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Abstract—Next-generation real-time systems will be increas-
ingly based on heterogeneous MPSoC design paradigms, where
predictability and performance will be key issues to deal with.
Such issues can be tackled both at the hardware level, by
embedding technologies such as TDMA busses, and at the
OS level, where suitable scheduling techniques can improve
performance and reduce energy consumption. Among these,
elastic scheduling has been proved to provide satisfactory
results by dynamically reducing task periods at run-time to
ensure the highest utilization possible of the processors. On the
other hand, elastic scheduling lowers the degree of predictability
and increases the complexity of the analysis at the system
level. This reduces the benefits given by the TDMA bus, which
relies on the high level task analysis for a robust and efficient
slot allocation. Starting from this consideration, we propose
a system where the elastic scheduling and the TDMA bus
work synergistically. We introduce a QoS-aware adaptive bus
service which takes the best of both techniques, mitigating
their drawbacks at the same time. We show how the overhead
introduced by coordination action is small, and it is however
dominated by the benefits of the overall strategy in terms of
performance and predictability guarantees.

I. INTRODUCTION

Key concerns in real-time applications are safety, quality

and cost. System architectures targeting industrial sectors

like automotive, medical and avionics need to provide strong

guarantees in terms of predictable behavior and reliability.

Multiprocessor systems-on-chip (MPSoC) will be increas-

ingly used in these application domains to meet the tight

cost and energy efficiency constraints. Future platforms will

indeed embed several general purpose processors and few

dedicated HW coprocessors for those critical functions re-

quiring high performance levels [1].

Predictability and modularity of such MPSoCs are still

an open issue in the research community [2]. The key

challenge is mainly represented by the shared hardware

resources, such as the system interconnect. The system bus

is shared among multiple communication actors (cores, IOs,

accelerators, etc.) thus introducing contention which leads

to potentially unpredictable response times. The scenario of

simple systems with only one bus master can be precisely

analyzed. However, more masters contend for bus access, the

more difficult it is to analyze the traffic on the bus and the

more conservative will be the bounds on latency that can be

guaranteed. This situation becomes even worse considering

sporadic task activations.

TDMA-based bus arbitration is frequently used in current

MPSoC architectures to obtain a predictable system [3],

[4], [5], [20]. TDMA slot dimensioning is one of the most

important parameters in this case, since the bus has to guar-

antee the satisfaction for the bandwidth required by every

task running on the platform. However, real-time applications

are becoming increasingly complex. Tasks running on CPUs

generate heterogeneous traffic patterns with different level

of priorities and real-time requirements, which make the

analysis of the entire system very complex. The problem

of TDMA slot dimensioning has been already tackled in the

real-time community, but all of these solutions are based on

a top-down approach which assumes a calibrated, accurate

model of the overall system. Obtaining a good abstraction

of both hardware and software is very difficult and costly,

and it requires a high standard of modelling experience and

validation.

The increased hardware complexity and the plurality of the

external inputs that could modify the execution pattern effect

the worst case execution time (WCET) analysis producing

very pessimistic results. Sometimes it is preferred to relax

some bounds and manage an infrequent overload condition

with a specific support. The most well known techniques

include: the possibility to split the job in a mandatory and

an optional part [6], [7], the possibility to skip some jobs

following a predefined rule [8], and the expansion of tasks

periods [9], [10] (the so-called Elastic Scheduling). These

techniques reduces the workload on a single core, but a multi-

core scenario, they have also impact on the behaviour of

the entire system due to inter-dependencies between the task

and cores. These dependencies can both be explicit, due for

instance to control flow and synchronization between tasks,

and implicit, such as shared resource contention. This makes

an off-line WCET analysis very complex and in RT systems

may result in a loss of performance.

The main contribution of this paper is represented by a

novel solution to the problem of TDMA slot dimension-

ing. Our target platform is a multiprocessor system-on-chip

composed by general-purpose cores. The considered TDMA

slot scheduling is a periodic wheel with one slot for each
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master in the system. We propose a new system where the

Elastic Scheduling and the TDMA bus work synergistically

to ensure the highest utilization of the processors even in

case of dynamic variations of the workloads at run-time.

When a processor is subject to a workload change it makes

a request to adapt its share of bus bandwidth. A layer

is needed to mediate all the requests, and we adopted a

centralized approach, where a master core is appointed to

collect all requests and compute a fair redistribution of the

bus. Based on the new bus allocation, each core uses the

elastic algorithm to reach the desired utilization.

Different and complex algorithms have been proposed in

related works, but none of them is at the same time dynamic

and application QoS-aware.

This paper is organized as follows. Section II gives an

overview on related works. In Section III the target ar-

chitecture is described and elaborated. Section IV presents

the proposed algorithm for TDMA slots assignment and

task scheduling. In Section V, the proposed virtual platform

environment is described. Section VI presents and analyzes

the experimental results of our design space exploration.

Finally, Section VII presents the conclusions.

II. RELATED WORKS

Although TDMA is a widely adopted technology in MP-

SoCs, dynamic reconfiguration and run-time re-allocation

of the time slots for shared resources access (being them

shared busses, memories or other) were not intensively

studied. On the other hand, some interesting works on more

general approaches (for instance, involving other arbitration

schemas) can be found.

In [11] a ring-based infrastructure for a programmable

fixed priority arbiter is shown. The priority at which requests

are processed is driven via directly programmable control

registers. This is a good and lightweight solution and a

similar approach can be also found in [12], where authors in-

troduce a very general register based architecture for TDMA

communication infrastructure, as well as an algorithm for

efficiently programming the hardware registers.

In [13], a pure dynamic TDMA bus (called dTDMA)

architecture is shown. Authors propose a reactive slot alloca-

tion occurring whenever a new request of the shared resource

is issued. Their schema provides a fair allocation (i.e. each

requestor is given the same bandwidth) and thus ensures a

good predictability level of the entire communication system.

On the other hand it is not suitable for our purposes since

the arbiter is not aware of QoS needs. At the same time is

at a really fine temporal grain, thus introducing an overhead

we can not tolerate.

Authors in [14] used an additive bus model which can

be applied with relatively good approximations only if the

bus load is kept below a certain threshold. Even in the case

of such low bus utilization, no strong guarantees regarding

QoS can be provided. Authors in [15], [16], [17] presented

several bus access optimizations for enhancing predictability

in MPSoCs, but none of them has been demonstrated and

validated on a real platform target, hence their modeling

abstractions have not been fully validated.

Support for variable workload and management of over-

load conditions has been studied in the real-time community

for a long time. Different approaches have been proposed

to suit different application fields and to meet particular

constraints. Among the others, the mostly adopted are:

• Imprecise computation: Each job is divided in a manda-

tory part ad an optional one. The optional part can be

skipped if the core workload exceeds a certain threshold.

[6] [7]

• Job skipping: It is possible to reduce the workload by

skipping some job instance in each task. Hamdaoui et

al. [8] propose an algorithm that does this in a fair way

and at the same time guarantees a minimum number m

of job instances in a windows of k periods.

• Elastic task scheduling: The last technique is based

on the modification of task periods. Authors in [18]

proposed an algorithm that manages periods in the

taskset like a set of springs.

However, all these approaches are based on a fixed platform

giving only one possible WCET for each task and work in

order to reduce the workload on a single core. Investigation

on the possibility to spread the overload among cores redis-

tributing the the access on the shared resources, like the bus,

has not been done yet.

III. TARGET ARCHITECTURE

Future real-time architecture systems will be Multiproces-

sor System-on-Chip (MPSoCs) composed, among the others,

by the following building blocks:

1) Several processing units with very simple micro-

architecture (i.e. with no branch prediction or multi-

threading), with both instruction and data caches;

2) A highly predictable interconnection, such as a

TDMA-based shared bus or NoC, which at the same

time can provide the performance required by applica-

tions.

As regards as the software layer, each core has its ded-

icated application and real time OS image in its private

memory. This architecture depicts the scenario of highly

CPU 0

CPU 3

CPU 1

CPU 2

Assigner

Bus request

Bus request

Bus request

Bus request

Bus assignment

Bus assignment

Bus assignment

Bus assignment

Bus ArbiterTDMA wheel

Fig. 1. Algorithm communication structure
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Fig. 2. Bus bandwidth assignment algorithm

parallelized applications, where large amounts of data are

elaborated distributing the workload on multiple symmetric

cores. Moreover, we assume the presence of sporadic tasks

activated by external interrupts due to the interaction with

sensors or users. This makes the overall system increasingly

complex as the number of cores grows. The static analysis

is no longer efficient and the overall elastic scheduling

approach deteriorates its performance, lowering the benefits.

IV. BUS BANDWIDTH ASSIGNMENT ALGORITHM

The algorithm presented in the paper works as a bridge be-

tween hardware and software in order to allow an assignment

of the bus which is aware of the core QoS requirements. The

communication structure is presented in Figure 1. Due to its

boundary position, the Assigner could be implemented both

in hardware or in software. We consider the latter situation.

In Figure 2 we show the algorithm in details. During

system execution, a core may face a need for extra bus band-

width, due for example to workload changes or to activation

of sporadic tasks. Consequently the core asks the Master

Core of the system for a certain (typically higher than the

current) service level (Ri) for communication. The algorithm

supports a discrete number of service levels (they are shown

in Table I), each service level corresponds a certain bus

bandwidth percentage. Clearly, the relation between service

levels and bus bandwidth depends on to the number of cores

in the platform and it is calculated off-line. At predefined

instants, the Master fetches all new bus bandwidth requests

coming from the other cores, mediates between them and

recomputes the percentage (Si) of the bus assigned to each

0 ZERO 4 HIGH

1 MINIMUM 5 MAXIMUM

2 LOW 6 EXTREME

3 MIDDLE

TABLE I

SERVICE LEVELS

core as

Si =
Ri

∑RI

(1)

and then generates a new Time Wheel. Clearly, the TDMA

slots are set in order to assign the computed bus bandwidth to

the cores. Our algorithm is not guaranteed to find the optimal

solution but rather a fair tradeoff betweeen all requests, being

at the same time extremely efficient and lightweights. The

actual service level may be different (i.e. lower) than the one

requested if multiple requests happen at the same size since

the algorithm mediates between all of them. Moreover, a core

performing no request may see its service level changing as

an effect of a new scheduling due to other cores requests.

Then, the new Time Wheel is loaded in the Bus Arbiter and

the new service levels are notified to the cores.

Since this change implies a variation in tasks execution

times, task periods have to be recomputed according to the

Elastic Scheduling algorithm (described in Section V-A),

using as input the WCETs of the task-set. It is important to

remark that TDMA-wheel switching does not compromise

the feasibility of a task-set running in a core characterized

by a short TDMA slot assignment. In fact the actual task

parameters (i.e. elastic constants, Tmin, Tmax and the deadline

equal to the period) are defined off-line, in such a way to

guarantee a feasible solution to the algorithm in all possible

scenarios.

The WCETs depend on the bus bandwidth assigned to the

core, so they also have to be recomputed. The complexity

of WCET analysis techniques makes unfeasible to do this

at run-time, so they are computed offline and stored inside

a lookup table (LUT) to make them available to the cores.

This storage area has to fill the smallest possible space. This

is obtained providing only WCETs for the limited number

of service levels and imposing a quantization to the values

obtained with Equation 1.

The LUT size is a tradeoff between the memory space used

and the obtained bandwidth granularity. Increasing the num-

ber of levels allows the algorithm to better fit cores requests

and leads to a solution with an higher quality of service.

On the other hand, each extra level means an increasing

in the algorithm overhead, that is we need more space for

storing information and a higher computational effort for

execution times calculation. A fair tradeoff already happens

with a small number of levels. With the hardware used in

the experiments that will be presented, we empirically found

7 as an adequate value by a preliminar set of experiments.

After chosing the number of allowed bandwidth assign-

ments (that is, the number of rows in the table), there are

several options for dimensioning their values. The simplest

is based on homogenousity: divide the valid bandwidth range

by the number of elements. More sophisticated approaches

minimize a defined metric: an example could be the aggre-

gated bandwidth waste, i.e. is the sum of all quantization

losses. In this work we adopted the homogeneous bandwidth

division. Each row is composed by the WCETs of all tasks

working with the selected bus bandwidth assignment. The

WCET values can be obtained using a static code profiler
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and analysis tool such as [19].

Once the WCETs have been loaded, tasks periods can

be accordingly adjusted to meet real-time requirements and

tasks can be now scheduled. The overall approach gives

two main benefits: first the bus TDMA allocation is QoS-

aware and secondly the OS scheduler can take more accurate

decisions based on the bounds given by the dynamic TDMA

arbitration policy.

V. ROBUST RECONFIGURABLE RT PLATFORM

In [20] a functional model of the target architecture

described in Section III was developed for enabling in-

depth architectural exploration. All cores are 32-bit ARM-

based with an associated L1 cache. They are connected to

a shared L2 memory via the shared bus. The L2 memory

is segmented, i.e. there is a private portion associated to

each core and a shared portion they can use for commu-

nication or data passing. An interrupt device is provided

as well as a semaphore memory, a special memory device

capable of test-and-set read operations. The latter is used for

synchronizing concurrent accesses to shared resources, while

the former provides the capability of efficiently propagating

notifications/events in the system. The full architecture is

shown in Figure 3. The communication bus is modelled

Fig. 3. Reference architecture

at transactional level (TLM) and takes into account features

of modern high-performance communication buses (such as

AMBA AXI [21] or ST StBus Protocol [22], [23]), namely

the capability of supporting burst interleaving, multiple out-

standing transactions and split transfers. The bus model

is packet-based, i.e. a ”transaction” on the interconnect is

composed by several packets. A functional TDMA arbiter is

implemented. It loads the so-called Time Wheel (in literature

it is also referred to as Slot Table) from a text file. The Time

Wheel contains all the information on a single TDMA Round

and unrolls over the time line, repeating infinitely during the

entire simulation.

As regards as the software running on the simulated hard-

ware platform, it is possible to run stand alone (i.e. without

the support of an OS) or ERIKA OS-based applications.

ERIKA is an open-source (GPL2) multi-processor real-time

operating system (RTOS) kernel, implementing a collection

of Application Programming Interfaces similar to those of

OSEK/VDX standard [24] for automotive embedded con-

trollers. ERIKA is available for several hardware platforms

and introduces innovative concepts, real-time mechanisms

and programming features to support and exploit the micro-

controllers and multicore systems-on-a-chip. With multipro-

cessor hiding, it is possible to seamlessly migrate application

code from a single processor to multiprocessors without

changing the source code. Retargeting an application from

single to multiprocessor architectures only requires minor

modifications at the configuration files, but allows retaining

the source code. The main ERIKA features related to this

work are: task scheduling according to fixed and dynamic

priorities; interrupt handling for urgent peripherals operation

(interrupts always preempt task execution); resource sharing

with Immediate Priority Ceiling protocol.

A. Software support to dynamic bus assignment

To cope with overload conditions we extended the ERIKA

scheduling support adding an implementation of the Elastic

scheduling algorithm [18] where each task is considered

as flexible as a spring, whose utilization can be modified

by changing its period within a specified range. More

specifically, each task is characterized by four parameters:

a worst-case computation time Ci, a minimum period Timin
(considered as a nominal period), a maximum period Timax ,

and an elastic coefficient Ei. The elastic coefficient specifies

the flexibility of the task to vary its utilization for adapting

the system to a new feasible rate configuration: the greater

Ei, the more elastic the task. In the following, Ti denotes

the actual period of task τi, which is constrained to be in

the range [Timin ,Timax ]. Moreover, Uimax =Ci/Timin and Uimin =
Ci/Timax denote the maximum and minimum utilization of

τi, whereas Umax = ∑n
i=1Uimax and Umin = ∑n

i=1Uimin denote

the maximum and minimum utilization of the task set. The

algorithm works on top of different scheduling algorithms

with both static and dynamic priorities. For simplicity, in

this paper tasks are scheduled by the Earliest Deadline First

algorithm [25]. Hence, if Umax <=Ud <= 1, all tasks can be

created at the minimum period Timin , otherwise the elastic

algorithm is used to adapt the tasks periods to Ti such

that ∑
Ci
Ti

= Ud ≤ 1, where Ud is some desired utilization

factor. It can easily be shown (see [18] for details) that a

solution can always be found if Umin ≤Ud . If Γ f is the set

of tasks that reached their maximum period (i.e., minimum

utilization) and Γv is the set of tasks whose utilization can

still be compressed, then to achieve a desired utilization

Ud <Umax each task has to be compressed up to the following

utilization:

∀τi ∈ Γv Ui =Uimax − (Uvmax −Ud +U f )
Ei

Ev

(2)

where

Uvmax = ∑
τi∈Γv

Uimax (3)

U f = ∑
τi∈Γ f

Uimin (4)

Ev = ∑
τi∈Γv

Ei. (5)

If there exist tasks for which Ui <Uimin , then the period of

those tasks has to be fixed at its maximum value Timax (so

190



that Ui = Uimin), sets Γ f and Γv must be updated (hence,

U f and Ev recomputed), and equation (2) applied again to

the tasks in Γv. If there exists a feasible solution, that is,

if the desired utilization Ud is greater than or equal to the

minimum possible utilization Umin = ∑n
i=1

Ci
Timax

, the iterative

process ends when each value computed by equation (2) is

greater than or equal to its corresponding minimum Uimin .

B. Programmable TDMA Arbiter

From the implementation point of view, the main task of

this work is the development of a communication protocol

to let the simulator infrastructure aware of application level

quality-of-service requirements. To achieve this goal, we

extended the existing TDMA bus arbiter to be directly

programmable at application level. This feature is split in an

hardware and a software part and, according to this approach,

the implementation process itself was split in two parts:

1) The definition of a high-level protocol for TDMA

Wheel switching and the implementation of the

APIs/system calls for the communication between the

application layer and the simulation infrastructure.

These low-level software calls must not introduce a

significant overhead.

2) The extension of the existing arbiter model by em-

bedding the state registers and implementing the cor-

responding handling logics, TDMA Slots updating

and the Time Wheel loading (updates being applied)

mechanisms.

Figure 4 gives an overview of how this new feature works

and how it was implemented As shown, it is possible

Fig. 4. Programmable TDMA Arbiter dual HW/SW structure

to set dynamically the size of a time slot (expressed in

nanoseconds) via a call to the set tdma wheel slot, which

accepts also the ID of the master which is involved. When

all the slots have been loaded, the entire table is marked as

”loadable” via a call to the load tdma time wheel function

and it will be loaded as the period of the old table expires.

Of course a function is provided to read the value of the slot

that was just written. If no value is set for the new slot of a

certain master, we assume the previous value still holds, and

it will be copied ”as is” in the new table. When a new table

is loaded, an event is propagated in the system so to notify

the change to the cores. This event is an interrupt call.

C. Communication support

Since the protocol implies high level coordination and

communication between the cores, a support mailbox-like

software feature was implemented. Two separate mailboxes

were implemented (according to a request/grant protocol)

and they reside in the shared portion of the L2 memory.

When a processor needs more bandwidth it sends a request to

the master processor a writing the desired service level in its

Request Mailbox (req mailbox write). A soon as the master

fetches (call to req mailbox read) and serves the request,

it writes back in every core-associated Response Mailbox

the assigned service level via a call to res mailbox write

so that the core can fetch the actual value via a call to

res mailbox read. The Time Wheel programming protocol

and the communication infrastructure previously described

must be as light as possible i.e. shall not introduce too

much overhead. This is the reason why we write in the

arbiter registers the Time Slot sizes expressed as nanoseconds

instead -for instance- as bandwidth percentage. Since this is

exactly the internal arbiter representation, it implies no other

transformation/processing and can be instantly handled with

no additional overhead. Again, the communication protocol

consists on a single write operation, followed by a read after

the interrupt notifies that the table was loaded. These are

very lightweight operations and are slightly influenced by

the TDMA scheduling even in case the working core was

assigned a low bandwidth on the bus.

VI. EXPERIMENTAL RESULTS

For the experimental setup we consider a task-set com-

posed by avionics tasks, automotive tasks and memory

intensive access tasks. For the avionics case we adopt the

Matlab U.S. Navy’s F-14 Tomcat aircraft control task [26]

that guarantee the aircraft to operate at a high angle of attack

with minimal pilot workload; as automotive task we have

chosen the coremark [27], a well known and widely used

benchmark in the domain of embedded systems; finally a task

that performs mathematic operations such as summation and

characterized by intensive memory access. Each task-set is

composed by a combination of these tasks, EDF is chosen as

scheduling policy and no precedence constraints nor critical

section has been considered between tasks.

Figure 5 show the behavior of a system composed by

2 cores: CPU0 is the master core and CPU1 is the slave

one. Three tasks run on each core. The y-axis reports the

computation time of each task while the x-axis reports

the current time. Approximatively between 100 and 200

millisecond a request of additional TDMA slot bandwidth

is requested by CPU1. This request is equal to the HIGH

level among the service levels available; CPU0 does not

request for additional bandwidth. Such a request lead to a

rebalancing of TDMA bus slots by the master core. Starting

from this moment the computation time of each task running

on CPU1 improves while the corresponding one on CPU0 get
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worse. The request, triggered by the third job of the avionics

task running on CPU1, is made between 100 and 200

millisecond and the advantages for the CPU1 can be already

appreciated in the fourth job for avionics and automotive

tasks, and from the third job in case of the mathematical

task.

Under these conditions, the task-set experiences a variable

range of computation times: from 2 milliseconds for the

avionic task up to 15 millisecond for the mathematical

task. We performed measurements to catch the overhead

introduced by our algorithm on the avionic task. The average

overhead introduced is less than 5% of the computation

time of the task itself. This overhead can be divided in

a negligible (less than 5 microseconds) part we spent for

the OS context-switch, while the majority of it is equally

spent by the elastic manager to collect cores requests and

accomplish task period variations, and to update the TDMA-

wheel reallocation, i.e writing of the new values in arbiter

registers and triggering the table switch. Moreover, the code

to accomplish these tasks could be further optimized: for

instance, the calculation of the new task periods has no FPU

support which could instead provide a further improvement

of the overall performance. However, even this not optimized

version of the code has an execution time which is less than

100 times the basic context switch.

Fig. 6. Task Period Variations [Cycles] (Number of cores: 3).

A. Bus Access Time and Periods

In Figure 6 we show the variation of task periods. This

is the case for three cores and three tasks for each core.

As usual, CPU0 represents the master core while CPU1 and

CPU2 are the remaining slaves that compose the systems.

The amplitude of the histogram bars indicates the periods of

the tasks and they are collected in three clusters, one for each

CPU. Inside each cluster it is possible to appreciate the value

of each task period corresponding with the old (on the left),

requested (on the right) and actual (in red) service level.

The system starts with a fairly distributed level of service

equal to LOW, the corresponding TDMA slot assignment

is 33% for each CPUs. This scenario is represented by the

first set of bars inside each cluster. The second set of bars

inside each cluster shows that CPU1 and CPU2 ask for

additional bus bandwidth, respectively an EXTREME and

a HIGH level of service, while CPU0 (master core) makes

no requests. According with this set of requests, the master

core assigns the Time Wheel the following way: MINIMUM

(11%) for itself, HIGH (55%) for CPU1 that ask for the

highest level of service and LOW (33%) for the CPU2. Note

that with this particular combination of requests CPU2 is

not able to improve its bandwidth and, despite of its request,

it holds the initial percentage of TDMA bandwidth. This

case has been deliberately chosen to highlight that requests

for additional bandwidth must be considered as part of the

whole set of demands coming from all CPUs. Figure 7

Fig. 7. Bus Access Time Percentage Improvements.

provides an exhaustive representation of the system response

in terms of bus access time as a function of the number

of CPUs and service level requested. For each measure, the

values are normalized over the case with the same number of

CPUs and the service level equal to MIDDLE. As usual we

evaluate a system characterized by a composite task-set and

we collect the response of a single measured CPU, that ask

for different service level, in a multiprocessor context with

variable number of CPUs. The service level of the analyzed

CPU starts from MIDDLE up to EXTREME, while the

whole number of cores that compose the system varies from

two up to five. The system starts with a fair bus assignment

192



(MIDDLE service level) to the CPUs. The only CPU licensed

to ask for different service level is the measured CPU, the

remaining ones hold the initial service level (MIDDLE). The

figure shows the improvements experienced by the measured

CPU: the access time decrease if the number of CPUs or the

service level requested increase. This trivial result is shown

with the purpose of quantifying the advantage in terms of

latency for the each bus access from the single CPU point

of view, compared to the case of a static and fair assignment:

same bandwidth for each CPU.

B. Quality of Control index

In control applications the performance of a periodic

control task is a function of the activation period. Increasing

the task activation period leads to a performance degradation,

which is typically measured through a Performance Index

J(T ) [10], [28]. Often, instead of using the performance

index, many algorithms use the difference ∆J(T ) between

the index and the value of the performance index J∗ of

the optimal control. Many control systems belong to a

class in which the function expressing the degradation is

monotonically decreasing, convex and can be approximated

as

∆J(Ti) = αie
−

βi
Ti

where the magnitude αi and the decay rate βi characterize the

single task. The evaluation of the whole task set is computed

as

∆J =
n

∑
i=1

wi∆J(Ti) =
n

∑
i=1

wiαie
−

βi
Ti

where the wi are used to characterize the relative importance

of the tasks.

To have a common scale for all task sets, the Quality of

Control index used in this paper is expressed as

QoC =
∆Jnom

∆J
. (6)

where ∆Jnom is the value of the index calculated when tasks

run at their nominal periods. A value of 1 means that all

tasks are running with nominal periods.

All coefficients αi and wi are set to 1 for simplicity, while

βis are set to 20 in order to use the whole range [0,1] of the

QoC index.

Taking the previous example (shown also in Figure 6), the

values of ∆J for CPU0 changes from 2.4 to 2.6 due to the

Time Wheel variation. In Table II are presented the value of

QoC for different approaches computed for the same example

and normalized over the difference betweenJtmax and Jtmin .

where QoCtmin is the best possible QoC (∆Jnom) obtained with

a set of CPUs each with a dedicated bus. This case represents

the virtual upper bound, but it is not really experienced,

because we are working in a multiprocessor environment

with shared communication bus; QoCdyn is obtained adopting

our run-time algorithm; QoC f air is the result of a fair TDMA

scheduling, where all the slots have the same size. This is

also the starting point in our experiments, before the slot and

task periods are modified. QoCminbwd is a virtual QoC in case

∆QoCtmin 1.0000

∆QoCdyn 0.7067

∆QoC f air 0.6947

∆QoCminbwd 0.6357

∆QoCtmax 0.5925

TABLE II

QOC INDEXES.

each core is assigned a low bandwidth (10% of the TDMA

Round). This situation is typical of systems where each CPU

must guarantee the timing constrains even with a small static

slot assignment. Finally, QoCtmax is the QoC provided by

the system if the longest allowed period is chosen for each

task on every CPU. Table II shows that a system with the

capability to dynamically adjust TDMA slots is able, starting

by a fixed TDMA allocation, to have an improvement from

27% up to 31% of the QoC index. Moreover, the introduced

overhead has negligible effect on the QoS (as prevoiusly said,

in the average case it is around 5% of the computational time

for the fastest task). On the contrary, a system characterized

by a standard TDMA slot assignment is forced to operate

with QoCminbwd , due to a lower bus-access-time.

VII. CONCLUSIONS

In this paper we presented an algorithm for the sizing

of TDMA slots for concurrent bus accesses and task pe-

riod dimensioning. The target architectures are RT MPSoCs

where running tasks face unpredictable situations (external

interrupts, interaction with users) and thus the standard off-

line WCET analysis techniques are no longer efficient. This

results in a loss of accuracy and consequently a loss of

performance both of the TDMA bus scheduling and Elastic

Scheduling, which cannot work at their best. We proposed a

system where the shared bus arbiter works in coordination

with the Elastic Scheduling algorithm of the OS, so both the

TDMA Time Wheel and task periods are adjusted at run-time

to meet the performance constraints. The algorithm is aware

of task-level QoS requirements, thus it efficiently handles

run-time task workload changes. The overhead introduced by

the coordination needed is kept low. The overall approach

was validated on an accurate virtual platform running real

RT benchmarks and results in a performance improvement

according to very well know indexes.
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