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ABSTRACT  

Purpose: Gene polymorphisms of surfactant proteins, key players in lung innate 

immunity, have been associated with various lung diseases. The aim of this 

study was to investigate the potential association between variations within the 

SP-A gene of the donor lung allograft and recipient post-transplant outcome. 

Methods: Lung-Tx pts (n=192) were prospectively followed by PFTs, 

bronchoscopies with BAL and biopsies. Donor lungs were assayed for SP-A1 

(6An) and SP-A2 (1An) gene polymorphism by using the pyrosequencing method. 

Unadjusted and adjusted stratified Cox survival models are reported. Results: 

SP-A1 and SP-A2 genotype frequency and lung transplant recipient and donor 

characteristics as well as the cause of death are noted. Recipients were grouped 

per donor SP-A2 variants. Individuals that received lungs from donors with the 

SP-A2 1A0 (n=102) versus 1A1 variant (n=68) or SPA2 genotype 1A01A0 (n=54) 

versus 1A0A1 (n=38) had greater survival at one year (logrank p<0.025). No 

significant association was noted for SP-A1 variants. Stratified adjusted survival 

models for one year survival and diagnosis showed a reduced survival for 1A1 

variant and the 1A01A1 genotype. Furthermore, when survival was conditional on 

one year survival no significance was observed, indicating that the survival 

difference were due to the first year’s outcome associated with the 1A1 variant. 

Conclusion: Donor lung SP-A gene polymorphisms are associated with post-

transplant clinical outcome. Lungs from donors with the SP-A2 variant 1A1 had a 

reduced survival at one year. The observed donor genetic differences, via innate 

immunity relate to the post-transplant clinical outcome. 
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INTRODUCTION 

Lung transplantation is a widely accepted therapeutic option for end stage lung 

disease. Clinical outcome is yet challenged by primary graft failure responsible 

for the majority of the early mortality, and by chronic allograft dysfunction and 

chronic rejection accounting for more than 30% of deaths after the third 

postoperative year. Lung transplantation suffers recipient and graft survival, 

significantly lower than for liver, kidney, and heart transplantation. The lung’s 

ongoing exposure to the environment is likely the determining factor, with a 

significant role attributed to the performance of its defense mechanisms.  

Pulmonary surfactant and the surfactant related proteins are primary components 

of the organ’s specific innate immunity. As such they serve as one of the first 

host defense mechanisms the lung can mount against the various insults. 

Surfactant phospholipids in addition to lowering the alveolar surface tension, also 

serve as part of the physical mucosal barrier [1, 2]. Similarly, surfactant 

associated proteins A, B, C, and D play different specific roles with respect to 

surface tension lowering function, phospholipid homeostasis, and innate and 

adaptive immunity [3-8]. The hydrophilic surfactant proteins (SP) SP-A and SP-D 

play essential roles in innate host defense, interacting between the innate and 

the adaptive immune systems [3-8]. 



SP-A biologic activity seems to be genetically determined and its polymorphisms 

have been associated with several lung disease: respiratory distress syndrome, 

idiopathic pulmonary fibrosis, emphysema [9, 10]. The two sftpa1 and sftpa2 

genes encoding the proteins SP-A1 and SP-A2 respectively, have been identified 

with several polymorphisms within the coding regions, SP-A1 (6A, 6A2-20) and 

SP-A2 (1A, 1A0-13) [11, 12]. In particular, SP-A2 is the predominant and very 

polymorphic SP-A protein present in the adult human airways [13].  

We showed a differential SP-A protein expression in the peri lung transplant 

phase according to the SP-A2 variants and further showed a significant 

pharmacogenetic relationship with of the SP-A2 methylprednisolone treatment 

[14, 15]. 

These observations allowed us to formulate the main hypothesis for this project 

that focuses on pulmonary surfactant protein A2 polymorphisms determining lung 

allograft survival. 

 

 

METHODS 

The study was approved by the Institutional Review Board of the Columbia 

University Medical Center. Informed consent in adherence to the principles set 

forth in the Helsinki Declaration was obtained from each patient for the collection 

of blood samples from the donor of the lung allograft prior to implantation. We 

performed a retrospective analysis of prospectively banked samples. All samples 

were prospectively collected specifically to test the hypothesis of gene and 



protein expression associations with post lung transplant outcomes. This study 

included 192 patients consecutively transplanted. Post lung transplantation 

patients underwent pulmonary function testing in the lung transplant clinic weekly 

for the first 3 months. Beyond 3 months, patients were seen monthly for the first 

year and on alternating months for the second year. Follow-up frequency was 

extended to every 3 months beyond the second year after surgery. 

Recipient data were prospectively collected with regards to the development of 

CLAD (chronic lung allograft dysfunction) as determined by the permanent drop 

of the FEV1 by more than 20% from their post-transplant baseline and survival. 

CLAD development was monitored using routine pulmonary function tests. The 

interval of time from transplant to development of CLAD and survival after 

transplant was monitored. 

 

Donor and recipient clinical information 

Donor data were collected with regard to age, smoking history, gender, last 

pO2/FiO2 prior to procurement and duration of cold ischemic preservation. 

All donors received 2g methylprednisolone. Recipient data were collected with 

regard to the development of primary graft dysfunction (PGD) in the first 3 post-

transplant days; development of CLAD was determined by the permanent drop of 

the FEV1 by more than 20% from their post-transplant baseline and survival. The 

time from transplant to development of CLAD and death was monitored. 

 

  



Biological samples from lung allograft 

Blood samples from the donor of the lung allograft were collected at the time of 

lung procurement. Blood samples were stored at -80ºC for subsequent analysis. 

All samples were batched and assayed at once.  Total DNA was extracted from 

blood with a DNA extraction kit (Qiagen, USA), according to the manufacturer’s 

instructions. The quality of the DNA was assessed prior to assaying. Donor 

demographics and clinical data were collected by Organ Procurement 

Organization personnel and recorded in the donor medical record. 

 

Lung allograft SP-A gene variants 

The SP-A1 and SP-A2 gene polymorphisms were assessed in a blinded fashion 

for donor and recipient characteristics and for clinical outcomes. The SP-A1 and 

SP-A2 single nucleotide polymorphism (SNPs) assessment was done using a 

pyrosequencing protocol. The PCR–based RFLP genotype method for SP-A 

provided the basis for the pyrosequencing protocol, which is a primer–based 

DNA sequencing method. Pyrograms are scored by pattern–recognition software 

that compare the predicted SNP pattern (histogram) to the observed pattern 

(pyrogram) (Pyrosequencing AB, Uppsala, Sweden). Scoring of SP-A1 (6A, 6A2-

20) and SP-A2 (1A, 1A0–13) gene variants was done as previously described [16, 

17]. 

 

  



Statistical analysis 

We analyzed categorical data using the Chi Square and Fisher’s Exact tests. We 

constructed stratified Cox proportional hazards models to examine associations 

between genotype and time to events of interest (CLAD and survival) with strata 

for recipient disease and with adjustment for a priori purposefully selected 

recipient variables known to affect outcome after lung transplantation (i.e. 

precision variables). For time-to-death analyses, we censored follow-up time at 

the end of the study. For the CLAD analyses, we censored follow-up time at 

death and at end of study. Variants were assumed to have additive effects. There 

were no missing covariate data.  

Differences were considered significant when the p value was less than 0.05. 

Continuous variables are expressed as medians and 25th to 75th percentile 

range. Statistical analysis was performed using SAS 9.2 software (SAS Institute 

Inc., Cary, NC, USA). 

 

 

RESULTS 

Donor and Recipient information: Table 1 shows the donor lung SP-A1 and the 

SP-A2 variant frequencies seen in our cohort of lung transplant recipients. Table 

1s shows the SPA1 and SPA2 genotype combinations. The overall 

characteristics of the 192 lung transplant recipients and of the donors are shown 

in Table 2.  



The overall median follow-up time was 1290 days (823–1843). To date 60/192 

patients have died, 4 within 30 days from the lung transplantation and 56 with a 

median survival of 719 days (274–1269). The 132 patients currently alive have a 

median follow-up of 1595 days (1091–2054). CLAD was diagnosed in 88 

patients, 38 of whom have died with median survival of 902 days (575–1422) and 

50 of whom are currently alive with a median follow-up of 1841 days (1450– 

2296). Patients alive and free of CLAD are 81 with a median follow-up of 1303 

days (1006–1823). Table 2 shows the overall recipient and donor characteristics 

of the study cohort. 

Grouping of lung transplant recipients; SP-A2 variant and genotype associations: 

Lung transplant recipients were grouped according to the two most frequent 

donor SP-A1 (6A2 and 6A3); and SP-A2 variants (1Aº and 1A¹). No association 

with clinical outcomes was noted for the SP-A1 variants. Figure 1 shows the non-

adjusted survival curves for patient grouped according to the SP-A2 variants as 

well as the curves conditional to one-year survival. No association was noted for 

freedom from CLAD. The characteristics of the patient grouped according to the 

SP-A2 single nucleotide polymorphic variants for 1A0  and 1A¹ shown in Table 3 

include recipient age, gender, end stage pulmonary disease, type of transplant, 

cytomegalovirus (CMV) mismatch and gender mismatch. With regard to the 

distribution of the recipient diagnosis some differences were noted: in particular, 

for cystic fibrosis (CF) 24% for variant 1A0 versus 17% for variant 1A1, for COPD 

25% for variant 1A0 versus 34% for variant 1A1 whereas for ILD and other were 

approximately half and half of each variant (Table 3). 



Figure 2 shows the non-adjusted survival curves for patient grouped according to 

the SP-A2 genotypes 1A01A0 and 1A01A1 as well as the curves conditional to 

one-year survival. The characteristics of the patient grouped according to the SP-

A2 genotypes for 1A01A0 and 1A01A¹ shown in Table 4 include recipient age, 

gender, end stage pulmonary disease, type of transplant, cytomegalovirus (CMV) 

mismatch and gender mismatch. With regard of the distribution of the recipient 

diagnosis some differences were noted: for cystic fibrosis (CF) 28% for genotype 

1A01A0 versus 18% for variant 1A01A1, although for COPD 24% for genotype 

1A01A0 versus 37% for 1A01A1 and for ILD and other about half and a half with 

each genotype (Table 4). 

One-year survival: Table 5 shows the one-year survival models stratified for 

recipient diagnosis, with adjustment for donor polymorphic variation in 1A1, 

recipient age, gender, procedure type, CMV status, and gender mismatch. The 

data showed a significant effect in recipients with regards to the presence of 

donor variant 1A1 (p=0.02), age (p=0.04) and bilateral lung Tx (p=0.04) on the 

one-year survival. Table 5 also shows the one-year survival models for the SP-

A2 genotypes stratified for recipient diagnosis, with adjustment for donor 

polymorphic variation in 1A1, recipient age, gender, procedure type, CMV status 

and gender mismatch. The SP-A2 1A0A1 genotype was associated with a 

significant overall reduction in survival (p=0.02) in the first year. Table 6 shows 

the cause of death within the first year, according to the donor 1A1 and 1A0 

variants as well as according to the donor SP-A2 genotypes 1A01A0 and 1A01A1.  

 



DISCUSSION 

The role of the genetic background of the donor lung has not been sufficiently 

explored in relation to lung transplant recipient outcomes. This study reports 

novel findings with regards to the role played by SP-A gene polymorphisms in 

clinical outcomes post-lung transplantation. Donor lung SP-A polymorphic 

variants, may serve as predictors of post-transplant recipient survival. The SP-A1 

and SP-A2 gene polymorphisms were investigated, uncovering a significant 

association between the donor lung SP-A2 variants and post lung transplant 

recipient survival.  

We have previously reported that donor lung SP-D polymorphisms predict 

chronic lung allograft dysfunction, although no association to survival was 

reported for any of those variants [18]. Hence, the two hydrophilic surfactant 

proteins SP-D and SP-A may have a distinct impact on the overall innate and 

adaptive response to pathogens.  

The human SP-A locus consists of two functional genes, sftpa1 and sftpa2 

encoding SP-A1 and SP-A2, respectively.  Each gene has been identified with 

several polymorphisms within the coding region, which may or may not be 

subject to amino acid substitutions, SP-A1 (6A, 6A2-20), and SP-A2 (1A, 1A0-13) 

[16, 12]. Associations of SP-A1 and SP-A2 variants have been shown for several 

pulmonary diseases [ 9, 10] and mutations in these genes are found in patients 

with interstitial lung disease and lung cancer. Despite such frequency, their 

pathologic mechanism is poorly understood [19]. Gene polymorphisms of SP-A1 

and SP-A2 may be responsible for both quantitative and qualitative differences in  



levels of protein synthesis, variations in protein functionality, or an altered ratio 

between the two proteins SP-A1 and SP-A2 [20-24]. Hence, within the context of 

organ specific innate immunity, a compromised surfactant proteomic composition 

may largely contribute to a deficiency in first-line response to various insults. 

Recent animal studies have shown that not only SP-A1 and SP-A2 variants 

distinctively affect the alveolar macrophage miRNome [25], but most relevantly 

they also differentially affect lung function and survival after infection [26, 27]. It is 

therefore conceivable that SP-A gene variants may contribute to the complex 

etiologic pathogenesis of lung allograft dysfunction. This retrospective study, 

although with a potential bias from uneven distribution of patient characteristic 

that was taken in account in the adjusted statistical analysis, documents this 

association for the first time showing a significantly greater risk of death within 

the first-year post lung transplant for recipients of donor lungs with SP-A2 variant 

1A1 and genotype 1A01A1 compared to others (see Figure 1 and Table 5). This 

appears to be due to a greater incidence of death for infection (see Table 6). 

Interestingly, Dominic and colleagues [28] demonstrated that homozygosity of 

the SP-A2 variant, 1A1, was associated with an increased risk of meningococcal 

disease, suggesting a recessive effect of this variant. The carriage of another 

SP-A2 variant, 1A5, was significantly associated with a reduced risk of infection, 

suggesting a dominant effect of this variant. Variants 1A1 and 1A5 are identical at 

the codons that encode amino acids 9 and 140, but they differ at amino acids 91 

and 223 [28].  The change in amino acid 223 between these two variants is 

significant. Variants 1A5 and 1A0 that were associated with reduced infection risk 



(1A5) [28] and better survival (1A0) in the present study and in a recent mouse 

study [27] have the same amino acid, namely a glutamine. This charged amino 

acid may contribute to a better outcome. 

Low levels of SP-A mRNA measured in the lung allograft just prior to implantation 

appeared to be a negative predictor with respect to post-transplant survival [14]. 

An association between donor lung SP-A mRNA expression levels and SP-A2 

genotype has been previously observed [14]. In particular, the SP-A2 genotype 

1A0A0 had greater levels of SP-A mRNA expression in the allograft prior to 

implantation [14]. Lung donors are treated with very high levels of steroids prior 

to organ procurement. We recently reported a significant pharmacogenetic 

relationship between SP-A2 variants and methylprednisolone. Precision cut lung 

slices from organs with SP-A2 variant 1A0 and genotype 1A01A0 showed a 

significantly greater protein expression when treated with methylprednisolone 

[15]. These observations are consistent with the present results where recipients 

from donors with 1A0 variant and 1A01A0 genotype exhibited greater survival, 

indicating that the total SP-A levels determined by donor lung genotype may play 

a role in post-transplant recipient survival. Interestingly, the survival advantage 

identified in this study was observed within the first-year during which recipient’s 

immunosuppressive regimes include the greatest levels of steroids. 

Lung as with intestine compared to other solid organs suffer the disadvantage of 

a continuous exposure to the environment, thus they rely on a more active organ 

specific innate immunity for the first line protection from the ongoing external 

pathogens [29-32]. Interactions between innate and adaptive immune responses 



in these organs in the setting of transplantation are likely a major contributor to 

the increased graft dysfunction that is seen. It is conceivable that the capability of 

the lung allograft to withstand the various transplant related insults is driven by its 

genetic background, and especially that of donor innate immunity. The innate 

immune molecules, SP-A1 and SP-A2, are subject to differential and complex 

regulation as shown in vitro and fetal lung explants [33-36].  

In conclusion, donor lung SP-A2 gene polymorphisms are associated with post-

transplant recipient survival. Further studies are needed to explore the different 

roles of SP-D and SP-A polymorphisms within the innate and adaptive immune 

response post-lung transplantation. This study was not designed for a detailed 

assessment of confounding factors or interaction effects, nevertheless the 

interesting findings reported significantly add weight to further hypothesis 

generation regarding the potential impact of genetic polymorphisms for key 

proteins in the donor lung influencing post lung transplant outcome(s). In fact our 

findings suggest a constitutive role of the donor innate immunity towards lung 

transplant recipient outcome.  
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TABLES 

Table 1.               SP-A1 and SP-A2 variant and genotype frequency 

SP-A1 SP-A2 

variant 

frequency 
genotype frequency 

variant 

frequency 
genotype frequency 

6A² 53% (199) 6A6A2 5% (10)  1A0 52% (195) 1A01A 9% (18) 

6A³ 34% (126) 6A6A4 0.5% (1) 1A1 19% (73) 1A01A0 28% (54) 

6A 6% (23) 6A26A2 28% (53) 1A 10% (38) 1A01A1 20% (38) 

6A4 7% (28) 6A26A3 34.5% (66) 1A2 9% (33) 1A01A2 6% (12) 

  
6A26A4 9% (17) 1A3 2% (9) 1A01A3 1.5% (3) 

  
6A36A3 11% (21) 1A5 6% (23) 1A01A5 7.5% (14) 

  
6A36A4 4% (8) 1A8 1% (3) 1A11A5 3% (6) 

  
6A 6A 0.5% (1) 1A9 0.5% (1) 1A11A8 0.5% (1) 

  
6A6A3 5% (10) 1A10 0.5% (1) 1A1A 0.5% (1) 

  
6A46A4 0.5% (1)   1A1A1 5% (9) 

  
Blank 2% (4)   1A1A2 2% (4) 

  
    1A01A9 0.5% (1) 

  
    1A1A3 1.5% (3) 

  
    1A11A1 2.5% (5) 

  
    1A11A2 5% (10) 

  
    1A1A8 1% (2) 

  
    1A21A2 1.5% (3) 

  
    1A21A5 0.5% (1) 

  
    1A31A5 1% (2) 

  
    1A31A10 0.5% (1) 

  
    Blank 2% (4) 

  
Total pts 100% (192)   Total pts 100% (192) 

Numbers in brackets (n) represent the total number of such variant or genotype in the 

studied patient population. Blank indicate lung in which the genotype could not be 
determined. 

  



 

Table 2. Lung transplant recipient and donor characteristics. 

 

Recipients                                      

192 

Lung donor 

Males 90 (47%) Males 99 (52%) 

Age 57 (43-62) Age 35 (23-47) 

Bilateral 141 (73%) Last pO2 457 (402-506) 

Disease Smoking 63 (33%) 

COPD 56 (29%)  

ILD 76 (40%) 

CF 37 (19%) 

PPH 6 (3%) 

Bronchiectasis 6 (3%) 

Sarcoidosis 7 (4%) 

Scleroderma 4 (2%) 

CMV mismatch 52 (27%) 

PGD-3 at 72 h 16 (8%) 

 

 

 

 

  



Table 3. Donor and recipient characteristics according to the donor SP-A2 

variants. 

 

Recipients  1A0 1A1 

n.170 102 (60%) 68 (40%) 

Age 56 (43-61) 57 (42-63) 

Female 57 (56%) 36 (53%) 

Bilateral Tx 78 (76%) 51 (75 %) 

CMV Mism. 26 (25%) 21 (31%) 

Gender Mism. 36 (35%) 22 (32%) 

Disease   

           CF 24 (24%) 12 (17%) 

          COPD 26 (25%) 23 (34%) 

          ILD 39 (38%) 25 (37%) 

        Other 13 (13%) 8 (12%) 

 

Donor   

Age 36 (24-47) 40 (22-51) 

Smoking 28% 34% 

Last pO2 468 (415-504) 425 (393-492) 

 

  



Table 4. Donor and recipient characteristics according to the donor SP-A2 

genotypes. 

 

Recipients  1A01A0 1A01A1 

n.92 54 (59%) 38 (41%) 

Age 54 (41-61) 55 (42-62) 

Female 30 (56%) 20 (53%) 

Bilateral Tx 37 (69%) 30 (79%) 

CMV Mism. 13 (24%) 13 (34%) 

Gender Mism. 23 (43%) 10 (27%) 

Disease   

           CF 15 (28%) 7 (18%) 

          COPD 13 (24%) 14 (37%) 

          ILD 19 (35%) 13 (34%) 

        Other 7 (13%) 4 (11%) 

 

Donor   

Age 37 (21-47) 41 (30-55) 

Smoking 33% 43% 

Last pO2 470 (416-510) 463 (399-507) 

  



Table 5.  Adjusted Survival Models for one-year survival stratified per recipient 

diagnosis. 

 

Patient grouped according to SP-A2 variant 1A0 and 1A1 

 HR 95% CI p- value 

  DEATH 1A1 2.9 1.2- 6.9 0.02 

 Recipient Age 1 1.0 – 1.1 0.04 

 Female 0.7 0.27 – 1.8 0.4 

 Bilateral Lung-Tx 5.4 1 – 27.5 0.04 

 CMV Mismatch 0.8 0.3 – 2.2 0.7 

 Gender Mismatch 1.1 0.4 – 2.9 0.8 

 

Patient grouped according to SP-A2 genotype 1A01A0 and 1A01A1 

  DEATH 1A0-1A1 11.3 1.6- 80.5 0.02 

 Recipient Age 1.1 1.0 – 1.2 0.1 

 Female 1.1 0.3 – 4.5 0.9 

 Bilateral Lung-Tx 2.9 0.5 – 15.8 0.2 

 CMV Mismatch 0.4 0.07 – 2.5 0.4 

 Gender Mismatch 1.1 0.2 – 6.2 0.9 

HZ: Hazard ratio; CI: Confidence Interval 

 
 
 

 
 
  



 

Table 6. Cause of death within first year. 

 1A¹ (n=12) 1A0 (n=7) 

Pneumonia 8 4 

MOF 2 1 

CLAD 1 1 

PE 1 1 

 

 1A0-1A¹ (n=7) 1A01A0 (n=1) 

Pneumonia 5 0 

MOF 2 0 

CLAD 0 0 

PE 0 1 

MOF = Multi Organ Failure; CLAD = Chronic Lung Allograft Dysfunction; PE = 
Pulmonary embolism 
  



LEGENDS 

Fig. 1 Non-adjusted lung transplant patient actual survival curves of recipients 

grouped according to the lung allograft donor SP-A2 polymorphic variants 1A0 

and 1A1. A significant greater survival during the first year post lung 

transplantation was noted for recipients of donor lungs with SP-A2 variant 1A1.  

Mantel-Cox Logrank test showed p=0.015 for the overall survival analysis, 

although no significant difference for survival in patients that were alive at one 

year after lung transplantation. 

 

Fig. 2 Non-adjusted lung transplant patient actual survival curves for recipients 

grouped according to the lung allograft donor SP-A2 polymorphic genotypes 

1A01A0 and 1A01A1. A significant greater survival during the first year post lung 

transplantation was noted for recipients of donor lungs with SP-A2 genotype 

1A01A0. The Mantel-Cox Logrank test showed (p=0.016) for the overall survival, 

although no significant difference in patients that were alive at one year after lung 

transplantation. 
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Table 1s.      SP-A1 and SP-A2 genotype combinations 
 

 6A6A 6A6A2 6A6A3 6A6A4 6A26A2 6A26A3 6A26A4 6A36A3 6A36A4 6A46A4 Blank Total pts 

1A1A 1 0 0 0 0 0 0 0 0 0 0 1 

1A1A0 0 9 3 1 0 4 1 0 0 0 1 18 

1A1A1 0 1 5 0 0 1 0 2 0 0 0 9 

1A1A2 0 0 2 0 0 0 0 1 0 0 0 4 

1A1A3 0 0 0 0 0 2 0 0 0 0 1 3 

1A1A8 0 0 0 0 0 1 0 1 0 0 0 2 

1A01A0 0 0 0 0 47 5 0 1 0 0 1 54 

1A01A1 0 0 0 0 3 31 0 4 0 0 0 38 

1A01A2 0 0 0 0 0 12 0 0 0 0 0 12 

1A01A3 0 0 0 0 2 1 0 0 0 0 0 3 

1A01A5 0 0 0 0 0 0 13 0 1 0 0 14 

1A01A8 0 0 0 0 0 1 0 0 0 0 0 1 

1A01A9 0 0 0 0 1 0 0 0 0 0 0 1 

1A11A1 0 0 0 0 0 1 0 3 0 0 1 5 

1A11A2 0 0 0 0 0 2 2 4 2 0 0 10 

1A11A5 0 0 0 0 0 1 0 2 3 0 0 6 

1A21A2 0 0 0 0 0 0 0 2 1 0 0 3 

1A21A5 0 0 0 0 0 0 0 0 0 1 0 1 

1A31A5 0 0 0 0 0 0 1 0 1 0 0 2 

1A31A10 0 0 0 0 0 1 0 0 0 0 0 1 

Blank 0 0 0 0 0 3 0 1 0 0 0 4 

Total pts 1 10 10 1 53 66 17 21 8 1 4 192 

Blank indicate lungs in which the genotype could not be determined. 

 


