 45 artificial instances was considered. The realistic instances

are based on the real data from Tuscany, as discussed in Section 3.2, and contain, respectively, 159,

161, and 232 nodes. In these instances the location of the auxiliary depots and the hospitals to be

equipped with warehouses were decided a priori by the 3PL company and were provided as input

to the MS-ILS. The artificial instances have 100, 150, 200, 250, or 300 nodes. For each size, we

created nine instances by varying the number of main depots and auxiliary depots, by considering

all pairs with |M| ∈ {2, 3, 4} and |A| ∈ {2, 3, 4}. The coordinates of the nodes were randomly

generated in a square region of |N |2 area, with main depots located in the periphery and auxiliary

depots located far from the borders (and close to the center). All instances have a time horizon of

six periods, six types of vehicles with capacity 726, 372, 312, 226, 166, or 144, maximum duration

of routes equal to 1/3 of the total duration of a single period, and maximum number of visits per

route equal to 15. To stimulate further research on the problem, the artificial instances have been

made available at http://www.or.unimore.it/resources/RVRP_PharmDist/home.html.

5.2. Computational results on realistic and artificial instances

As the problem results from a public tender, it has never been solved in reality so we cannot

compare our solutions with real ones. We thus gain insight in the performance of our MS-ILS

by comparing its best and average performance over the 10 runs with that produced by the

constructive greedy that we provided in Algorithm 2. Since greedy strategies are commonly adopted

by decision-makers, this can also give some indication of how much could be saved in the total cost

by using the proposed method. The results for the realistic instances are reported in Table 1. The

group of columns under “instance” contain the name and some input characteristics of each instance.

The other columns refer to the incumbent solution found by the 10 attempts of the greedy and by

the average and best solutions found by the MS-ILS. They have the following meaning: “cost” gives

the total cost computed using (1) (the algorithms provided feasible solutions for all the instances, so

the additional penalty function in (2) was always zero for the incumbent solutions); “|R|” gives the

total number of routes used; “#←−q ” gives the number of anticipated deliveries; “time(s)” gives the

computational time in seconds; and “gap(%)” reports the percentage gap of MS-ILS with respect

to the best greedy solution found (computed as 100(zMS-ILS − zgreedy)/zMS-ILS).

The results displayed in Table 1 show a rare use of hospital warehouses for anticipated deliveries

in the realistic instances. This is justified because the hospitals selected by the 3PL to host a

warehouse have high value of demands (close to Q1), so they are often served by single-visit routes

or by routes containing just one or two customers with low demands. Anticipating these large

deliveries does not allow the algorithm to produce consistent savings, because it cannot find good

subsets of customers that would fit in the same vehicle. From the transportation cost point of

view, this observation suggests that hospitals with smaller demands are more attractive to host a

warehouse.
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Table 1: Detailed results on the realistic instances.

instance best greedy sol. average MS-ILS solution best MS-ILS solution

name |N | |M| |A| |H|(a) |S| cost |R| cost #←−q |R| time(s) gap(%) cost #←−q |R| gap(%)

Center 232 2 2 17(9) 211 11489.1 137.0 7972.8 0.3 124.6 199.2 -30.6 7924.9 0.0 125 -31.0

Northwest 159 2 2 16(5) 139 15201.3 109.0 10633.1 0.2 87.2 83.1 -30.0 10464.0 0.0 88 -31.2

Southeast 161 2 2 14(0) 143 20490.9 82.0 16704.4 0.0 75.0 32.2 -18.5 16593.1 0.0 74 -19.0

avg. 15727.1 109.3 11770.1 0.2 95.6 104.8 -26.4 11660.7 0.0 95.7 -27.1

(a): in parentheses number of hospitals equipped to accept anticipated deliveries

A portion of the best solution obtained for the Center instance is depicted in Figure 2. An

intersection of three routes can be noticed at the right of the main depot. This is imputed to the

many constraints characterizing the addressed RVRP, as the vehicle-customers incompatibilities.

Indeed, it can be noticed, on the right part of the figure, that these customers are located in a

mountainous region and thus only small vehicles (with the lowest capacity) are allowed to visit

them.

Figure 2: Example of five routes for the best solution of instance Center, on Friday. Left figure shows the routes in a
simplified version. Right figure shows the routes considering real roads. Both figures represent the same sequence of
visits.

The results for the artificial instances are reported in Table 2. Columns have the same meanings

as those of Table 1, but now, for the sake of conciseness, each row presents aggregate results for

a group of nine instances having the same number of vertices. Detailed results for each single

instance are given in Appendix A. The results confirm that the MS-ILS achieves very important

improvements (about 23% on average) with respect to the best solution found by the greedy

heuristic. As expected, the computational time required to solve an instance increases with the

instance size. However, the size of the instance does not affect the percentage gap, which varies

very little. This shows the robustness of the MS-ILS algorithm. It is worth noting that in this
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second round of tests the algorithm made a consistent use of anticipated deliveries. On average,

about 17 anticipated deliveries were used by 133 routes, showing a good use of the warehouses

installed at the hospitals.

Table 2: Aggregated results on the artificial instances.

instance group best greedy sol. average MS-ILS solution best MS-ILS solution

|N | |M| |A| |H|(a) |S| cost |R| cost #←−q |R| time(s) gap(%) cost #←−q |R| gap(%)

100 2-4 2-4 11 81-85 8241.7 107.9 6487.1 10.1 79.0 11.3 -20.9 6404.9 11.8 78.0 -21.9

150 2-4 2-4 15 127-131 16614.1 139.4 12953.6 13.6 102.2 34.8 -21.9 12822.5 14.6 102.2 -22.7

200 2-4 2-4 21 171-175 27884.6 173.2 21585.1 15.0 133.8 60.2 -22.4 21321.7 15.3 132.8 -23.3

250 2-4 2-4 26 216-220 42844.2 209.9 31963.4 23.8 154.4 122.7 -25.0 31604.8 25.6 152.9 -25.8

300 2-4 2-4 30 262-266 57775.2 243.1 43273.7 22.1 193.6 174.6 -24.8 42883.6 24.0 194.9 -25.5

avg. 30671.9 174.7 23252.6 16.9 132.6 80.7 -23.0 23007.5 18.2 132.2 -23.8

(a): all hospitals equipped to accept anticipated deliveries

5.3. Sensitivity analysis

In this section we briefly report the outcome of additional tests that we conducted with the aim

of better evaluating the characteristics of the problem that we deemed more interesting, namely,

the possibility to anticipate the deliveries by means of warehouses in the hospitals and the use of

the auxiliary depots.

Table 3 shows the results that we obtained by solving again the complete testbed of artificial

instances, but this time neglecting the use of the warehouses in all the |H| hospitals. Apart from

the details on the instances, the table reports values for the average MS-ILS solutions obtained

under the original configuration of Table 2 (avg. MS-ILS sol.), values for the new more restricted

configuration with no anticipated deliveries (avg. MS-ILS sol. – no warehouses), and percentage

gaps between the solutions. No important change can be noticed on the number of routes. The new

configuration is slightly easier to solve, because of the reduced number of transportation options,

and this leads to a slight reduction in the computational time. The new configuration, however,

obtains solution costs that are on average 2-5% worse than those obtained when the anticipated

deliveries are allowed. This gap is very stable among the different groups of instances, ranging

from 2.0% to 2.9%, and shows that the option of using larger time windows can indeed lead to

consistent savings. In the best case (instance n100m3a3 ), a reduction of 5.46% can be obtained.

Similar additional tests aimed at evaluating the importance of artificial depots were also carried

out. We considered again the artificial instances, but removed all auxiliary depots. The results

are shown in Table 4, under the same format as Table 3. A considerable difference can be noticed

between the two configurations. The existence of auxiliary depots with wide time windows allow

indeed to obtain much better solution costs, having an average improvement of 6% with respect to

the configuration in which no auxiliary depot exists. A greater use of anticipated deliveries can

also be noticed in the configuration with no auxiliary depots.
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Table 3: Evaluating the use of warehouses in hospitals to anticipate deliveries.

instance avg. MS-ILS sol. avg. MS-ILS sol. – no warehouses

|N | |M| |A| |H| |S| cost #←−q |R| time(s) cost |R| time(s) gap(%)

100 2-4 2-4 11 81-85 6487.1 10.1 79.0 11.3 6665.3 80.8 9.2 2.7

150 2-4 2-4 15 127-131 12953.6 13.6 102.2 34.8 13310.8 105.1 25.0 2.7

200 2-4 2-4 21 171-175 21585.1 15.0 133.8 60.2 22030.8 136.6 43.4 2.0

250 2-4 2-4 26 216-220 31963.4 23.8 154.4 122.7 32916.3 160.3 81.9 2.9

300 2-4 2-4 30 262-266 43273.7 22.1 193.6 174.6 44232.7 199.6 172.9 2.2

avg. 23252.6 16.9 132.6 80.7 23831.2 136.5 66.5 2.5

Clearly, the use of auxiliary depots, as well as that of warehouses in hospitals, comes at a cost.

Savings in routing costs are obtained by means of installation of costly facilities. As in our case

study we were not given estimations of these installation costs, but were instead provided with

precise decisions on which depots and warehouses were adopted, we avoided studying the balance

between routing and installation costs. We expect that studying the combination of such facility

location and vehicle routing decisions (see, e.g., Prodhon and Prins [33] and Drexl and Schneider

[34]) could possibly lead to further cost savings.

Table 4: Evaluating the use of auxiliary depots.

instance avg. MS-ILS sol. avg. MS-ILS sol. – no aux. depots

|N | |M| |A| |H| |S| cost #←−q |R| time(s) cost #←−q |R| time(s) gap(%)

100 2-4 2-4 11 81-85 6487.1 10.1 79.0 11.3 6789.2 11.4 65.0 17.4 4.6

150 2-4 2-4 15 127-131 12953.6 13.6 102.2 34.8 13773.0 16.3 86.8 58.3 6.0

200 2-4 2-4 21 171-175 21585.1 15.0 133.8 60.2 23334.5 19.9 112.1 167.0 7.9

250 2-4 2-4 26 216-220 31963.4 23.8 154.4 122.7 33165.2 28.8 134.7 281.1 3.6

300 2-4 2-4 30 262-266 43273.7 22.1 193.6 174.6 46763.2 31.2 165.9 447.8 8.0

avg. 23252.6 16.9 132.6 80.7 24765.0 21.5 112.9 194.3 6.0

5.4. Computational results on VRP variants from the literature

To better evaluate the quality of the proposed MS-ILS and show its wide range of applicability,

we performed additional computational experiments on some well-known VRP variants from the

literature. In particular, we solved benchmark instances of the VRP with time windows (VRPTW),

the Multi-Depot VRP (MDVRP), and the MDVRP with time windows (MDVRPTW). Due to the

high number of instances, in this section we present only aggregate results, but refer to Appendix A

for detailed information.

The results that we obtained on the VRPTW, the MDVRP, and the MDVRPTW are reported in

Tables 5, 6, and 7, respectively, and correspond to the benchmark instances of Solomon [35], Cordeau

et al. [36], and Cordeau and Laporte [37], respectively. The VRPTW is solved by considering
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Euclidean distances truncated to the first digit. Given that the number of vehicles associated to

each depot is an input value for both MDVRP and MDVRPTW instances, we set MS-ILS to accept

infeasible solutions where vehicle capacities can be exceeded, but we added a penalization cost

proportional to the excess of capacity used. The columns in the three tables have the same meaning,

and report the cost of the solutions found (“cost”), the number of routes (“|R|”), the computing

time in seconds (“time(s)”), and the average percentage gap from the best-known solution (BKS)

value (“gap”).

Since the MS-ILS was designed to solve a richer and more complex problem, one cannot expect

it to improve state-of-the-art algorithms for the “simpler” VRP variants addressed. Nevertheless,

it is nice to notice that MS-ILS can achieve solutions that are not far from the BKS in reasonable

computing times. The results on the VRPTW are very satisfactory: in a matter of a few seconds

MS-ILS finds solutions that are on average less than 1.5% worse than the BKS value, and this gap

is reduced to just 0.74% when considering the best MS-ILS solutions. The metaheuristic is less

effective on the MDVRP and MDVRPTW test beds, maybe because these instances can be quite

large and involve up to 360 nodes. Still it can provide feasible solutions in a matter of a few seconds

or few minutes for all instances, and achieve gaps that are just 2-3% away from the BKS values.

Table 5: Aggregate results for the VRPTW – Solomon [35] instances.

instance group BKS∗ average MS-ILS solution best MS-ILS solution

group |N | #inst cost |R| cost |R| time(s) gap(%) cost |R| gap(%)

c1 100 9 826.70 10.00 827.48 10.00 2.93 0.09 826.70 10.00 0.00

c2 100 8 587.38 3.00 587.66 3.00 3.48 0.05 587.38 3.00 0.00

r1 100 12 1173.61 13.25 1192.31 13.72 5.23 1.74 1182.93 13.42 0.87

r2 100 11 872.51 5.45 890.52 4.84 5.46 2.04 880.04 5.18 0.84

rc1 100 8 1334.49 12.63 1374.65 13.69 5.16 3.07 1359.33 13.50 1.91

rc2 100 8 1000.68 6.25 1019.58 5.90 5.13 1.94 1008.59 6.00 0.82

avg. 973.24 8.64 989.39 8.72 4.63 1.51 981.39 8.71 0.74
∗Best known solutions collected from Kramer et al. [38]

Table 6: Aggregate results for the MDVRP – Cordeau et al. [36] instances.

instance group BKS∗ average MS-ILS solution best MS-ILS solution

group |N | #inst cost |R| cost |R| time(s) gap(%) cost |R| gap(%)

p ≤ 99 6 948.27 8.50 950.11 8.68 1.10 0.31 948.27 8.50 0.00

100-199 7 1613.75 14.71 1634.09 14.99 6.97 1.46 1622.70 14.86 0.80

200-299 7 3856.66 24.86 3969.35 25.50 59.80 2.92 3935.99 25.43 2.04

≥ 300 3 5751.92 35.33 5865.99 36.93 219.52 2.02 5830.27 36.33 1.39

pr ≤ 99 3 1086.07 6.00 1090.97 6.00 3.17 0.38 1087.33 6.00 0.10

100-199 3 1842.32 12.33 1888.89 12.63 26.40 2.53 1870.01 12.67 1.49

≥ 200 4 2502.24 20.75 2638.33 21.03 109.62 5.30 2611.27 21.00 4.22

avg. 2425.22 17.33 2485.32 17.77 50.29 2.07 2466.92 17.64 1.38
∗Best known solutions collected from Vidal et al. [39]
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Table 7: Aggregate results for the MDVRPTW – Cordeau and Laporte [37] instances.

instance group BKS∗ average MS-ILS solution best MS-ILS solution

group |N | #inst cost |R| cost |R| time(s) gap(%) cost |R| gap(%)

pr ≤ 99 6 2429.41 18.00 2507.55 17.75 138.41 2.70 2481.46 17.83 1.75

100-199 6 2027.07 16.00 2106.80 14.92 89.63 3.72 2077.80 14.83 1.97

≥ 200 8 2216.57 16.50 2336.50 16.43 74.41 5.08 2287.87 16.38 2.80

avg. 2223.57 16.80 2318.91 16.37 98.18 3.96 2282.92 16.35 2.23
∗Best known solutions collected from Vidal et al. [31]

6. Conclusion

This paper introduced and formalized a multi-period vehicle routing problem with time windows

inspired by a real situation arising in the field of pharmaceutical distribution. The problem is

characterized by the existence of auxiliary depots and the possibility of anticipating the deliveries

for a subset of customers. The interest for the problem is motivated by the fact that not only it is

a real case study, but it also generalizes many other vehicle routing variants from the literature.

To obtain good quality solutions we developed a multi-start iterated local search algorithm that

makes use of several neighborhoods. Computational experiments were performed on a set of

realistic and artificial instances and showed that anticipated deliveries and auxiliary depots play

an important role in reducing the transportation costs. Additional experiments showed that the

proposed algorithm is also capable of producing good quality solutions on related vehicle routing

problems. Future research will focus on the study of anticipated deliveries in other multi-period

vehicle routing problems.
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[11] J. Magalhães, J. P. de Sousa, Dynamic VRP in pharmaceutical distribution — a case study, Central European

Journal of Operations Research 14 (2006) 177–192.

[12] A. Ceselli, G. Righini, E. Tresoldi, Combined location and routing problems for drug distribution, Discrete

Applied Mathematics 165 (2014) 130–145.

[13] D. Escúın, C. Millán, E. Larrodé, Modelization of time-dependent urban freight problems by using a multiple

number of distribution centers, Networks and Spatial Economics 12 (2012) 321–336.

[14] S. Martins, P. Amorim, G. Figueira, B. Almada-Lobo, An optimization-simulation approach to the network

redesign problem of pharmaceutical wholesalers, Computers & Industrial Engineering 106 (2017) 315–328.

[15] Y. Shi, T. Boudouh, O. Grunder, A hybrid genetic algorithm for a home health care routing problem with time

window and fuzzy demand, Expert Systems with Applications 72 (2017) 160–176.

[16] T. Fei, L.-Y. Zhang, W. Zhang, Distribution routing optimization in special drug based on improved ant colony

algorithm, Journal of Discrete Mathematical Sciences and Cryptography 19 (2016) 607–621.

[17] A. Nsamzinshuti, F. Cardoso, M. Janjevic, A. Ndiaye, Pharmaceutical distribution in urban area: an integrated

analysis and perspective of the case of Brussels-Capital Region (BRC), Transportation Research Procedia 25

(2017) 747–761.
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Appendix A. Detailed computational results

In this appendix, we provide the detailed computational results that we obtained on the

instances that were discussed only in an aggregate form in the paper. In particular:

• Table A.8 reports detailed results for the artificial instances that we reported in aggregate

form in Table 2 of the paper;

• Table A.9 refers to the VRPTW instances previously discussed in Table 5;

• Table A.10 refers to the MDVRP instances previously discussed in Table 6;

• Table A.11 refers to the MDVRPTW instances previously discussed in Table 7.

All columns in the tables reported in this appendix have the same meanings as those in the

corresponding tables in the paper.
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Table A.8: MS-ILS detailed results on the artificial instances (aggregate results in Table 2 of the paper)

instance group best greedy sol. average MS-ILS solution best MS-ILS solution

name |N | |M| |A| |H| |S| cost |R| cost #←−q |R| time(s) gap(%) cost #←−q |R| gap(%)

n100m2a2 100 2 2 11 85 9286.4 92 7339.8 5.7 75.4 8.3 -21.0 7240.8 13 78.0 -22.0

n100m2a3 100 2 3 11 84 7839.8 96 6364.5 4.1 74.5 9.2 -18.8 6328.2 5 72.0 -19.3

n100m2a4 100 2 4 11 83 9599.3 119 7205.8 13.1 80.9 12.4 -24.9 7106.2 16 77.0 -26.0

n100m3a2 100 3 2 11 84 8917.1 103 6275.4 9.1 63.9 19.9 -29.6 6221.8 9 65.0 -30.2

n100m3a3 100 3 3 11 83 7978.5 103 5920.8 16.6 68.5 10.3 -25.8 5834.5 20 64.0 -26.9

n100m3a4 100 3 4 11 82 8328.7 120 6525.1 15.2 84.3 9.7 -21.7 6389.7 19 83.0 -23.3

n100m4a2 100 4 2 11 83 8139.3 112 6817.4 11.0 94.0 13.1 -16.2 6734.8 9 95.0 -17.3

n100m4a3 100 4 3 11 82 7085.2 101 5786.2 9.2 69.3 9.2 -18.3 5741.5 9 68.0 -19.0

n100m4a4 100 4 4 11 81 7000.6 125 6149.6 6.7 100.4 9.8 -12.2 6046.8 6 100.0 -13.6

n150m2a2 150 2 2 15 131 18769.2 126 14292.4 17.2 83.8 38.4 -23.9 14165.0 22 80.0 -24.5

n150m2a3 150 2 3 15 130 15082.3 127 11718.7 8.5 96.5 25.4 -22.3 11625.0 8 98.0 -22.9

n150m2a4 150 2 4 15 129 18932.2 132 14053.1 9.8 97.2 35.8 -25.8 13768.0 9 101.0 -27.3

n150m3a2 150 3 2 15 130 14991.6 136 11485.7 13.9 94.1 56.6 -23.4 11424.1 14 93.0 -23.8

n150m3a3 150 3 3 15 129 15873.4 144 12271.1 12.8 97.4 38.3 -22.7 12217.5 11 95.0 -23.0

n150m3a4 150 3 4 15 128 18608.0 154 14270.2 15.6 118.7 28.1 -23.3 14145.7 16 116.0 -24.0

n150m4a2 150 4 2 15 129 15506.4 136 11992.8 15.9 100.3 23.8 -22.7 11834.8 21 102.0 -23.7

n150m4a3 150 4 3 15 128 18155.8 148 15040.3 11.0 119.0 33.4 -17.2 14878.0 16 118.0 -18.1

n150m4a4 150 4 4 15 127 13607.6 152 11458.6 17.3 112.4 33.3 -15.8 11344.3 14 117.0 -16.6

n200m2a2 200 2 2 21 175 29270.5 164 21771.7 10.9 134.1 74.8 -25.6 21414.1 13 140.0 -26.8

n200m2a3 200 2 3 21 174 34719.0 179 24971.9 18.5 119.4 66.7 -28.1 24558.8 29 118.0 -29.3

n200m2a4 200 2 4 21 173 29103.0 180 23321.1 18.1 133.7 63.9 -19.9 23048.2 22 133.0 -20.8

n200m3a2 200 3 2 21 174 27508.8 140 21143.6 15.7 116.8 82.8 -23.1 20923.7 14 112.0 -23.9

n200m3a3 200 3 3 21 173 26070.8 173 18578.1 15.0 119.6 50.4 -28.7 18253.3 7 122.0 -30.0

n200m3a4 200 3 4 21 172 28491.8 171 23290.2 10.1 139.3 38.3 -18.3 23003.1 5 139.0 -19.3

n200m4a2 200 4 2 21 173 25652.5 190 19935.2 22.4 139.3 54.7 -22.3 19809.8 14 139.0 -22.8

n200m4a3 200 4 3 21 172 26159.4 165 21894.0 8.1 146.8 55.8 -16.3 21701.1 12 140.0 -17.0

n200m4a4 200 4 4 21 171 23985.5 197 19360.5 15.8 154.9 54.4 -19.3 19182.9 22 152.0 -20.0

n250m2a2 250 2 2 26 220 43649.7 207 33466.2 21.8 163.8 109.7 -23.3 32948.9 28 162.0 -24.5

n250m2a3 250 2 3 26 219 54802.8 217 36269.6 30.8 145.2 109.5 -33.8 35803.0 25 144.0 -34.7

n250m2a4 250 2 4 26 218 43214.9 229 32413.6 30.3 163.2 121.5 -25.0 32256.5 28 162.0 -25.4

n250m3a2 250 3 2 26 219 44154.0 205 33377.2 21.0 157.6 123.4 -24.4 33150.0 23 159.0 -24.9

n250m3a3 250 3 3 26 218 45406.7 201 33396.2 19.5 147.6 105.5 -26.5 33062.7 28 146.0 -27.2

n250m3a4 250 3 4 26 217 39457.7 209 31126.9 14.4 155.0 139.0 -21.1 30659.3 15 155.0 -22.3

n250m4a2 250 4 2 26 218 42672.5 197 32553.0 18.2 156.8 88.3 -23.7 32015.7 21 152.0 -25.0

n250m4a3 250 4 3 26 217 38557.3 209 28505.2 33.9 137.7 134.2 -26.1 28160.2 37 136.0 -27.0

n250m4a4 250 4 4 26 216 33681.8 215 26563.0 24.1 162.4 173.0 -21.1 26386.6 25 160.0 -21.7

n300m2a2 300 2 2 30 266 67360.2 230 49190.8 22.7 171.8 172.1 -27.0 48878.2 19 174.0 -27.4

n300m2a3 300 2 3 30 265 60720.3 246 47589.3 15.3 223.4 248.3 -21.6 47361.1 14 226.0 -22.0

n300m2a4 300 2 4 30 264 62095.7 247 45641.5 19.4 197.3 233.6 -26.5 45120.6 22 203.0 -27.3

n300m3a2 300 3 2 30 265 55336.4 225 43702.6 17.0 192.1 168.4 -21.0 43401.9 19 190.0 -21.6

n300m3a3 300 3 3 30 264 51794.5 246 40092.6 24.0 189.9 182.4 -22.6 39626.9 35 195.0 -23.5

n300m3a4 300 3 4 30 263 61396.6 254 43666.3 32.3 175.3 163.4 -28.9 42893.5 36 170.0 -30.1

n300m4a2 300 4 2 30 264 57267.1 245 39284.4 27.6 184.6 129.4 -31.4 38954.9 29 185.0 -32.0

n300m4a3 300 4 3 30 263 58205.0 248 41940.4 23.6 189.9 165.2 -27.9 41684.8 22 198.0 -28.4

n300m4a4 300 4 4 30 262 45801.2 247 38355.3 16.8 217.7 108.8 -16.3 38030.3 20 213.0 -17.0

avg. 30671.9 174.7 23252.6 16.9 132.6 80.7 -23.0 23007.5 18.2 132.2 -23.8
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Table A.9: MS-ILS detailed results for the VRPTW (aggregate results in Table 5 of the paper)

instance BKS∗ average MS-ILS solution best MS-ILS solution

name cost |R| cost |R| time(s) gap cost |R| gap

c101 827.3 10 827.30 10.00 2.21 0.00 827.3 10 0.00

c102 827.3 10 827.30 10.00 2.89 0.00 827.3 10 0.00

c103 826.3 10 826.30 10.00 3.67 0.00 826.3 10 0.00

c104 822.9 10 829.92 10.00 4.14 0.85 822.9 10 0.00

c105 827.3 10 827.30 10.00 2.37 0.00 827.3 10 0.00

c106 827.3 10 827.30 10.00 2.44 0.00 827.3 10 0.00

c107 827.3 10 827.30 10.00 2.59 0.00 827.3 10 0.00

c108 827.3 10 827.30 10.00 2.95 0.00 827.3 10 0.00

c109 827.3 10 827.30 10.00 3.12 0.00 827.3 10 0.00

c201 589.1 3 589.10 3.00 2.38 0.00 589.1 3 0.00

c202 589.1 3 589.10 3.00 3.00 0.00 589.1 3 0.00

c203 588.7 3 588.70 3.00 4.45 0.00 588.7 3 0.00

c204 588.1 3 590.38 3.00 4.99 0.39 588.1 3 0.00

c205 586.4 3 586.40 3.00 3.19 0.00 586.4 3 0.00

c206 586.0 3 586.00 3.00 3.16 0.00 586.0 3 0.00

c207 585.8 3 585.80 3.00 3.31 0.00 585.8 3 0.00

c208 585.8 3 585.80 3.00 3.38 0.00 585.8 3 0.00

r101 1637.7 20 1639.42 20.00 5.35 0.11 1637.7 20 0.00

r102 1466.6 18 1470.06 18.00 4.60 0.24 1466.8 18 0.01

r103 1208.7 14 1221.28 14.60 5.20 1.04 1215.0 14 0.52

r104 971.5 11 998.32 11.50 5.27 2.76 986.8 11 1.57

r105 1355.3 15 1371.46 15.80 5.47 1.19 1361.9 16 0.49

r106 1234.6 13 1257.19 13.70 5.47 1.83 1249.7 13 1.22

r107 1064.6 11 1086.25 11.90 5.25 2.03 1071.8 11 0.68

r108 932.1 10 957.38 10.70 5.05 2.71 954.5 10 2.40

r109 1146.9 13 1166.43 13.40 5.26 1.70 1161.8 14 1.30

r110 1068.0 12 1095.77 12.20 5.24 2.60 1085.2 12 1.61

r111 1048.7 12 1072.25 12.00 5.22 2.25 1053.5 12 0.46

r112 948.6 10 971.90 10.80 5.41 2.46 950.4 10 0.19

r201 1143.2 8 1175.53 6.60 5.02 2.83 1157.7 7 1.27

r202 1029.6 8 1045.12 5.70 4.72 1.51 1036.4 7 0.66

r203 870.8 6 881.07 5.50 5.43 1.18 875.9 6 0.59

r204 731.3 5 743.49 4.50 5.20 1.67 734.4 4 0.42

r205 949.8 5 968.05 4.90 5.45 1.92 957.5 5 0.81

r206 875.9 5 896.88 4.40 5.88 2.40 882.7 5 0.78

r207 794.0 4 812.34 4.00 5.93 2.31 795.8 4 0.23

r208 701.0 4 713.85 3.40 5.62 1.83 705.5 4 0.64

r209 854.8 5 872.46 4.90 5.17 2.07 860.9 5 0.71

r210 900.5 6 925.99 5.30 5.53 2.83 919.4 6 2.10

Continued on next page
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Table A.9: MS-ILS detailed results for the VRPTW – continued from previous page

instance BKS∗ average MS-ILS solution best MS-ILS solution

name cost |R| cost |R| time(s) gap cost |R| gap

r211 746.7 4 760.96 4.00 6.10 1.91 754.2 4 1.00

rc101 1619.8 15 1660.33 17.30 5.01 2.50 1651.2 17 1.94

rc102 1457.4 14 1485.74 15.00 5.07 1.94 1479.7 15 1.53

rc103 1258.0 11 1322.95 12.20 5.36 5.16 1311.0 12 4.21

rc104 1132.3 10 1164.34 11.00 5.10 2.83 1155.1 11 2.01

rc105 1513.7 15 1553.04 16.50 5.32 2.60 1520.9 16 0.48

rc106 1372.7 13 1405.24 13.70 5.05 2.37 1392.0 14 1.41

rc107 1207.8 12 1259.27 12.70 4.48 4.26 1230.7 12 1.90

rc108 1114.2 11 1146.30 11.10 5.92 2.88 1134.0 11 1.78

rc201 1261.8 9 1278.02 8.30 4.98 1.29 1269.5 8 0.61

rc202 1092.3 8 1110.08 7.20 5.11 1.63 1095.6 7 0.30

rc203 923.7 5 944.92 5.10 5.79 2.30 936.6 5 1.40

rc204 783.5 4 793.51 4.00 5.52 1.28 783.5 4 0.00

rc205 1154.0 7 1166.92 7.10 5.37 1.12 1156.8 7 0.24

rc206 1051.1 7 1076.00 5.80 4.44 2.37 1064.5 5 1.27

rc207 962.9 6 990.33 5.40 4.56 2.85 972.0 7 0.95

rc208 776.1 4 796.86 4.30 5.30 2.67 790.2 5 1.82

avg. 973.24 8.64 989.39 8.72 4.63 1.51 981.4 8.71 0.74
∗Best known solutions collected from Kramer et al. [38].
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Table A.10: MS-ILS detailed results for the MDVRP (aggregate results in Table 6 of the paper)

instance BKS∗ average MS-ILS solution best MS-ILS solution

name |N | |M| cost |R| cost |R| time(s) gap(%) cost |R| gap(%)

p01 50 4 576.87 11 580.27 11.00 0.44 0.59 576.87 11 0.00

p02 50 4 473.53 5 475.44 5.60 0.45 0.40 473.53 5 0.00

p03 75 5 641.19 11 646.27 11.30 1.49 0.79 641.19 11 0.00

p12 80 2 1318.95 8 1319.61 8.20 1.39 0.05 1318.95 8 0.00

p13 80 2 1318.95 8 1318.95 8.00 1.25 0.00 1318.95 8 0.00

p14 80 2 1360.12 8 1360.12 8.00 1.60 0.00 1360.12 8 0.00

p04 100 2 1001.04 15 1026.81 15.90 2.77 2.57 1018.26 16 1.72

p05 100 2 750.03 8 756.37 8.00 2.82 0.85 752.41 8 0.32

p06 100 3 876.50 16 890.88 16.00 2.91 1.64 887.27 16 1.23

p07 100 4 881.97 16 901.47 16.00 3.18 2.21 896.62 16 1.66

p15 160 4 2505.42 16 2545.27 16.10 12.99 1.59 2522.99 16 0.70

p16 160 4 2572.23 16 2577.27 16.00 10.09 0.20 2572.23 16 0.00

p17 160 4 2709.09 16 2740.56 16.90 14.02 1.16 2709.09 16 0.00

p18 240 6 3702.85 23 3791.66 24.60 43.97 2.40 3751.43 24 1.31

p19 240 6 3827.06 24 3854.47 24.00 39.63 0.72 3840.91 24 0.36

p20 240 6 4058.07 24 4126.95 25.60 63.01 1.70 4097.35 25 0.97

p08 249 2 4372.78 25 4564.23 25.70 65.70 4.38 4529.47 25 3.58

p09 249 3 3858.66 26 3995.24 26.00 60.22 3.54 3962.77 26 2.70

p10 249 4 3631.11 26 3784.20 26.20 69.30 4.22 3752.51 27 3.34

p11 249 5 3546.06 26 3668.74 26.40 76.74 3.46 3617.47 27 2.01

p21 360 9 5474.84 34 5667.70 36.90 205.05 3.52 5616.86 36 2.59

p22 360 9 5702.16 36 5763.53 36.00 170.67 1.08 5734.18 36 0.56

p23 360 9 6078.75 36 6166.75 37.90 282.83 1.45 6139.76 37 1.00

pr01 48 4 861.32 4 861.32 4.00 0.61 0.00 861.32 4 0.00

pr07 72 6 1089.56 6 1090.76 6.00 2.00 0.11 1089.56 6 0.00

pr02 96 4 1307.34 8 1320.85 8.00 6.90 1.03 1311.11 8 0.29

pr03 144 4 1803.80 11 1826.23 10.90 19.01 1.24 1809.25 11 0.30

pr08 144 6 1664.85 12 1721.03 12.00 13.32 3.37 1700.32 12 2.13

pr04 192 4 2058.31 14 2119.42 15.00 46.88 2.97 2100.47 15 2.05

pr09 216 6 2133.20 17 2216.33 17.10 42.61 3.90 2196.22 17 2.95

pr05 240 4 2331.20 19 2444.73 20.00 91.00 4.87 2412.63 20 3.49

pr06 288 4 2676.30 23 2794.84 23.00 183.63 4.43 2776.55 23 3.75

pr10 288 6 2868.26 24 3097.40 24.00 121.24 7.99 3059.69 24 6.67

avg. 2425.22 17.33 2485.32 17.77 50.29 2.07 2466.92 17.64 1.38
∗Best known solutions collected from Vidal et al. [39].
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Table A.11: MS-ILS detailed results for the MDVRPTW (aggregate results in Table 7 of the paper)

instance BKS∗ average MS-ILS solution best MS-ILS solution

name |N | |M| cost |R| cost |R| time(s) gap(%) cost |R| gap(%)

pr01 48 4 1074.12 8 1079.61 8.00 1.06 0.51 1074.12 8 0.00

pr02 96 4 1762.61 12 1779.59 11.90 9.14 0.96 1768.38 12 0.33

pr03 144 4 2373.61 16 2418.96 15.70 32.15 1.91 2407.90 16 1.44

pr04 192 4 2815.11 20 2930.50 19.60 106.10 4.10 2900.21 20 3.02

pr05 240 4 2962.25 24 3091.25 23.60 200.55 4.35 3041.84 23 2.69

pr06 288 4 3588.78 28 3745.42 27.70 481.47 4.36 3696.28 28 3.00

pr07 72 6 1418.22 12 1426.90 10.00 4.72 0.61 1418.22 10 0.00

pr08 144 6 2096.73 18 2160.57 16.40 37.46 3.04 2119.80 16 1.10

pr09 216 6 2712.56 24 2794.71 22.70 145.75 3.03 2774.10 22 2.27

pr10 288 6 3464.65 30 3667.60 28.40 343.90 5.86 3636.82 29 4.97

pr11 48 4 1005.73 4 1055.46 4.00 0.14 4.94 1012.46 4 0.67

pr12 96 4 1464.50 8 1535.59 8.00 5.78 4.85 1505.38 8 2.79

pr13 144 4 2001.81 12 2027.66 12.00 21.76 1.29 2015.77 12 0.70

pr14 192 4 2195.33 16 2281.64 15.60 57.90 3.93 2256.69 15 2.80

pr15 240 4 2433.15 20 2587.97 20.00 98.02 6.36 2545.83 20 4.63

pr16 288 4 2836.67 24 2986.55 23.90 180.70 5.28 2932.45 24 3.38

pr17 72 6 1236.24 6 1305.20 6.00 0.69 5.58 1237.18 6 0.08

pr18 144 6 1788.18 12 1851.02 12.00 22.58 3.51 1807.18 12 1.06

pr19 216 6 2257.13 18 2343.35 17.90 98.79 3.82 2331.08 18 3.28

pr20 288 6 2984.01 24 3308.59 24.00 114.86 10.88 3176.76 24 6.46

avg. 2223.57 16.80 2318.91 16.37 98.18 3.96 2282.92 16.35 2.23
∗Best known solutions collected from Vidal et al. [31].
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