
19/04/2024 18:19

A Deep-learning-based approach to VM behavior Identification in Cloud Systems / Stefanini, M.;
Lancellotti, R.; Baraldi, L.; Calderara, S.. - (2019), pp. 308-315. (Intervento presentato al convegno 9th
International Conference on Cloud Computing and Services Science (CLOSER 2019) tenutosi a Heraklion,
Greece nel May, 2019) [10.5220/0007708403080315].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

A Deep-Learning-based approach
to VM behavior identification in cloud systems

Matteo Stefanini, Riccardo Lancellotti, Lorenzo Baraldi, Simone Calderara
Department of Engineering ”Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy

{name.surname}@unimore.it

Keywords: Cloud computing, VMs classification, Deep Learning

Abstract: Cloud computing data centers are growing in size and complexity to the point where monitoring and man-
agement of the infrastructure become a challenge due to scalability issues. A possible approach to cope with
the size of such data centers is to identify VMs exhibiting a similar behavior. Existing literature demonstrated
that clustering together VMs that show a similar behavior may improve the scalability of both monitoring and
management of a data center. However, available clustering techniques suffer from a trade-off between the
accuracy of the clustering and the time to achieve this result. Not being able to obtain an accurate clustering
in short time hinders the application of these solutions, especially in public cloud scenarios where on-demand
VMs are instantiated and run for a short time span. Throughout this paper we propose a different approach
where, instead of an unsupervised clustering, we rely on classifiers based on deep learning techniques to assign
a newly deployed VMs to a cluster of already-known VMs. The two proposed classifiers, namely DeepConv
and DeepFFT use a convolution neural network and (in the latter model) exploits Fast Fourier Transformation
to classify the VMs. Our proposal is validated using a set of traces describing the behavior of VMs from a real
cloud data center. The experiments compare our proposal with state-of-the-art solutions available in literature,
such as the AGATE technique and PCA-based clustering, demonstrating that our proposal can achieve a very
high accuracy (compared to the best performing alternatives) without the need to introduce the notion of a
gray-area to take into account not-yet assigned VMs as in AGATE. Furthermore, we show that our solution is
significantly faster than the alternatives as it can produce a perfect classification even with just a few samples
of data, such as 4 observations (corresponding to 20 minutes of data), making our proposal viable also to
classify on-demand VMs that are characterized by a short life span.

1 Introduction

The popularity of cloud computing is clearly
demonstrated by its wide adoption: for example,
nearly 60% of the Apache Spark installations are de-
ployed in the Cloud [1]. The benefit from embracing
the Cloud paradigms typically lies in the reduced cost
of ownership for the infrastructure, that may reach up
to 66% for some cases [2].

A critical point for the IaaS Cloud infrastructures
is the monitoring and management of the virtual ma-
chines (VMs) and physical nodes in a data center.
Even just monitoring may present scalability issues,
due to the sheer amount of data involved [3]. In a
similar way, the optimization problem for mapping
VMs over the infrastructure may exhibit an unman-
ageable dimensionality forcing the Cloud provider
to introduce some over-simplification [4]. A com-
mon problem that hinders the scalability of monitor-

ing and management in Cloud data centers is consid-
ering each VM as a black-box independent from the
others. Effective proposal to improve the scalability
of Cloud monitoring and management using a class
based-approach have been recently introduced [5, 6].
These class-based solutions leverage the observation
that VMs hosting the same software component of
the same application exhibit similar behavior with re-
spect to resource utilization. Hence, by taking into
account the similarity in VMs behavior it is possi-
ble, for example, to increase by nearly one order of
magnitude the number of VMs that can be considered
in the of the data-center VMs allocation problem [6].
However, available clustering techniques to identify
VMs that exhibit similar behavior, show a trade-off
between accuracy of VMs group identification and the
amount of observations (and hence the time) required
to reach an accurate classification [7]. This issue hin-
ders the application of a class-based approach outside

a static scenario characterized by long-term commit-
ments [8], where cloud customers purchase VMs for
extended periods of time. An attempt to address this
trade-off has been made through a technique named
AGATE (Adaptive Gray Area-based TEchnique) [7],
that adapts the amount of observations to the level of
certainty of the identification of a VM as belonging
to a cluster. However, also this technique does not
ensure an upper bound on the time to identify VMs.

In this paper we propose a different approach
based on a classifier that uses a deep learning tech-
nique to identify the VMs relying on a model obtained
from preliminary training. While the need to tune the
neural network reduces the flexibility compared to the
purely clustering-based approach proposed in [7], the
proposed classifier is significantly faster and can iden-
tify VMs with a perfect accuracy, observing their be-
havior for just a few minutes, compared to the hours
required in the alternative approaches.

We tested the proposed classifier using traces de-
rived from the work in [7]. The results confirm that
our proposal significantly outperforms the alterna-
tives in terms of accuracy in the classification and in
the time required to reach that accuracy.

The remainder of this paper is organized as fol-
lows. Section 2 provides a description of the pro-
posed deep-learning-based classifier including both
the model and the implementation. Section 3 de-
scribes the experimental results. Section 4 discusses
the related work and Section 5 concludes the paper
with some final remarks and outlines future research
directions.

2 Methodology

Our contribution comprises two learnable mod-
els for VM identification, which we call DeepConv
and DeepFFT. While the former employs a convolu-
tional neural network to process time signals, the lat-
ter combines the Fast Fourier Transform operator and
a convolutional neural network to analyze the VM be-
haviour in the frequency domain. In the following, we
will first outline the basic elements of a deep learning
approach to classification. Next, we will describe the
DeepConv network and subsequently we will outline
the DeepFFT model by highlighting the differences
with the previous approach.

2.1 Model overview

We start our analysis with a discussion of the Deep
learning approach to classification that is the core of
the paper. To provide a consistent description, we will

refer to the symbols and the nomenclature shown in
Table 1. As further information, we provide the di-
mensionality/value ranges for the main elements of
the model. We do not provide this information for
the main layers and components of the deep-learning
model (bottom part of the table) because they are de-
scribed in full detail in the following of the paper.

Symbol Meaning Dimensionality

M Number of dataset metrics 16
W Sequence length considered 4 . . . 256
X Input data M ×W
C Number of VM classes 2
N batch size 64
Nb Number of model’s blocks 2 . . . N
Bn n-th Block 2 . . . N
Ks Kernel size in convolutions 3
s stride (step) in convolutions 2
out Output of the model C

FC Fully Connected layer
BN Batch-Norm layer [9]
C1D Convolution layer
AReLU ReLU Activation function
BFFT Fast Fourier Transform layer

Table 1: Summary of symbols used in the model

Convolutional Neural Networks (CNNs) are a
class of Artificial Neural Networks that have been
proven very effective in the last years in solving com-
plex tasks involving multimedia data, such as images
and video. They work well for identifying simple pat-
terns within input data which can then be used to form
more complex patterns in subsequent operations and
finally be sufficiently informative to be used to per-
form the specific task at hand (i.e. classification, re-
gression, etc).

Inspired by deep convolutional neural networks,
which are composed of several Convolutional layers
followed by a final Fully Connected layer, our models
are composed by a variable sequence of blocks and a
final Fully Connected layer for the output classifica-
tion.

VMs behavior is described as a set of time se-
ries each describing a specific metric (e.g. Memory
utilization, CPU utilization, Network traffic, etc. . .).
For a complete list of the metric used in our experi-
ments, the reader can refer to Table 2 in the next sec-
tion. Since each metric is a series of samples taken
across time, that are by nature one dimensional sig-
nals, we make use of a specific kind of Convolution,
i.e. 1-dimensional Convolutions, as elementary block
of our network, and we consider each metric as an
input channel on which we calculate the convolution
operation independently.

A Convolution 1D is a deep learning linear oper-
ation used to extract features from one dimensional

data like signals, with the aim to identify local pat-
terns within a certain window, which is called kernel
size (Ks). The kernel contains the learnable parame-
ters that are used to carry out the operation. Because
this kernel is being shifted along the time dimension
with a certain step, called stride (s), the same calcu-
lation is executed on every patch of the data attended
by the kernel, so that a pattern learned at one position
can also be recognized at a different position, making
1D Convolution translation invariant.

In the simplest case, let’s assume a Convolution
1D layer with input size (N,Cin, Lin) and output
(N,Cout, Lout), then the values of the output tensor
can be computed as follow:

out [i, j] = b [j] +

Cin−1∑
k=0

w [j, k] ? input [i, k] (1)

where ? is the convolution operator, N is the batch
size, C denotes the number of channels (for the first
layer, the channels correspond to the VMs metrics), L
is the length of signal sequence (referred to as input).
Furthermore, w and b are the learnable parameters of
the layer, with shape (Cout, Cin,Ks) and (Cout), re-
spectively.

The stride (s) is an hyper-parameter of the 1-
dimensional convolution that controls the step of the
kernel: if greater than one, data is scanned with
greater steps, hence less times, causing a decrease of
the initial dimension length, an effect that can be seen
as pooling, a well-known deep learning strategy to re-
duce data dimensions, useful especially when they are
high.

In our models we also make use of Batch Normal-
ization [9], which is a popular operation that normal-
izes data across the batch dimension considered at a
time, where the batch is a subsample of the dataset use
in training phase to speed up gradient based optimiza-
tion. Applying Batch Normalization after each convo-
lutional layer helps deep networks to converge faster;
and lastly, we use the non-linear activation function
ReLU (Rectified Linear Unit) that is used to stabilize
the gradient during training.

2.2 DeepConv Model

Each block of our DeepConv network is hence com-
prised of a Convolution1D layer with kernel size of
3 and stride of 2, followed by a Batch-Normalization
layer and a ReLU activation function; this block is re-
peated a variable number of times depending on the
input sequence length (W), with a minimum of two
times. Following the last block, data is then flattened
and applied to a Fully Connected layer which will out-
put the class results.

Input metrics

(channels)

Class

probabilities

Block 1

Block 2

Block 3

Block 4

Fully Connected layer

(data flattened)

T
im

e
 O

R

F
re

q
u

en
cy Softmax

Figure 1: DeepConv model architecture.

The number of blocks of the model is given by the
following:

Nb = max(log2(W)− 1, 2) (2)

Where W is the input sequence length of the data con-
sidered.

Varying the number of blocks is a consequence of
a simple consideration: the model needs to have a fi-
nal layer with neurons Receptive Field that can ob-
serve, and thus leverage information, over the entire
input sequence; hence, given that we do experiments
with different input sequence length, we need a flexi-
ble model that can adapt its architectures depth based
on the input at hand. The Receptive Field of a general
neuron is nothing but the portion of input data that the
neuron has access to and can influence its activation.

Our generic DeepConv model for an input se-
quence length of 32 timesteps is shown in Figure 1,
where we outline how the data shape changes pass-
ing through each block of the network until the final
Fully Connected layer; each metric is exhibited as a
column of values, so that putting together M metrics
(16 in our case), we obtain an input shape of (W,M).
Adding also the Batch-Size dimension N , which con-
siders Batch-Size input samples at a time to optimize
the network, we obtain the final input shape for train-
ing of (N,W,M).

The final out class probabilities given by the
model is calculated as follows:

P (out) = softmax(out) =
eout∑
eout

(3)

Where out is the output of the model, which is com-
puted as follows:

out = (FC ◦ B1 ◦ B2 ◦ · · · ◦ BNb
)(X) (4)

with ◦ being the concatenation operator for Neural
Network blocks, Nb the number of blocks as defined
in Eq. 2, FC the final Fully Connected layer, and each
block defined as:

Bn = (AReLU ◦ BN ◦ C1D)(X) (5)

where AReLU indicates the activation function, BN
a Batch Normalization layer, C1D a Convolution1D
layer and X the input tensor.

2.3 DeepFFT Model

Given the periodicity of some of the signals involved,
we derived a second model, namely DeepFFT, with
the same architecture described so far used with time
series data, but applied to data frequencies, hence
transforming the data to the Fourier Domain before
feeding the model.

If we compare DeepFFT with the previously de-
scribed DeepConv model, the only difference lies in
the presence of an additional initial layer which com-
putes the Fast Fourier Transform (FFT) of each met-
ric sequence and returns the magnitude of each fre-
quency. We empirically found that using the mag-
nitude leads to better results than other alternatives,
such as using the phase or the raw real and imaginary
parts.

Therefore the substantial difference between the
two models is that DeepConv works in the time do-
main whilst DeepFFT works in the Fourier Domain,
and we can simply derive its general formulation from
Eq. 4 by adding an initial FFT computation block over
the input (i.e. BFFT). The new layer is placed before
every other block, as follows:

out = (FC ◦ B1 ◦ B2 ◦ · · · ◦ BNb
)(BFFT (X)) (6)

2.4 Implementation Details

We now discuss some details on our implementation
of the DeepConv and DeepFFT models.

We implemented the models using the PyTorch
framework (code is available at the following URL:
https://github.com/MatteoStefanini/
DeepVM).

Our implementation includes a pre-processing of
the input data. Specifically, we normalize the data to
have zero mean and unit variance in each channel. As
the initial stream of data is partitioned into several in-
put sequences with a length defined as the window W ,
we also leverage data augmentation techniques for se-
quences longer than 64 timesteps; specifically, we ap-
ply 75% overlay between sequences, so that we can
obtain more sequences for train and evaluation pur-
pose.

We also balance the data to have the same number
of samples within each class and we split the dataset
in three parts, train, validation and test sets, with the
chosen fractions of 0.7, 0.2 and 0.1, respectively, and

then used separately in the training, validation and test
phases of the models.

For the training phase we use the Cross Entropy as
loss function to evaluate the predictions of the mod-
els and back-propagate the error in training phase. In
all our experiments we use the Adam optimizer [10],
with default values, and, after a grid search on learn-
ing rate and weight decay hyperparameters, we found
that a learning rate of 0.0003 and weight decay of
0.0012 work well in most scenarios. A more detailed
sensitivity analysis with multiple scenarios, however,
is left as as an open issue to address as a future work.
We also reduce the learning rate by a factor of 0.6
when we observe that the validation loss does not de-
crease for 10 consecutive epochs.

After each training epoch, which is a pass over the
entire training set, we evaluate the model performance
in a validation phase (using the validation fraction of
the dataset). In our experiments, we train each model
for 110 epochs, observing that all models converge
within this range. The validation phase identifies the
best performing model that is used in the final perfor-
mance evaluation with the test data never used before.

3 Experimental results

Experiments were carried out using a dataset
owned by the University of Modena and Reggio
Emilia, consisting of eight real-world cloud virtual
machines, monitored for a few years and divided in
two classes: Web-server and SQL-server. The list of
metric fed into the classifier is provided in Table 2.
The experimental setup used is consistent with the
scenario described in [7]: in particular, the classes of
VMs and the metrics considered are the same.

Metric Description

SysCallRate Rate of system calls [req/sec]
CPU CPU utilization [%]

IdleCPU Idle CPU fraction [%]
I/O buffer Utilization of I/O buffer [%]
DiskAvl Available disk space [%]

CacheMiss Cache miss [%]
Memory Physical memory utilization [%]

UserMem User-space memory utilization [%]
PgOutRate Rate of memory pages swap-out [pages/sec]
InPktRate Rate of network incoming packets [pkts/sec]

OutPktRate Rate of network outgoing packets [pkts/sec]
InByteRate Rate of network incoming traffic [KB/sec]

OutByteRate Rate of network outgoing traffic [KB/sec]
AliveProc Number of processes in system
ActiveProc Number of active processes in run queue
RunTime Execution time

Table 2: Metrics used for VM classification.

In our experiments we aim to validate the ability

https://github.com/MatteoStefanini/DeepVM
https://github.com/MatteoStefanini/DeepVM

of the proposed model to provide an accurate identi-
fication of VMs based on their behavior. In particu-
lar, we consider our proposed models DeepConv and
DeepFFT compared with other state-of-the-art solu-
tions such as the AGATE technique [7] and a PCA-
based clustering solution that exploits the correlation
between the time series of the VMs metrics to char-
acterize the VMs behavior. The PCA-based cluster-
ing has been used as the best representative of tradi-
tional clustering technique in [7]. The main metric
in our analyses is the accuracy, that is the percent-
age of samples identified correctly by our classifier.
This metric has been used consistently in previous pa-
pers on VMs identification based on clustering, such
as [7]. However, in some cases we refer to the dual
metric, that is the classification error percentage. As
our goal is to provide a fast and accurate identification
of VMs, we consider important to evaluate how the
identification accuracy changes as a function of the
window length W . Specifically, in our experiments
W ranges between 4 and 256 timesteps, that in min-
utes correspond respectively to 20 and 1280 (slightly
more than 21 hours).

As a first result we provide an evaluation of the
two proposed models, shown in Figure 2. In partic-
ular, we show the accuracy achieved by the Deep-
Conv and DeepFFT models as a function of the win-
dow length W (we recall that W is measured in 5
minutes time steps). A first significant result of this
evaluation is the overall performance of the consid-
ered model. Looking at the data, we observe that
the accuracy of each model is always higher than
98.5%, that is a fairly good performance for this type
of problems (a quick comparison with the AGATE
technique, shows that both proposed models outper-
forms consistently AGATE). Even more interesting,
the DeepConv model achieves a perfect classification
of VMs, especially for short time windows, that is the
most interesting and challenging scenario because it
enables the identification in near real-time of a VM.
The DeepConv model worsen its performance as the
window increases, likely due to the increased model
complexity and the fixed size of convolutional ker-
nels. The DeepFFT model presents an opposite be-
havior, with performance improving as the window
grows. This effect can be explained by considering
that a longer time window provides more information
for the Fourier-transformed problem and the classifier
can work with a more consistent description of the
VMs behavior.

Having obtained a first assessment of the Deep
learning-based models, we compare our proposal
with state-of-the-art solutions for VMs classification.
In particular, we refer to the AGATE [7] technique

Figure 2: Models Accuracy.

and to the PCA-based clustering. For this comparison
we refer to the error percentage and, for the AGATE
technique, we also show the percentage of unclassi-
fied VMs (that are the VMs left in the gray-area for
additional data collection).

The results of the study are reported in Table 3
and in Figure 3. In particular, Table 3 shows the error
of the considered alternatives for a window W rang-
ing from 4 to 256 time steps. As we aim to refer as
closely as possible to the original results in [7], in the
results marked with a star (*), we approximate the re-
sults in hours with the closest possible window size.
Boldface characters are used to outline, for each value
of the window W , the best performing solution. We
observe that, as a general rule, the longer the observa-
tion window, the better each solution is performing.
For the PCA-based clustering, the percentage of er-
rors decreases from nearly 18% to roughly 15%. For
the AGATE solution the error percentage is not mono-
tone but remains in the range [1.8%, 2.4%]; however
we observe a clear reduction of the un-classified VMs
dropping from nearly 50% to nearly 19% as the win-
dow grows. The AGATE solution outperforms by one
order of magnitude the previous solutions. However,
the Deep learning-based models are a clear step ahead
compared to the AGATE technique. We observe that,
for every considered window the best performance are
achieved by a deep learning-based model. Further-
more, for small windows (i.e. W ≤ 8 time steps), the
DeepConv model achieves 0% errors with no need to
postpone any classification using the notion of a gray-
area.

Method 4 8 16 32 64 128 256

PCA-based - 17.9* 17.5* 16.1* 15.4* 15.2* 15.1*

AGATE error - 1.8* 2.8* 2.3* 1.9* 1.7* 2.4*
grey-area - 47.8* 41.1* 27.8* 22.3* 19.9* 18.7*

DeepFFT 1.32 1.24 1.45 1.04 0.79 0.53 0.43

DeepConv 0.00 0.00 0.03 0.64 0.76 1.27 1.17

Table 3: Error comparison with state-of-the-art.

Figure 3: Comparison with state-of-the-art.

The results in Table 3 are more clearly visible if
we refer to Fig. 3. The reduction of the gray area
(shown as a gray shadow in the figure) is quite ev-
ident and demonstrates how the AGATE technique
becomes more effective with time, while the amount
of errors (red line) remains in the order of few per-
centage points. On the other hand, the previously
proposed PCA-based clustering (the yellow line) is
clearly affected by an unacceptable amount of errors.
However, the two deep learning-based models (blue
and green lines) are a clear step ahead compared to
the existing techniques as they provide even lower er-
ror rate than the AGATE alternative, without using a
gray area.

4 Related work

The tasks of monitoring and managing Cloud data
centers in a scalable way has received lots of attention
over the last years [11, 12].

At the level of monitoring scalability, it is com-
mon to exploit aggregation and filtering techniques to
reduce the amount of data before sending them to the
data center controller.

When focusing on the monitoring of a Cloud in-
frastructure, scalability problems are typically ad-
dressed relying on some form of dimensionality re-
duction (e.g. filtering or aggregation) that occurs be-
fore sending data to the cloud management function.
Such dimensionality reduction is performed by ad-
hoc software, typically in the form of a library or im-
plemented as an data-collecting software agent. Ex-
ample of this approach are provided in [13, 14, 15,
16]. The actual aggregation policy may vary rang-
ing from extraction of high-level performance indi-
cators [14]; to obtaining parameters that aggregate
metrics from different system layers (hardware, OS,

application and user) using Kalman filters [13]; to a
simple linear combination of OS-layer metrics [15];
up to systems that extract data from both the OS and
the applications [16, 17].

The problem of cloud monitoring is addressed not
just by research proposals but also by full-featured
frameworks both commercial or open source (just to
give a few names, Amazon cloud Watch is a commer-
cial product, while MONASCA, the OpenStack mon-
itor is open source) However, the common limit of
these solution is that each object taken into account in
the monitoring process (either VM or physical node)
is considered as independent form every other ob-
jects. In doing so, these proposals fail to take advan-
tage form the similarities between objects exhibiting
a similar behavior.

The management of Cloud systems is another crit-
ical topic, where several papers have been published,
starting from the early examples based on the prin-
ciples of autonomic computing applied to the the
Cloud [18]. Another interesting example of Cloud
managment is represented by the Bobtail library [19],
that aims at supporting in each VM the identification
of placement problems that result in high communica-
tion latency. All these solutions rely on the assump-
tion that the cloud user is willing to install a specific
software layer on each VM, to overcome some lim-
itations of the IaaS vision of the cloud. Our focus
is completely different as we place no requirement
on the VMs user and we comply completely with
the IaaS vision. Other studies aiming at improving
the data center scalability have been proposed, such
as [5, 6, 20]. Our proposal can be integrated with
these solution to improve the scalability of the cloud
data center management.

Identifying similarities between VMs in a Cloud
infrastructure is the key problem of our research. Sev-
eral relevant works are discussed in the following.
The research in [21] aims at identifying similar VMs,
but the similarity detection is limited to storage re-
sources and its application scope is that of storage
consolidation strategies. Similarly, the study in [22]
investigates similarities of VMs static images used in
public cloud environments to provide insights for de-
duplication and image-level cache management. Our
approach focuses on a wider range of applications be-
cause we do not limit our analysis to a few resources
for a limited purpose, but we consider a robust and
general-purpose multi-resource similarity identifica-
tion mechanism. A similar focus on similarity de-
tection in VMs characterizes [7]. Such study aims
to address the trade-off between a fast identification
of VMs and its accuracy using an adaptive approach.
Our proposal addresses the same issue relying on a

deep learning approach that ensures a very fast and
accurate identification of the VMs.

Techniques derived from deep-learning have been
recently proposed to address problems in the field of
distributed infrastructure such as Cloud data centers
and Fog systems. For example, the authors of [23]
propose a deep reinforced learning technique for the
management of VMs allocation in Cloud data center.
Our proposal is completely orthogonal to the proposal
in [6] and can be integrated with a class-based ap-
proach leveraging the VMs identification proposed in
this paper. Another application of Deep-learning in
distributed system is related to anomaly or attack de-
tection. For example, [24] proposes a deep-learning
classifier for attack detection in a Fog system. While
the basis of their deep-learning approach are similar
to the ones in our proposal, to the best of our knowl-
edge, ours is the first attempt to use deep learning to
classify the behavior of VMs to support monitoring or
management purposes, rather than aiming to attack or
anomaly detection.

5 Conclusions and future work

In this paper we focused on the scalability prob-
lems of a Cloud infrastructure, aiming to enable the
adoption of solutions that improve scalability of mon-
itoring and management through a classification of
VMs that exhibit a similar behavior.

Existing solution for VMs clustering and classi-
fication are characterized by a trade-off between ac-
curate VMs identification and timely response. Pre-
vious proposals aiming to address this problem ex-
ploited the notion of a gray area. While this approach
is viable for the identification of VMs with a long
life span, it is hard to apply in cloud infrastructures
with on-demand VMs that are typically created and
destroyed in just a few hours.

This limitation motivates our proposal of a differ-
ent approach to the problem that, instead of an unsu-
pervised clustering, exploits classifiers based on deep
learning techniques to assign a newly deployed VMs
to a cluster of already-known VMs. We propose two
deep learning models for the classifier, namely Deep-
Conv and DeepFFT based on convolution neural net-
works and Fast Fourirer Transform.

We validate our proposal using traces from a real
cloud data center and we compare our classifiers with
state-of-the-art solutions such as the AGATE tech-
nique (that exploits a gray area to adapt the observa-
tion time of each VM so that uncertainly classified
VMs are not immediately assigned to a group) and
a PCA-based clustering solution. The results con-

firm that the deep learning models consistently out-
performs every other alternative without the need to
introduce a gray area to delay the classification. Even
more interesting, the proposed classifiers can provide
a fast and accurate identification of VMs. In partic-
ular, the DeepConv model provides a perfect classi-
fication with just a 4 samples of data (corresponding
to 20 minutes of observation), making our proposal
viable also to classify on-demand VMs that are char-
acterized by a very short life span.

This paper is just a preliminary work in a new
line of research that aims to apply deep learning tech-
niques to the problems of cloud monitoring and man-
agement. Future works will focus on a more thorough
evaluation of the proposed models, with additional
sensititiy analyses with respect to the models parame-
ters; on the proposal of additional classification mod-
els; and on the application of Generative Adversarial
Networks to improve the quality of VMs identifica-
tion in cases where the quality of data is lower than in
the considered example (i.e., due to reduced number
of metrics and presence of sampling errors).

REFERENCES

[1] Taneja Group, “Apache spark mar-
ket survey,” Cloudera inc., Tech.
Rep., 2018. [Online]. Available:
http://tanejagroup.com/profiles-reports/request/
apache-spark-market-survey-cloudera-sponsored-research

[2] J. Varia, “The total cost of (non) ownership
of web applications in the cloud,” Ama-
zon inc., Tech. Rep., Aug. 2011. [Online].
Available: https://media.amazonwebservices.
com/AWS TCO Web Applications.pdf

[3] J. Whitney and P. Delforge, “Data cen-
ter efficiency assessmenty – scaling up en-
ergy efficiency across the data center in-
dustry: Evaluating key drivers and barri-
ers,” NRDC, Anthesis, Tech. Rep., 2014,
– http://www.nrdc.org/energy/files/data-center-
efficiency-assessment-IP.pdf.

[4] G. Porter and R. H. Katz, “Effective Web ser-
vice load balancing through statistical moni-
toring,” Communications of the ACM, vol. 49,
no. 3, pp. 48–54, Mar. 2006).

[5] C. Canali, L. Chiaraviglio, R. Lancellotti, and
M. Shojafar, “Joint minimization of the energy
costs from computing, data transmission, and
migrations in cloud data centers,” IEEE Trans-
actions on Green Communications and Net-
working, vol. 2, no. 2, pp. 580–595, June 2018.

http://tanejagroup.com/profiles-reports/request/apache-spark-market-survey-cloudera-sponsored-research
http://tanejagroup.com/profiles-reports/request/apache-spark-market-survey-cloudera-sponsored-research
https://media.amazonwebservices.com/ AWS_TCO_Web_Applications.pdf
https://media.amazonwebservices.com/ AWS_TCO_Web_Applications.pdf

[6] C. Canali and R. Lancellotti, “Exploiting
Classes of Virtual Machines for Scalable IaaS
Cloud Management,” in Proc. of IEEE Sympo-
sium on Network Cloud Computing and Appli-
cations (NCCA), Munich, Germany, Jun. 2015.

[7] ——, “Agate: Adaptive gray area-based tech-
nique to cluster virtual machines with similar
behavior,” IEEE Transactions on Cloud Com-
puting, pp. 1–1, 2018.

[8] D. Durkee, “Why cloud computing will never
be free,” Queue, vol. 8, no. 4, pp. 20:20–20:29,
Apr. 2010.

[9] S. Ioffe and C. Szegedy, “Batch normal-
ization: Accelerating deep network training
by reducing internal covariate shift,” CoRR,
vol. abs/1502.03167, 2015. [Online]. Available:
http://arxiv.org/abs/1502.03167

[10] D. P. Kingma and J. Ba, “Adam: A
method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[11] G. Aceto, A. Botta, W. De Donato, and
A. Pescapè, “Cloud Monitoring: A Survey,”
Computer Networks, vol. 57, no. 9, pp. 2093–
2115, Jun. 2013.

[12] A. Beloglazov, R. Buyya, Y. C. Lee, and
A. Zomaya, “A taxonomy and survey of energy-
efficient data centers and cloud computing sys-
tems,” in Advances in Computers, Volume 82,
M. Zelkowitz, Ed. Academic Pres, 2011.

[13] R. Mehrotra, A. Dubey, S. Abdelwahed, and
W. Monceaux, “Large scale monitoring and on-
line analysis in a distributed virtualized environ-
ment,” in Proc. of 8th IEEE International Con-
ference and Workshops on Engineering of Au-
tonomic and Autonomous Systems, Las Vegas,
USA, April 2011, pp. 1–9.

[14] J. Shao and Q. Wang, “A Performance Guar-
antee Approach for Cloud Applications Based
on Monitoring,” in Proc. of IEEE 35th Annual
Computer Software and Applications Confer-
ence Workshops, Munich, Germany, July 2011,
pp. 25–30.

[15] F. Azmandian, M. Moffie, J. Dy, J. Aslam, and
D. Kaeli, “Workload characterization at the vir-
tualization layer,” in Proc. IEEE Int. Symposium
on Modeling, Analysis Simulation of Computer
and Telecommunication Systems (MASCOTS),
Singapore, July 2011.

[16] A. Kertesz, G. Kecskemeti, M. Oriol, P. Kot-
cauer, S. Acs, M. Rodrguez, O. Merc,

A. Marosi, J. Marco, and X. Franch, “Enhanc-
ing Federated Cloud Management with an Inte-
grated Service Monitoring Approach,” Journal
of Grid Computing, vol. 11, no. 4, pp. 699–720,
2013.

[17] M. Andreolini, M. Colajanni, and S. Tosi, “A
software architecture for the analysis of large
sets of data streams in cloud infrastructures,”
in Proc. of 11th IEEE Conference on Computer
and Information Technology (IEEE CIT 2011),
Cyprus, Aug.-Sept. 2011.

[18] R. Buyya, R. N. Calheiros, and X. Li, “Auto-
nomic Cloud computing: Open challenges and
architectural elements,” in Proc. of 3rd Interna-
tional Conference on Emerging Applications of
Information Technology, EAIT 2012, 2012, pp.
3–10.

[19] Y. Xu, Z. Musgrave, B. Noble, and M. Bai-
ley, “Bobtail: Avoiding long tails in the cloud,”
in Proc. of the 10th USENIX Conference on
Networked Systems Design and Implementation
(NSDI), Lombard, IL, Apr. 2013.

[20] C. Mastroianni, M. Meo, and G. Papuzzo,
“Probabilistic consolidation of virtual machines
in self-organizing cloud data centers,” Cloud
Computing, IEEE Transactions on, vol. 1, no. 2,
pp. 215–228, July 2013.

[21] R. Zhang, R. Routray, D. M. Eyers et al., “IO
Tetris: Deep storage consolidation for the cloud
via fine-grained workload analysis,” in IEEE Int.
Conf. on Cloud Computing, Washington, DC
USA, July 2011.

[22] K. R. Jayaram, C. Peng, Z. Zhang, M. Kim,
H. Chen, and H. Lei, “An empirical analysis of
similarity in virtual machine images,” in Proc. of
the Middleware 2011 Industry Track Workshop,
ser. Middleware’11. Lisbon, Portugal: ACM,
2011, pp. 6:1–6:6.

[23] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu,
J. Tang, and Y. Wang, “A hierarchical frame-
work of cloud resource allocation and power
management using deep reinforcement learn-
ing,” in 2017 IEEE 37th International Con-
ference on Distributed Computing Systems
(ICDCS), June 2017, pp. 372–382.

[24] A. A. Diro and N. Chilamkurti, “Distributed at-
tack detection scheme using deep learning ap-
proach for internet of things,” Future Genera-
tion Computer Systems, vol. 82, pp. 761–768,
May 2018.

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1412.6980

