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1 Introduction

Since the influential works of Z. Bern and D.A. Kosower [1], and M.J. Strassler [2], the

worldline formalism has developed into a useful method for computing scattering ampli-

tudes and effective actions in quantum field theory [3]. In particular, this formalism is

suitable for studying the effects of quantum fluctuations of matter fields on curved space-

times. First, a worldline representation for the effective action on an arbitrary gravitational

background has been set up for scalar [4] and fermionic [5] fields. Later, the case of a vector

field has been addressed in [6], where — more generally — the first Seeley-DeWitt coeffi-

cients for an antisymmetric tensor of arbitrary rank have been computed. Seeley-DeWitt

coefficients for higher-spin fields on conformally flat manifolds have also been computed

with worldline techniques in [7–9]. The worldline formalism is now established as a very ef-

ficient tool for quantum field theory computations, in particular, for the study of anomalies

(see [10] and references therein).

In spite of the broad applications developed so far, field theories with boundaries

have been more elusive: a worldline formulation which allows analytical computations for

quantum fields on manifolds with boundaries is still not known. In fact, the worldline

representation for a field Φ(x) on a spacetime M is based on the correspondence between
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the spectral modes of quantum fluctuations of Φ(x) and the Hamiltonian of an auxiliary

point-particle with target space M . Thus, since the one-loop effective action of the field

theory is given by the first quantization of the point-particle, one is lead to consider its

path integral over the set of closed trajectories xµ(τ) on M .1 Consequently, if the manifold

has boundary ∂M , one expects the path integration domain to be restricted in accordance

with the specific conditions on Φ(x) at ∂M . For example, if the quantum field is subject

to Dirichlet boundary conditions at ∂M then the path integration must be performed

over those closed worldlines xµ(τ) on M which do not intersect ∂M .2 However, worldline

techniques to perform this restriction on the path integral domain have not been devised

yet. The purpose of the present article is to put forth a procedure that can be applied to

certain geometries.

The first question is to write down a path integral quantization for a point-particle

on a bounded region. Roughly, the main difficulty is that the Gaussian measure (and

its moments) can be easily integrated on RD but not on its bounded subsets. Dirichlet

boundary conditions on a (D− 1)-dimensional surface Σ can be modeled on the whole RD

through the coupling λ δΣ(x) to a delta-function with support on Σ: in the limit of infinite

coupling λ → ∞ one reproduces Dirichlet conditions. This approach was introduced in

the worldline context in [11] (for a similar mechanism for Neumann boundary conditions,

see [12]). However, usual analytic worldline techniques require to treat interaction terms

perturbatively; such procedure would thus lead to an expansion in positive powers of λ,

and the limit λ→∞ appears ill-defined.

In the context of infinite flat walls, M.S. Marinov proposed a different analysis in terms

of nontrivial topology in phase space [13] but this has not been pursued in the worldline

formalism. A different approach which might be adequate for a worldline formulation is

given by I. Sökmen who solved the path integral for a particle inside an infinite rectangular

well by performing a canonical transformation that takes the particle to the whole line

under a Rosen-Morse potential [14]. However, this solution strongly relies on a particular

transformation which holds in this specific one-dimensional setting.

A concrete application of the worldline formalism in the presence of a boundary has

been given in [15, 16], where image charges have been used to compute the Seeley-DeWitt

coefficients for a scalar quantum field on the D-dimensional half-space limited by an infinite

flat hyperplane. However, the method of images is only applicable to flat boundaries3 so

to deal with more general cases one needs to introduce a different technique.

In the present work we show how to apply worldline techniques to study a quantum

field confined to the D-dimensional ball BD under both Dirichlet and Neumann conditions

on the spherical boundary SD−1. The procedure, which singles out in the path integral the

1In this formalism, the tree level propagator has a similar representation in terms of a path integral over

open lines.
2Indeed, rigid boundaries can be modeled by coupling Φ2(x) to a delta-function with support on ∂M

and taking the coupling constant λ → ∞. In this limit, the contribution of worldlines which intersect the

boundary gets exponentially suppressed.
3Note that although charge images are used for the Laplace equation with spherical boundaries, the same

procedure does not work for the heat equation, which describes time evolution for the auxiliary particle.
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contributions of worldlines which reach the boundary from those which lie entirely in the

bulk, allows one to determine the heat-trace asymptotics of the Laplacian on the compact

region BD. Off-diagonal elements of the heat-kernel could likewise be determined were we

to exchange the closed paths for open lines with endpoints at the spatial points in question.

Our first step is to conformally project the compact flat manifold BD onto the half-

space R+×RD−1, which then acquires a non-trivial (but flat) induced metric. In this way,

the boundary SD−1 is mapped onto the (D−1)-dimensional hyperplane. The next step is to

duplicate the image of BD to build up another region B̃D ≈ RD by reflecting the half-space

through its boundary and endowing the resulting full space with the symmetric extension

of the original induced metric (see e.g. figure 1 in section 3). The region B̃D is no longer

flat because the symmetric extension introduces a Heaviside-function on the metric, which

is thus non-smooth at the interface RD. Besides, path integration of a point-like particle

on curved space corresponds to a 0 + 1 sigma model which requires certain counterterms

— specific to each regularization — that are necessary to maintain general coordinate

invariance [10]. In particular, the counterterm required by time-slicing renormalization

contains a term proportional to the curvature of B̃D, which is given by a delta-function

with support at the interface. As a consequence, the computation of the heat-trace in these

coordinates amounts to obtaining the point-particle expectation values of combinations of

delta- and Heaviside-functions.

It is important to remark that under the conformal map the metric of the half-space is

an inverse polynomial so we use the worldline formulation in phase space. Moreover, we use

image charges to separate “direct” and “indirect” contributions to the transition amplitude,

according to whether the end-point of the trajectory lies in the physical region BD ⊂ B̃D

or not. Finally, we illustrate the whole procedure in D = 2 by computing the leading direct

and indirect contributions which correspond to the volumes of the disc B2 and its boundary

S1, as well as the next-to-leading contribution to obtain the Seeley-DeWitt coefficient a2

which gives the trace anomaly.

The organization of the article is as follows. In section 2 we give an example of

the relation between the heat-trace and effective actions in quantum field theories. In

section 3 we describe the construction of B̃D as gluing two copies of the ball BD along

its boundary. We compute its geometric properties and define a convenient splitting of its

metric into its smooth and singular parts. Next, in section 4 we use path integrals in phase

space to compute the transition amplitude of a point-particle in the curved background

B̃D. Section 5 contains the main result of this article, where we use the path integral

expression of the previous section to write down a worldline realization of the heat-trace

of the Laplacian on the D-dimensional ball BD. Both Dirichlet and Neumann boundary

conditions are considered. We also give the expressions for the two-point functions (in the

worldline) which permit the perturbative evaluation of the path integral for small values of

the (Euclidean) proper time; this gives the Seeley-DeWitt coefficients of the corresponding

field theory. The procedure to compute the heat-trace asymptotic expansion is depicted in

section 6 for the first few Seeley-DeWitt coefficients in the two-dimensional case. Finally,

in section 7 we draw some considerations on the applications of our results. In particular,

we discuss in some detail the possibility to implement more general boundary conditions.
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In addition, we comment on the eventual use of our worldline representation in numerical

computations in quantum field theory. Some complementary calculations are left to the

appendices.

2 Effective action

Let us consider a free real scalar field ϕ(t, x) of mass m confined to a spacelike D-

dimensional manifold x ∈ M , and minimally coupled to gravity. The Euclidean action

reads

S[ϕ] =

∫
R×M

dt dx
√
g

{
1

2
(∂ϕ)2 +

1

2
m2 ϕ2

}
, (2.1)

where g is the determinant of the metric in M . The effective action up to one-loop order is

Γ[φ] = S[φ]− ~ log

∫
Dϕ e−S[ϕ] (2.2)

= S[φ] +
~
2

log Det
(
−∂2

t −4+m2
)
, (2.3)

where 4 is the Laplacian on M . The identity

log λ = −
∫ ∞

0

dT

T

(
e−Tλ − e−T

)
(2.4)

(λ is interpreted as an eigenvalue of the operator −∂2
t − 4 + m2) motivates Schwinger’s

proper-time regularization, which represents the divergent functional determinant in terms

of the heat-trace of the Laplacian,

Γ[ϕ] = S[ϕ]− ~
2

∫ ∞
0

dT

T

e−Tm
2

√
4πT

Tr e−T (−4) . (2.5)

Under quite general conditions the heat-trace of the Laplacian 4 admits the following short

time asymptotic expansion [17],

Tr e−T (−4) ∼ 1

(4πT )
D
2

∞∑
n=0

an(M) T
n
2 , (2.6)

where the Seeley-DeWitt coefficients an(M) can be computed in terms of geometric in-

variants of M and its boundary ∂M . The use of this expansion in (2.5) shows that the

coefficients an(M) with 0 6 n 6 D+1 give the one-loop divergences of the effective action.

In particular, the first two coefficients are given only by the volumes of the manifold and

its boundary, a0(M) ∼ Vol (M) and a1(M) ∼ Vol (∂M), and do not depend on any other

geometric property of space [18]. On the other hand, the coefficients an(M) with n > D+1

contribute to the one-loop effective action.

This is just one example of the applications of heat-kernel techniques to the pertur-

bative study of quantum field theories. In this article we will show how to compute the

coefficients an(BD) (i.e. the heat-trace expansion (2.6) in the compact region inside SD−1)

using worldline techniques.

– 4 –



J
H
E
P
0
8
(
2
0
1
9
)
0
3
7

Figure 1. Worldlines in D = 2. The first figure from the left shows two worldlines inside the

disc B2 from the initial point • to the final point •: the blue trajectory lies entirely within the

bulk; the red one hits the boundary once. The second picture displays the same elements after a

conformal transformation. The last picture represents B̃2: the boundary turns into an interface. A

typical curve that hits the boundary (from • to •) has a corresponding curve (from • to •) where

the last segment from the boundary to the end-point is switched to its reflection with respect to

the interface. The contribution of the original curve is called “direct”; the second, “indirect”.

3 Geometry of B̃D

As we will show in section 4, the heat-trace asymptotics (2.6) for the Laplacian on the

D-dimensional ball BD is determined by the path integral over closed trajectories of a

non-relativistic particle. In order to study the dynamics of this particle, it is convenient

to identify BD with a D-dimensional half-space which we then embed into a whole space

RD, denoted B̃D, that represents two copies of the original ball BD glued together along

the interface ∂BD ≈ SD−1 as in figure 1.

Let us begin by considering BD, the interior of SD−1, described by coordinates y =

(y1, . . . , yD) ∈ RD such that y2 = yiyi 6 1. We regard BD as a flat manifold. Next, we

define the following variables x = (x1, . . . , xD) ∈ RD,

xi =
2yi

1 + y2 − 2yD
for i = 1, . . . , D − 1 , (3.1)

xD =
1− y2

1 + y2 − 2yD
. (3.2)

This conformal transformation maps the ball BD onto the upper half-space RD−1×R+ (to

which we also refer as BD) described by xD > 0. The original boundary SD−1 is mapped

onto the horizontal hyperplane xD = 0. The north pole y = (0, . . . , 0, 1) is mapped to

infinity.

The induced (flat) metric in x-coordinates is

ds2 =
4

(1 + x2 + 2xD)2 dxidxi . (3.3)

Note that the metric is an inverse polynomial. Finally, we extend this metric to the whole

RD by making a symmetric reflection with respect to the hyperplane xD = 0. This “doubled
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ball”, which we denote B̃D, has metric

gij =
4

(1 + x2 + 2|xD|)2 δij . (3.4)

Note now that the metric is no longer analytic for it has a discontinuous normal derivative

at the fixed points xD = 0. The corresponding integration measure is

√
g =

2D

(1 + x2 + 2|xD|)D
. (3.5)

The Christoffel symbols are

Γkij =
√
g

1
D {δijxk − δikxj − δjkxi + ε(xD) (δijδkD − δkiδjD − δjkδiD)} , (3.6)

where ε(xD) = ±1 for xD ≷ 0; thus, Γkij is in general discontinuous at the boundary. The

Ricci tensor and scalar are

Rij = 4
δij + (D − 2)δiDδjD

1 + x2
δ(xD) , (3.7)

R = 2(D − 1)
(
1 + x2

)
δ(xD) , (3.8)

which have support only at the boundary. The manifold B̃D is therefore not flat.

Path integration in curved spacetimes requires the introduction of an additional coun-

terterm potential to ensure coordinate invariance. In the present manuscript we find it

convenient, as it will be clear below, to expand the inverse metric, which is coupled to

particle momenta. Thus instead of a configuration space path integral, we will use a phase-

space path integral which, in curved space, is suitably described in terms of the Time

Slicing formulation developed in [19] (for a review see [10]), which involves the potential:

∆HTS(x) = −1

4
R+

1

4
gij Γ`ikΓ

k
j` ,

= −D − 1

2

(
1 + x2

)
δ(xD)− D − 2

4

(
1 + x2 + 2|xD|

)
. (3.9)

It is now convenient to separate the analytic from the non-analytic part of the metric. To

do that we write the inverse metric as

gij = {h(x)− f(x) θ(−xD)} δij , (3.10)

where θ(−xD) is the Heaviside-function and

h(x) =
1

4

(
1 + x2 + 2xD

)2
, (3.11)

f(x) = 2xD
(
1 + x2

)
, (3.12)

are smooth functions in the whole space RD. Note that one could have instead separated

the “smooth” part of the inverse metric differently, e.g. using the sign-function ε(xD); the

convenience of leaving the smooth part h(x) equal to the original inverse metric on BD lies

in the fact that with this choice purely bulk contributions vanish. Also, had we used the

complementary Heaviside-function θ(xD), we would have obtained a smooth part with a

singularity at the point x = (0, . . . , 0, 1) ∈ BD (the center of the ball). Since the heat-trace

involves an integration over the “physical” region xD > 0 only, a singularity at the image

point x̃ = (0, . . . , 0,−1) is innocuous.
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4 Transition amplitudes in B̃D

In this section we study the transition amplitudes of a non-relativistic particle on the

manifold B̃D by considering all trajectories x(τ) which go from the point x ∈ RD to the

point x′ = x+ ξ ∈ RD in Euclidean time T . For convenience, we describe these trajectories

as x(τ) = x0(τ) + q(τ), where x0(τ) is the straight line

x0(τ) = ξ
τ

T
+ x (4.1)

that connects the point x0(0) = x with x0(T ) = x′, and q(τ) representing quantum fluctu-

ations under homogeneous Dirichlet conditions q(0) = q(T ) = 0.

The transition amplitude can then be represented in terms of the phase-space path

integral [10]

〈x′|e−T (−4)|x〉 =
(√

g(x′)
√
g(x)

)− 1
2 ×

×
∫
DpDq e−

∫ T
0 dτ

{
gij pipj−ipi

(
ξi
T

+q̇i

)
+∆HTS

}
. (4.2)

In the integrand both gij and ∆HTS are evaluated at x0(τ) + q(τ).

In order to keep track of the different powers of the (small) variable T , we turn to

dimensionless quantities: τ → Tτ , p(τ) → p(τ)/
√
T and q(τ) →

√
T q(τ). Next, we

use (3.10) and make an expansion around the fixed initial point x to separate quadratic

terms from interaction terms (and shift the momentum variables as p→ p+ i ξ

2h(x)
√
T

). We

thus obtain

〈x′|e−T (−4)|x〉 =
(√

g(x′)
√
g(x)

)− 1
2
e
− ξ2

4Th(x)×

×
∫
DpDq e−

∫ 1
0 dτ {h(x) p2−ipq̇} e−

∫ 1
0 dτ Hint(τ)

=
(√

g(x′)
√
g(x)

)− 1
2
e
− ξ2

4Th(x)

〈
e−
∫ 1
0 dτ Hint(τ)

〉
, (4.3)

where the interaction Hamiltonian is

Hint(τ) = −T D − 1

2

[
1 + (x+ τξ +

√
Tq)2

]
δ(xD + τξD +

√
TqD)

− T D − 2

4

[
1 + (x+ τξ +

√
Tq)2 + 2

∣∣∣xD + τξD +
√
TqD

∣∣∣]
+

(
p+ i

ξ

2h(x)
√
T

)2 {
− f(x+ τξ +

√
Tq) θ(−xD − τξD −

√
TqD)

+∂ih(x) (τξi +
√
Tqi) +

1

2
∂2
ijh(x) (τξi +

√
Tqi)(τξj +

√
Tqj) + . . .

}
, (4.4)

where the last line simply is h(x(τ)) − h(x), expressed as a Taylor expansion about the

point x.

– 7 –



J
H
E
P
0
8
(
2
0
1
9
)
0
3
7

The expectation value in (4.3) represents the phase-space integration over trajectories

in configuration space q(τ) which satisfy homogeneous Dirichlet conditions q(0) = q(1) = 0,

and completely free trajectories p(τ) on which no boundary conditions are imposed. This

makes the relevant quadratic operator in the Gaussian measure of (4.3) invertible. It is

important to remark that due to the rescalings in the phase-space worldlines the expectation

value 〈1〉 does depend on T , although it is at this point not manifest in the notation. In the

next section, we will restore the dependence on T to compute the correct normalization.

Each of the four lines in (4.4) corresponds to one of four types of interaction terms:

the first two arising from the time-slicing counterterm (which we will call δ-term and ε-

term, correspondingly), the third one corresponding to the discontinuity introduced by the

reflection of the metric along the boundary (we will call it θ-term) and the fourth, to the

Taylor expansion of the metric around the fixed point x (these will be called h-terms).

5 The heat-trace in BD

This section summarizes the main result of this article: a worldline representation for the

heat-trace of the Laplacian on BD. We show how to use the transition amplitude (4.3) to

determine the asymptotic expansion through a perturbative calculation in the worldline.

According to the image charge method, the transition amplitude from an initial point

x = (x1, . . . , xD) to another point x′ = (x′1, . . . , x
′
D) in BD under Dirichlet or Neumann

boundary conditions can be obtained by subtracting or adding the transition amplitude

in B̃D from the same initial point to an image end-point at x̃ = (x′1, . . . , x
′
D−1,−x′D). As

we have already mentioned, the transition amplitude in the half-space BD under Dirichlet

boundary conditions is given by the contributions of all paths from x to x′ which do

not intersect the boundary; these contributions can be obtained from all paths in the

whole space B̃D from x to x′ if we subtract the extra contributions from paths that hit

the boundary, but these are equivalent to the contributions of all paths from x to x̃ (see

figure 1 in section 3). A similar argument can be drawn for Neumann boundary conditions.

For the heat-trace, this leads to

Tr e−T (−4) =

∫
RD−1×R+

dx
√
g 〈x|e−T (−4)|x〉 ∓

∫
RD−1×R+

dx
√
g 〈x̃|e−T (−4)|x〉 , (5.1)

for Dirichlet and Neumann boundary conditions, respectively. We refer to the first term in

the r.h.s. as the direct contribution, whereas the second term is referred to as the indirect

contribution. The transition amplitudes in this expression correspond to trajectories in

B̃D so they can be computed using (4.3). The operator Hint(τ) given by (4.4) must be

evaluated at ξ = 0 for direct contributions, and at ξ = (0, . . . , 0,−2xD) for indirect ones.

We now describe how to perform a perturbative expansion of the expectation value in (4.3)

to obtain an asymptotic expression of the heat-trace.

In general, to compute p- and q-correlators with respect to the expectation value

in (4.3) one introduces two-component external sources k(τ), j(τ) and define the (free)

– 8 –
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generating functional

Z[k, j] =
〈
ei
∫ 1
0 dτ (kp+jq)

〉
=

∫
DpDq e−

∫ 1
0 dτ {h(x) p2−ipq̇}+i ∫ 1

0 dτ (kp+jq)

= e
− 1

2

∫
dτdτ ′

{
1

2h(x)
k(τ)k(τ ′)+h(x)G(τ,τ ′)j(τ)j(τ ′)+i •G(τ,τ ′)k(τ)j(τ ′)

}
〈1〉 , (5.2)

where

G(τ, τ ′) = −|τ − τ ′| − 2ττ ′ + τ + τ ′ , (5.3)
•G(τ, τ ′) = −ε(τ − τ ′)− 2τ ′ + 1 (5.4)

are Green functions given by the matrix elements of the inverse of the quadratic operator in

the Gaussian measure. The notation •G(τ, τ ′) points out that this function is the derivative

of G(τ, τ ′) with respect to its first argument.

Two-point functions can be computed as the functional derivatives of (5.2),

〈pi(τ)pj(τ
′)〉 = 〈1〉 δij

1

2h(x)
, (5.5)

〈qi(τ)qj(τ
′)〉 = 〈1〉 δij h(x)G(τ, τ ′) , (5.6)

〈pi(τ)qj(τ
′)〉 = 〈1〉 δij

i

2
•G(τ, τ ′) . (5.7)

Other useful correlation functions are summarized in appendix A. Due to the boundary

conditions on the phase-space trajectories q(τ) and p(τ), the normalization4

〈1〉 =

∫
DpDq e−

∫ T
0 dτ {h(x) p2−ipq̇} (5.8)

can be regarded as the transition amplitude in flat space of a free particle of mass (2h(x))−1

with initial and final points at the origin. This is simply given by

〈1〉 =
1

(4πTh(x))
D
2

. (5.9)

The expectation value in (4.3) can now be computed by expanding the exponential and

evaluating the expectation values of the different terms in Hint given by (4.4). These terms

contain powers of the canonical operators p, q whose n-point functions can be obtained

using Wick’s theorem and expressions (5.5)–(5.7). However, expression (4.4) also contains

delta- and theta-functions. In the next section we show how to handle these distributions

with worldline techniques and illustrate the whole procedure by computing the first three

Seeley-DeWitt coefficients. For simplicity we consider the case D = 2 — note that in this

case the ΓΓ term from (3.9) identically vanishes.

6 The trace anomaly in B2

To clarify the procedure described in the previous section, we will now use equation (5.1)

— together with (4.3) — to reproduce in full detail the first Seeley-DeWitt coefficients

a0(B2), a1(B2), a2(B2) on the disc. We consider direct and indirect contributions sepa-

rately.

4Note that we have undone the rescalings to restore the dependence on T .
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6.1 Direct contributions

To obtain the direct contribution to the heat-trace we evaluate expressions (4.3) and (4.4)

for ξ = 0 and integrate over B2,∫
R×R+

dx
√
g 〈x|e−T (−4)|x〉 =

∫
R×R+

dx
〈
e−
∫ 1
0 dτ Hdir

int (τ)
〉
, (6.1)

where

Hdir
int (τ) = −T

2

[
1 + (x1 +

√
Tq1)2

]
δ(x2 +

√
Tq2)+

− p2 f(x+
√
Tq) θ(−x2 −

√
Tq2)+

+ p2

{
∂ih(x) qi

√
T +

1

2
∂2
ijh(x) qiqj T + . . .

}
. (6.2)

Note that since x = x′ then g(x) = g(x′) and there is no measure
√
g in the r.h.s. of (6.1).

The leading contribution to (6.1) can be straightforwardly computed as∫
dx 〈1〉 =

∫
dx

1

4πTh(x)
=

1

4T
, (6.3)

which according to (2.6) gives the well-known result for the first Seeley-DeWitt coefficient

a0(B2) = Vol(B2) = π [18].

Let us now compute the next-to-leading direct contribution which comes from all

three lines in the r.h.s. of (6.2), namely, the δ-term, θ-term and h-terms. We begin with

the leading contribution from the third line in (6.2), i.e., the h-terms,∫
dx

{
− T

2
∂2
ijh(x)

∫ 1

0
dτ 〈p2(τ)qi(τ)qj(τ)〉+

+
T

2
∂ih(x)∂jh(x)

∫ 1

0
dτ

∫ 1

0
dτ ′ 〈p2(τ)p2(τ ′)qi(τ)qj(τ

′)〉
}
. (6.4)

The four- and six-point functions in this expression can be computed using the free prop-

agators (5.5)–(5.7),

〈p2(τ)qi(τ)qj(τ)〉 = 〈1〉 δij
1

2

(
2G(τ, τ)− •G(τ, τ)2

)
, (6.5)

〈p2(τ)p2(τ ′)qi(τ)qj(τ
′)〉 = 〈1〉 δij

1

2h(x)

{
4G(τ, τ ′)+

− •G(τ ′, τ ′)•G(τ ′, τ)− •G(τ, τ)•G(τ, τ ′)+

− •G(τ, τ)•G(τ ′, τ ′)− •G(τ, τ ′)•G(τ ′, τ)
}
. (6.6)

Thus, the leading direct contribution of the h-terms is

T

12

∫
dx 〈1〉

{
−∂2h(x) + ∂ih(x)∂ih(x)

1

h(x)

}
= 0 . (6.7)
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This cancellation is to be expected because h-terms are not related to the singularities at

the interface x2 = 0 but only to the smooth part of the inverse metric; since the disc is flat

no purely bulk contributions should appear.

Let us next study the leading contribution of the first line in the r.h.s. of (6.2), i.e.,

the δ-term,

T

2

∫
dx

∫ 1

0
dτ

〈[
1 +

(
x1 +

√
Tq1(τ)

)2
]
δ
(
x2 +

√
Tq2(τ)

)〉
∼

∼ T

2

∫
R×R+

dx1dx2

(
1 + x2

1

) ∫ 1

0
dτ

∫ ∞
−∞

dω

2π
eiωx2

〈
eiω
√
Tq2(τ)

〉
, (6.8)

where we have only retained the leading contribution in T , and we have also used the

integral representation5

δ(x) =

∫ ∞
−∞

dω

2π
eiωx . (6.9)

The expectation value in (6.8) is given by the generating functional (5.2) for k1(τ ′) =

k2(τ ′) = j1(τ ′) = 0 and j2(τ ′) = ω
√
Tδ(τ ′ − τ),〈

eiω
√
Tq2(τ)

〉
= e−

T
2
ω2h(x)G 〈1〉 ; (6.10)

throughout this article, whenever it becomes clear from the context, we will use the notation

G = G(τ, τ), as well as •G = •G(τ, τ). The leading contribution of the delta-function then

results

1

16π2

∫
R×R+

dx1dx2
1 + x2

1

h(x)

∫ 1

0
dτ

∫ ∞
−∞

dω eiωx2e−
T
2
h(x)Gω2 ∼ 1

4
. (6.11)

An important remark is now in order: to compute the integration in x2 we have first

rescaled x2 →
√
Tx2 and, consequently, neglected the dependence of h(x) on x2 to leading

order in T . This allows a further rescaling of x2 which makes the integrations in x2 and

τ straightforward. These consecutive rescalings of the x2-coordinate will be frequent in

the subsequent calculations and can further be justified by first integrating over ω; in

the limit T → 0, the result yields a representation of δ(x2) plus higher-order corrections.

To compute subleading contributions one should Taylor expand h(x) around x2 = 0 and

perform consistent calculations order by order in T .

Worldline representations admit a variety of approaches. For instance, we could have

dealt with the leading contribution of the expectation value (6.8) by neglecting O(
√
T )

terms in the formal expansion for small
√
Tq(τ),

T

2

∫
dx

∫ 1

0
dτ
(
1 + x2

1

)
δ(x2) 〈1〉 =

1

4
. (6.12)

Notwithstanding the simplicity of this procedure, we use the more sound Fourier repre-

sentation of distributions because it is better suited for higher order calculations, where

5Correlators involving δ-functions of this form have previously been treated in this way in the context

of contact interactions between strings [20, 21] and particles [22].
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an expansion of δ-functions becomes inappropriate. See another alternative calculation in

appendix B.

To conclude our study of the direct terms, we compute the leading contribution of the

second line in r.h.s. of (6.2), i.e., the θ-term,∫
dx

∫ 1

0
dτ
〈
p2(τ) f(x+

√
Tq(τ)) θ(−x2 −

√
Tq2(τ))

〉
=

=

∫
dx

∫ 1

0
dτ

∫ ∞
−∞

dω

2πi

e−iωx2

ω − i 0

〈
p2 f(x+

√
Tq) e−iω

√
Tq2
〉
. (6.13)

Note that this time we have used the Fourier transformation

θ(x) =

∫ ∞
−∞

dω

2πi

eiωx

ω − i 0
, (6.14)

which will eventually be complemented with

1

ω − i 0
= P

(
1

ω

)
+ iπδ(ω) . (6.15)

Upon the rescalings ω → ω/
√
T and x2 →

√
Tx2, expression (6.13) can be written, to

leading order in T , as

2T

∫
dx (1 + x2

1)

∫ 1

0
dτ

∫
dω

2πi

e−iωx2

ω − i 0

〈
p2 (x2 + q2) e−iωq2

〉
. (6.16)

The expectation value will introduce further dependence on x through the function h(x):

as before, because of the rescaling in x2, the function h(x) becomes a function of (x1,
√
Tx2)

and, to leading order, a function that only depends on x1. To keep this in mind we define

x̄ = (x1, 0) and introduce h̄ = h(x̄).

Let us then compute both expectation values in (6.16). Firstly,〈
p2(τ) e−iωq2(τ)

〉
= − δ2Z[k(τ ′), j(τ ′)]

δki(τ)δki(τ)

∣∣∣∣
j2(τ ′)=−ω δ(τ ′−τ)

=
1

4πTh(x)

(
1

h(x)
+

1

4
ω2 •G2

)
e−

h(x)
2
ω2 G . (6.17)

Though not explicitly indicated, we have also evaluated the functional derivative at ki(τ
′) =

j1(τ ′) = 0. In a similar fashion we can compute the second expectation value; the result

reads 〈
p2 q2 e

−iωq2〉 = − iω

4πTh(x)

(
G− 1

2
•G2 +

1

4
h(x)ω2G •G2

)
e−

h(x)G
2

ω2
. (6.18)

Appendix A contains these and several other correlation functions. Replacing (6.17)

and (6.18) into (6.16) we get, to leading order,∫
dx

1 + x2
1

2πh̄

∫ 1

0
dτ

∫
dω

2πi

e−
h̄G
2
ω2−iωx2

ω − i 0
×

×
(
x2

h̄
− iω

(
G− 1

2
•G2

)
+

1

4
ω2 x2

•G2 − 1

4
iω3h̄ G •G2

)
= − 1

12
. (6.19)
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To integrate the first term, proportional to (ω − i 0)−1, we have used relation (6.15):

the integration of the delta function δ(ω) is trivial, whereas the principal value function

P (ω−1) allows one to retain only the sin-function contained in the imaginary exponential,

which makes the integral convergent at ω = 0. Integration of the remaining terms is

straightforward.

In conclusion, the O(T 0) direct contribution to the heat-trace, stemming from the

three lines in (6.2), gives

0 +
1

4
− 1

12
=

1

6
. (6.20)

The present results can as well be obtained employing String Inspired (SI) worldline Green’s

function, which correspond to identifying the integration point x with the center of mass

of the path, so that the quantum fluctuations are periodic but have no center of mass, i.e.∫
dτ q(τ) = 0. This leads to a Poincaré invariant Green’s function which satisfies G(τ, τ) =

1/6 and •G(τ, τ) = 0 — see e.g. [16]. Thus the computation of the direct contributions

turns out to be much simpler. However, unlike the Dirichlet Boundary Conditions (DBC)

Green’s function of (5.3), it is not obvious how to employ SI periodic Green’s function for

the indirect contributions, where ξ 6= 0. In fact, for the integrated indirect contributions,

the transversal coordinate xD, unlike the parallel coordinates, becomes anti-periodic in the

String Inspired approach. So, one should use the anti-periodic bosonic Green’s function

for the transversal part, and periodic ones for the parallel coordinates. Here, we prefer to

display the results only in terms of the DBC Green’s function which applies to both direct

and indirect terms in the same way. However, it would be interesting to investigate further

on the application of String Inspired Feynman rules to such computations.

6.2 Indirect contributions

The indirect contribution to the heat-trace is given by∫
R×R+

dx
√
g 〈x̃|e−T (−4)|x〉 =

∫
R×R+

dx e
− x2

2
Th(x)

〈
e−
∫ 1
0 dτH

ind
int (τ)

〉
, (6.21)

with

H ind
int (t) = −T

2

[
1 +

(
x1 +

√
Tq1

)2
]
δ
(

(1− 2τ)x2 +
√
Tq2

)
+

+

(
p+ i

ξ

2h
√
T

)2 {
− f

(
x+ τ ξ +

√
Tq
)
θ
(
−(1− 2τ)x2 −

√
Tq2

)
+

+∂ih
(
τ ξi +

√
Tqi

)
+

1

2
∂2
ijh
(
τ ξi +

√
Tqi

)(
τ ξj +

√
Tqj

)
+ . . .

}
, (6.22)

where ξ = (0,−2x2). Note that due to the symmetric extension of the metric g(x) = g(x̃)

and there is no measure
√
g in the r.h.s. of (6.21).

Let us begin with the leading contribution

∫
dx e

− x2
2

Th(x) 〈1〉 =
1

πT

∫
dx1dx2

e
− 4x2

2
T [x2

1+(x2+1)2]2

[x2
1 + (x2 + 1)2]2

=

√
π

4
√
T

+O(
√
T ) . (6.23)
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As before, we have conveniently rescaled x2 →
√
Tx2. This result reproduces the sec-

ond Seeley-DeWitt coefficient a1(B2) =
√

4πVol(S1)/4 = π
3
2 [18]. Note also that this

contribution does not contain any O(T 0) term.

Next, we consider the leading contribution of the third line (the h-terms) in (6.22).

However, these are purely bulk terms so, as expected, a straightforward computation shows

that this contribution vanishes.

The leading contribution of the δ-term in (6.22) can be carried out along the same

lines as for the direct terms. In fact, one obtains the same result, namely 1
4 . this can

be understood from the fact that a δ-type expectation value 〈δ(x(τ))〉 with support at the

boundary must vanish for Dirichlet conditions. Therefore, direct and indirect contributions

must coincide.

Finally, we must compute the leading contribution of the θ-term in (6.22),∫
dxdτ e−

x2
2
Th

〈(
p+ i

ξ

2h
√
T

)2

f
(
x+ τ ξ +

√
Tq
)
θ
(
−(1− 2τ)x2 −

√
Tq2

)〉
. (6.24)

Computing the correlation functions (see appendix A) we get

− i

(2π)2

∫
dxdτ e−

x2
2
h̄

1 + x2
1

h̄

∫
dω

e−iω(1−2τ)x2

ω − i 0
e−

1
2
h̄Gω2×

×
{
•G

(
2− x2

2

h̄

)
x2

h̄
− ω2 •G

(
G− 1

4
•G2

)
x2 +

−iω
(
G− 1

2
•G2 − (G− •G2)

x2
2

h̄

)
− 1

4
iω3G •G2 h̄

}
= −1

4
. (6.25)

The integrals can be straightforwardly performed by replacing (ω− i 0)−1 by the principal

value P(ω−1) (note that the contribution of the delta-function to the first term vanishes

due to the integration of •G in the interval τ ∈ [0, 1]).

In conclusion, the O(T 0) indirect contribution, stemming from the three lines in (6.22),

gives

0 +
1

4
− 1

4
= 0 . (6.26)

6.3 Seeley-DeWitt coefficients

The results of our calculations give the following leading terms for the heat-trace asymp-

totics:

Tr e−T (−4) ∼ 1

4πT

∞∑
n=0

an(B2)T
n
2

∼ 1

4T
∓
√
π

4
√
T

+
1

6
+O(

√
T ) . (6.27)

From this expression one reads the Seeley-DeWitt coefficient a2 = 2
3π (in agreement

with [18, 23]) which gives the integrated two-dimensional trace anomaly∫
d2x
√
g
〈
Tµµ

〉
=

1

4π
a2 =

1

6
. (6.28)
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7 Conclusions and future work

We have considered a scalar field confined to the interior of the sphere SD−1 in order to

analyze the applicability of a worldline approach to the determination of the heat kernel.

By means of an appropriate conformal transformation that maps the spherical boundary

into a hyperplane RD−1, the standard usage of image charges allowed us to implement

either Dirichlet or Neumann boundary conditions. Together with a symmetric reflection

of the metric on the hyperplane, the new coordinates turn the boundary into an interface

were a singular curvature develops. Computations of correlation functions in the worldline

approach are then implemented in phase space. As an example, we have reproduced for

D = 2 the first three Seeley-DeWitt coefficients.

The procedure that we have set up admits generalizations and concrete applications.

Up to now, a worldline formulation of quantum fields on a manifold with boundaries

has been established only for a flat boundary: firstly, Dirichlet and Neumann boundary

conditions have been analyzed [15, 16]; later, based on [24], Robin boundary conditions [25]

and specific matching conditions on a flat interface [26] were considered. The procedure

described in the present article can now be carried out for these more general conditions

on a spherical shell and we expect it to grant the familiar calculational efficiency that has

previously been seen using first quantized techniques.

The extension to other types of boundary conditions is also worth considering. In [27]

a Brownian measure which appropriately describes all self-adjoint extensions for a one-

dimensional particle between infinite walls has been constructed. This result has been

generalized to the infinite dimensional family of boundary conditions for a particle in the

half-plane in [28]; it would be interesting to consider whether this formulation admits a

representation in the worldline formalism (if one aims at considering the most general

boundary conditions [29], one must take into account the interesting difficulties discussed

in [30, 31]).

In this context it would also be interesting to revisit the detailed analysis in [32] (see

also [33, 34]) which shows that the Casimir energy in the presence of physical surfaces con-

tains divergencies which cannot be removed by appropriate counterterms in the Lagrangian.

These divergencies are innocuous for computing Casimir forces between different surfaces

but have cast doubts on the appropriate definition of the Casimir tension on each surface.

Actually, the problem appears in the vicinity of delta-like shells, so the worldline formal-

ism could be applied to these models since our approach already incorporates delta-like

backgrounds, and can be easily adapted to the computation of the energy densities.

The motivation for these generalizations not only arises from the applications to ana-

lytic calculations: in the last two decades, the worldline formalism has proven to provide a

powerful tool for the numerical computation of physical quantities in quantum field theory.

This approach originated in the numerical evaluation of effective actions in analytically

solvable problems [35], but since then has been used in a broad variety of contexts. In [36]

it has been used in the Minkowski setting to study pair production by an inhomogeneous

background. In particular, worldline numerics is currently one of the few available methods

to benchmark experimental measurements on the Casimir effect (first considered in [11],

– 15 –
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see e.g. its applications to other geometries in [37, 38], and to more realistic media in [39]).

In this context, worldline based numerical analysis has been used to determine the range

of validity of the scheme known as proximity force approximation [40, 41]. In [42, 43] the

method was tested by computing the positive-energy conditions in various Casimir settings.

These numerical methods are based on a Monte Carlo generation of worldline ensembles

which, apart from providing an intuitive picture of the nonlocal nature of quantum fluctu-

ations, is comparatively cheap due to its probabilistic nature (see [44–47]); we consider our

analytic expressions could be used to test numerical computations in spherical geometries.

Most importantly, worldline numerics has been mostly applied to rigid boundaries but

it has not been implemented under Robin conditions yet. As we mentioned, the technique

presented in this article in combination with those in [24–26] could provide a concrete

realization for Robin boundary conditions in a worldline scheme. This motivates studies

in this direction. Note finally that our method admits generalizations to other geometries,

including curved space-times where the analysis of energy conditions is relevant. Research

along these lines is currently in progress.
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A Some correlation functions

In this appendix we summarize some useful correlation functions,〈
e−iωq2(τ)

〉
= 〈1〉 e−

h(x)G
2 ω2

, (A.1)〈
qi(τ) e−iωq2(τ)

〉
= −〈1〉 δi2 iω h(x)Ge−

h(x)G
2 ω2

, (A.2)〈
pi(τ) e−iωq2(τ)

〉
= 〈1〉 δi2

1

2
ω •Ge−

h(x)G
2 ω2

, (A.3)〈
pi(τ)qj(τ) e−iωq2(τ)

〉
= 〈1〉 1

2
i •G

(
δij−δi2δj2 ω2h(x)G

)
e−

h(x)G
2 ω2

, (A.4)〈
p2(τ) e−iωq2(τ)

〉
= 〈1〉

(
1

h(x)
+

1

4
ω2 •G2

)
e−

h(x)G
2 ω2

, (A.5)

〈
p2(τ) qi(τ) e−iωq2(τ)

〉
= −〈1〉 δi2 iω

(
G−1

2
•G2+

1

4
h(x)ω2G •G2

)
e−

h(x)G
2 ω2

, (A.6)

〈
p2(τ) qi(τ)qj(τ) e−iωq2(τ)

〉
= 〈1〉

{
δij

(
G−1

2
•G2+

1

4
h(x)ω2G •G2

)
+

−δi2δj2 h(x)ω2G

(
G−•G2+

1

4
h(x)ω2G •G2

)}
e−

h(x)G
2 ω2

,

(A.7)
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〈
p2(τ) qi(τ)qj(τ)qk(τ) e−iωq2(τ)

〉
= −〈1〉 ih(x)ωG e−

h(x)G
2 ω2

×

×
{

(δijδk2+δikδj2+δjkδi2)

(
G−•G2+

1

4
h(x)ω2G •G2

)
+

−δi2δj2δk2 h(x)ω2G

(
G−3

2
•G2+

1

4
h(x)ω2G •G2

)}
.

(A.8)

In these expressions we use the notation G = G(τ, τ) and •G = •G(τ, τ).

B Expectation value of the delta-funcion

In this section we present an alternative calculation, technically more intuitive, of the

leading contributions of the expectation values of the δ-terms. Let us consider the direct

contribution (given by (6.8)),

T

2

∫
R×R+

dx1dx2

(
1 + x2

1

) ∫ 1

0
dτ
〈
δ
(
x2 +

√
Tq2(τ)

)〉
. (B.1)

The expectation value of the delta-function can be understood as the transition amplitude

of a free particle from the point x = (x1, x2) to some point at the boundary in dimensionless

proper time τ , and then back to the initial point x in time 1 − τ . We decompose this

transition accordingly: we introduce an auxiliary delta-function δ(
√
Tq1(τ)− x̄1) to enforce

the particle to be at (x1 + x̄1, 0) in time τ and then integrate in the coordinate x̄1 along

the boundary,

〈δ(x2 +
√
Tq2(τ))〉 =

∫ ∞
−∞

dx̄1
e
− x̄2

1+x2
2

4Th(x)τ

4πTh(x)τ

e
− x̄2

1+x2
2

4Th(x)(1−τ)

4πTh(x)(1− τ)

=
1√

τ(1− τ)

e
− x2

2
4Th(x)τ(1−τ)√
4πTh(x)

3 . (B.2)

Replacing this expectation value into (B.1) one gets the correct contribution 1
4 . The same

procedure works for the contribution of the indirect δ-terms. This would also work for the

expectation values of θ-terms were it not for the presence of the worldline field p2(τ), for

which it is not obvious how to generalize the present trick. However, we think it might be

an interesting problem worth addressing.
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