
09/04/2024 16:16

Towards Adaptive Flow Programming for the IoT: The Fluidware Approach / Zambonelli, F.; Viroli, M.;
Fortino, G.; Re, B.. - (2019), pp. 549-554. (Intervento presentato al convegno 2019 IEEE International
Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2019 tenutosi
a Kyoto (Japan) nel 2019) [10.1109/PERCOMW.2019.8730736].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

Institute of Electrical and Electronics Engineers Inc.

This is the peer reviewd version of the followng article:

Towards Adaptive Flow Programming for the IoT:
the Fluidware Approach

Franco Zambonelli1 and Mirko Viroli2 and Giancarlo Fortino3 and Barbara Re4

Abstract—The objective of this position paper is to present
Fluidware, a proposal towards an innovative programming model
for the IoT, conceived to ease the development of flexible
and robust large-scale IoT services and applications. The key
innovative idea of Fluidware is to abstract collectives of devices
of the IoT fabric as sources, digesters, and targets of distributed
“flows” of contextualized events, carrying information about data
produced and actuating commands. Accordingly, programming
services and applications implies declaratively specifying “funnel
processes” to channel, elaborate, and re-direct such flows in a
fully-distributed way, as a means to coordinate the activities of
devices and realize services and applications. The potential appli-
cability of Fluidware and its expected advantages are exemplified
via example in the area of ambient assisted living.

I. INTRODUCTION

Programming services and applications for the IoT may
involve the composition and coordination of a multitude of
heterogeneous devices, possibly dispersed over a wide (e.g.,
urban) area. This scenario embeds many sources of complex-
ity: the potential high number and density of deployed devices,
the high frequency (possibly of an almost continuous nature)
of computational events to occur and be managed, the need to
self-adapt to short-/medium-/long-term changes and faults, the
need to operate on top of a dynamically evolving infrastructure
comprising IoT/edge/cloud devices and resources, the need of
promptly (often in quasi real-time) reacting to sophisticated
space-time situation recognition, and the potential of running
complex, goal-oriented orchestrations of distributed activities
across devices of heterogeneous computational power (from
tiny devices to cloud servers).

The above issue can make it very hard to develop and
deploy dependable services and applications exhibiting pre-
dictable behavior, especially when using traditional service
composition approaches that would require explicit handling of
a multitude of possible exceptions and alternate scenarios [1].
Accordingly, there is compulsory need of novel programming
approaches that make it possible to avoid dealing with mun-
dane complexity details and rather rely on high-level constructs
enabling to express in full the potentials of the IoT fabric.

In this position paper, we intend to show how a novel
programming model for IoT services and applications, along
with the associated supporting platform, engineering method-
ology and tools, can be conceived to ease the development of

*This work was not supported by any organization
1F. Zambonelli is with the University of Modena and Reggio Emilia, Italy

franco.zambonelli at unimore.it
2M. Viroli is with the University of Bologna, Italy mirko.viroli at

unibo.it
2G. Fortino is with the University of Calabria, Italy

giancarlo.fortino at unical.it
2B. Re is with the University of Camerino, Italy barbara.re at

unicam.it

flexible and robust large-scale IoT services and applications.
Starting from previous findings in the areas of field-based
coordination [2], [3], collective adaptive systems [4], stream
computing and aggregate computing [5], we aim at addressing
the complexity of building modern, large-scale IoT systems,
by a full-fledged engineering approach revolving around a new
notion of distributed programming.

Our proposal, which we call “Fluidware”, relies on the
innovative idea to abstract collectives of devices of the IoT
fabric (both sensors and actuators) as sources, digesters, and
targets of distributed flows of contextualized events, carrying
information about data produced and manipulated over time.
Accordingly, programming services and applications implies
specifying “funnel processes” to channel, elaborate, and re-
direct such flows in a fully-distributed way, as a means to
coordinate the activities of devices and realize services and
applications.

Funnel processes can be specified in a declarative way, in
terms of how they consume and produce events over space and
time. They can be associated to distributed and contextualized
streams (i.e., flows) of events in terms of advanced pattern-
matching mechanisms based on semantics of data and space-
time conditions on their production. Thus, the specification of
funnel processes totally abstracts from the actual number and
type of devices to which events belong, enabling to define
scale-independent computational activities inherently address-
ing self-adaptation to contextual conditions, and smoothly
fitting various computing/network infrastructures. Indeed, a
proper supporting platform (i.e., a middleware [6]) will be
put in place to take care of the actual deployment of funnel
processes and their transparent allocation and replication.

Overall, the Fluidware approach, once fully developed,
will support the bottom-up construction of complex IoT
applications through a correctness-guaranteed stack of soft-
ware components, incrementally encompassing basic building
blocks of stream/event manipulation, libraries for distributed
coordination, and reusable IoT services on top.

II. MOTIVATIONS AND CASE STUDY SCENARIO

The key motivations for Fluidware are to attack a number
of challenges that currently hinder the possibility to easily
develop complex and large-scale IoT systems and applications.

Device independence. Current IoT approaches are highly
device-dependent, assuming the existence of specific types of
devices in specific locations. However, the heterogeneity of de-
vices, their ephemerality, and the impossibility of individually
controlling all devices in an environment, requires program-
ming approaches that enable services to be programmed and
expressed in device-independent terms.

Scalability. IoT services may involve individual sensors
and actuators, or compose and coordinate a limited number
of local devices, but also exploit a multitude of cooperating
devices distributed over a wide area. An approach for pro-
gramming and deploying IoT services should adopt the same
basic model for small and for large-scale services, and should
not lose in effectiveness when scaling.

Adaptivity. IoT systems are called to operate in very
dynamic environments. Devices can be ephemeral, mobile, or
become unreachable. Yet, IoT services and applications must
adaptively react to dynamics and be highly available to serve
reliably despite contingencies.

Service-orientedness. The current perspective on the IoT
is strictly service-oriented: an IoT device (or ensemble of
devices) is conceived as a provider of one or more services, and
composite services are created by exploiting traditional service
composition approaches. This does not acknowledge that most
IoT devices are instead producer of almost continuous flows
of events and data.

Seamless integration of devices, edge, and cloud levels.
The overall IoT fabric will include multitude of distributed
devices, edge computers that can act as “local clouds” for the
devices in a locality, and general cloud resources. To exploit
the IoT fabric at its best, there is thus need of supporting
direct device-to-device interactions, edge computation, and
cloud resources, all within the same design and programming
abstraction.

Interoperability and security. Enabling interoperability
among heterogeneous devices and ensuring security of IoT sys-
tems and services are key challenges to enable the widespread
diffusion of IoT services.

To clarify the above issues, let us a specific case study in
the healthcare area, yet representative of a larger class of IoT
scenarios such as smart homes and smart cities [7]: an IoT-
enriched rehabilitation center. In one such center, inhabited by
patients in needs of assisted rehabilitation, we assume that all
the ambients of the rehabilitation center are densely enriched
with connected sensors and actuators: light and heat con-
trollers, gas and smoke detectors, presence and motion sensors,
doors (main doors, internal doors, fridge, kitchen furniture)
sensors, electric consume sensors, shutter/curtain controller,
as well as sensorized everyday objects (e.g, cup, fork, cane).
Moreover, also medical devices (e.g., pulse-oximetry, smart
scale) may be provided to patients in order to automatically
send health status information and measures.

In such a scenario, IoT devices can be exploited to realize
a variety of different services to support both medical doctors
in the monitoring and care activities of individuals, to help
individuals and their family members in their everyday self-
managed healthcare activities, and to control the overall condi-
tions of the rehabilitation center. However, If the rehabilitation
center is a very big one, the number of individual devices
embedded in it can be very large and heterogeneous, thus
programming services by having to account for the individual
characteristics of each devices can be very hard. One should
also consider that devices can easily become unreachable, or
their proper functioning could be undermined by patients,
calling for an approach that adaptively tolerates devices un-
availability. Also, given the potentially very high-number of

devices scattered over a possibly large area, an approach
promoting scalability is necessary.

Given the safety-critical nature of the scenario, many
services related to e.g., the health condition of patients or the
ambient conditions of the rehabilitation center may be required
to continuously send information to be analyzed to different
actors (from doctors to the hotel maintenance center). Thus,
any approach for developing services and applications should
more properly conceive sensors and actuators as producers and
consumers of continuous flows of events, rather than as loci
of services to be invoked.

At the architectural level, it is clearly possible to realize
services and application in a centralized way, by having all data
from sensors be re-directed to some central cloud, where it can
be analyzed and – depending on the services to be realized –
commands for the actuators can be eventually issues. However,
the high-number of sensors and actuators, and the inherent
real-time nature of services for patients (where potentially
dangerous health conditions or simply dangerous behaviors by
patients needs immediate actions) also call for decentralized
approaches where the needed sensorial information can imme-
diately flow by the proper actuators.

Finally, as in most other IoT scenarios, interoperability and
security are necessary towards ease of development and to-
wards trustworthiness, respectively, the latter being particularly
critical given the involvement of personal clinical data.

III. THE FLUIDWARE APPROACH

The Fluidware approach considers IoT-enriched environ-
ments densely populated with a variety of ICT devices (overall
forming the “IoT fabric”), acting as sensors or actuators or
both. Sensing devices generate “contextualized streams” of
data representing events about something that is happening
somewhere in the environment. Actuating devices receive
“contextualized commands streams” related to what they
should do over time.

A. Funnel Processes

The starting innovative idea of the project is that IoT
services and applications can be realized by means of “fun-
nel processes”, acting as digesters and producers of widely-
distributed streams of events, involving collectives of devices,
and which we shall also call “event flows” (or simply “flows”).
Namely, funnel processes are able to capture event flows,
elaborate them, send/(re)distribute them over the network of
distributed IoT devices or over the edge/cloud (see Figure 1).

Funnel processes will be specified in a declarative way
independently of their actual allocation and distribution (man-
aged by the Fluidware middleware). Their specification will
be such to define which flow to connect to, depending on
contextual/spatio-temporal and semantic matching (e.g., “in
room X now”, “where temperature is greater than 25 degrees”).
Thus, specification will totally abstract from the actual devices
that events belong to: it can be such to include a limited num-
ber of local events from a limited number of devices, but also a
large-number of devices spread over a large-scale. This enables
to define scale-independent computational activities, inherently
independent of external conditions and smoothly fitting various

Fig. 1. A general abstract representation of funnel processes exploited locally.

Fig. 2. Overview of the Fluidware approach.

computing/network infrastructures. Most specifically, an event
flow is manipulated computationally to produce a new flow,
by a combination of mechanisms typical of stream processing
frameworks and of self-adaptive and self-organizing systems,
such as aggregation, spreading, persistence, and so on.

B. Deployment Scenarios

At the implementation and deployment level, the Fluidware
platform/middleware will take care of creating actual processes
and connecting them to the flows of actual devices, to realize
funnel process specifications. Such processes can be deployed
on any IoT device with enough resources to support their
execution. Opportunistically, funnel processes can be deployed
at the level of edge computers associated to some specific
location and having access to all devices in that location [8],
or even at the level of some centralized cloud.

Clearly, when allocated to individual devices, a process can
pre-digest and elaborate the data sensed by that device before
forwarding it to some other devices or to some collection
point. However, it can also be seamlessly used to spread and
re-distribute events to nearby devices, and itself contribute
absorbing and possibly aggregating events coming from nearby
devices. This can be used to realize composite services with
a direct device-to-device coordination. This scenario is repre-
sented in the left part of Figure 2.

In addition, a funnel process to be connected to an event
flow spread from a multitude of devices, and/or a wide area,
can be realized by replicating and distributing multiple actual
processes, all logically part of the same distributed funnel

process. Such aggregations can be used to realize services
and applications in the large-scale by reasoning at the level
of collectives of devices and, in the end, to promote scale-
independent and device-independent computations, along the
lines of field-based coordination and aggregate computing
approaches [5], [9]. The right part of Figure 2 represents such
a scenario.

On the other hand, when acting at the edge level, funnel
processes can be used to collect the events provided by devices
at a specific location (e.g., a room, a building, or a plaza),
and elaborate them to produce flows of commands to the local
actuators, and possibly forwarding streams of data to the cloud.
Finally, nothing prevents from associating funnel processes
to some cloud servers to realize some sorts of centralized
services, either explicitly within funnel process deployment
specification [10], or implicitly as an opportunistic choice at
the platform level. This scenario is represented in the central
part of Figure 2.

We emphasize that, building on previous experience on
formal models of distributed and adaptive business processes
[11] and in distributed field-based coordination [5], [2], we
aim at enriching the Fluidware approach with a formalized de-
scription of funnel processes supporting static and behavioral
property verification, independently of where the approach acts
at the level of individual devices or at the edge/cloud level, and
independently of whether it is used to implement traditional
composition of services or rather in-the-large collective dis-
tributed coordination.

C. Addressing the Challenges

Let us now analyze how Fluidware has the potential to
effectively address the challenges identified in Section II, also
by making examples related to the case study scenario.

Device independence. In Fluidware, whole collectives of
IoT devices are abstracted as producers (or consumers, for
actuators) of distributed streams of contextualized events, thus
making system programming dependent on the availability of
specific flows of events, not on the specific identity of the
devices producing or consuming them.

In the case study, accelerometers on smart phones or wrist
devices produce flows of data that can be used to detect and
classify activities of patients. We envision in Fluidware to be
possible to define a generic funnel process able to “digest” such
streams, apply a classifier function to them, so as to produce
a flow of classified data. The funnel process needs not to be
tied to a specific accelerometer, but can associated to any flow
of acceleration data associated to a specific patient, e.g.,1

def classifier
[accelerometer(bind-to patientX)
-> classifier_function
-> activity(patient X)]

Along with accelerometers, it is possible to think at captur-
ing the flow of all cameras in the room of a patient, or at the
level of the whole rehabilitation center, to detect activity via
image processing and generate an additional “activity” flow.

1We emphasize the syntax and semantics of Fluidware are still under
definition, thus the examples has to be considered pseudocode.

All the flows related to activity recognition can then feed an
“alarm-generator” that can recognize dangerous situations for
patients and can trigger alerts in the medical personnel.

To monitor environmental situations, we can for instance
define a funnel process to monitor temperature in the reha-
bilitation center and signal potential unusual situations (e.g., a
fire). Such a funnel process can be associated to all the sensors
in the center capable of detecting temperature to perform
global monitoring, e.g,.

def detect-danger
[temperature(bind_to any)

-> detection_func
-> situation(source sensorX)]

Another funnel process, can be in turn instructed to monitor
the results of the “detect-danger” process to eventually trigger
activation of fire extinguishers.

def trigger-extinguishers
[if situation(bind_to any)->"fire"

-> identify_location
-> activate(extinguishers location)]

Scalability. In Fluidware, Funnel processes can be used to
access individual streams, as well as – with the same model –
to aggregate, compose and control distributed flows of events
generated by myriads of devices, thus seamlessly enabling
small-scale service composition and large-scale services based
on collective behaviors.

As from the examples above, at the programming level, a
single funnel process can handle the flows of data of multiple
devices. In addition, it can aggregate flows from multiple
devices to generate distributed data structures to represent
global level situations that can be used to realize context-
dependent flow computations. For instance, upon detection of
fire in some rooms of the center, one can think at spreading
and aggregating related information across the whole building,
so as to form a distributed “field” [2], [5] to represent, in each
location, the direction of fire locations and the distance from
it:

def fire-field
[if situation(bind_to here)->"fire"

-> aggreggate(fire-fields)
-> spread(fire-fields)

Adaptivity. In Fluidware, Funnel processes are not stati-
cally tied to specific IoT devices, but are dynamically bound
to any flows of events matching contextual and semantic
characteristics. Thus, they can operate by dynamically re-
connecting to different sets of devices, simply depending on
their characteristics, whenever needed to react to contingen-
cies.

In the example above, no matter if some of the temperature
sensors crashes, or if new ones are added, there is not need
to update the detect-danger processes, and not even to re-start
them.

Service-orientedness. In the Fluidware vision, IoT devices
are not standard loci of services, but producers and consumers
of data/event flows. This enables a more dynamic and real-time
handling of situations.

It should be clear from the example above that we aim at
the definition of funnel processes that coordinate the activities
of sensors and actuators conceives devices in a very different
way than as simple loci of services.

Seamless integration of devices, edge, and cloud levels.
Funnel processes may be playing the role of re-directing
streams of data to the edge, where further processes may digest
them and re-direct them to realize composite edge services, or
they can be used to re-direct streams to the cloud.

For instance, depending on the capabilities of the devices
hosting accelerometers, one can think at deploying the “classi-
fier” to process directly on them or rather at some centralized
server. Similarly, for the “detect-danger” process, one can think
at having a single process in a centralized control center, or at
having one process in each room of the center. We expect the
Fluidware middleware, possibly guided by some “allocation”
directive, to automatically handle the allocation and possible
replication of Funnel processes.

Interoperability and security. Concerning interoperabil-
ity, the possibility in Fluidware to program services in a device-
independent way promotes interoperability, and just requires
devices to host a Fluidware local proxy, or - in the case of
very lightweight IoT devices - to directly communicate via
standard IoT protocols to Fluidware edge devices. However,
of course, funnel processes requires adhering to a common
semantics to agree on the “meaning” of the flow they digest,
e.g., in the above examples, they require sharing the concept
of “activity” and the meaning of activity classes.

Concerning security, this is an open issue, and we are still
in the process of understanding how to protect the integrity of
applications from malicious funnel processes.

IV. THE PATH TOWARDS FLUIDWARE

Let us now present the different research activities that we
are currently undertaking to make Fluidware a solid reality.

A. Programming Model

From the development and programming viewpoint, we
expect that IoT services and IoT applications will be mostly up
to expert system developers. Yet, we expect that the Fluidware
declarative approach will also enable local managers of a
location (and, to some limited extent, end users) to be able
to directly personalize the behavior of such applications with
simple forms of user-level programming of funnel processes,
for instance, in a similar way to “if this then that” approaches
[12] or by selecting and composing specific funnel processes
from libraries of reusable specifications.

To formalize the Fluidware operational model and imple-
ment its basic programming interface, we plan to undertake
the following activities: (i) develop the operational model of
funnel processes, to serve as a blueprint for implementation
of the platform, for defining composition techniques, and to
check well-formedness of specifications and properties—it will
include development of a core calculus, operational semantics,
and by-construction proofs of behaviour properties, e.g., in
the style of [13]; and (ii) implement a library to provide
the core mechanisms devised in the model, to specify and
compose processes, as an interface towards the platform and

existing simulators. We envisage the adoption of modern tech-
niques to smoothly integrate with mainstream programming
and functional-oriented declarative approaches.

B. Middleware

We expect Fluidware be supported by a middleware capable
of instantiating local proxies of funnel processes and launch
them in execution into the proper location [6], and to relocate
them as needed. To promote scalability and flexibility, the
platform will support interactions and coordination at three
levels (as from Figure 2): direct device-to-device interactions
(e.g., for field-based coordination), with funnel processes di-
rectly instantiated on sets of devices, and with events flowing,
aggregating and re-distributing from device to device; edge
level, with funnel processes dynamically allocated on edge
computers (i.e., cloudlets or fog computers), to digest streams
of events, implement local coordinated services, and possibly
to connect multiple edges to realize inter-edge coordination;
cloud level, for centralized monitoring, coordination, and stor-
age.

The activities to develop the Fluidware middleware plat-
form will address three related objectives: (i) define a map-
ping from Fluidware programming specifications into a set
of distributed components to be deployed atop the Fluidware
platform—such mapping will be based on a model-driven de-
velopment and will distinguish abstract platform-independent
specifications from deployable platform-dependent compo-
nents; (ii) implement a distributed engine for supporting
the execution of Fluidware systems and services, organized
as a three-layered (devices, edges, and cloud) super-peer
architecture—there, platform-dependent components can be
dynamically activated and re-configured in IoT devices, edge
servers and/or cloud platforms; and (iii) analyze interoperabil-
ity and security issues, by defining guidelines for enabling de-
vices to connect to the Fluidware platform, and analyzing how
a trust-oriented distributed infrastructure for inter-component
security can be integrated within it.

C. Engineering Methodology

The Fluidware approach will also require the definition
of new conceptual abstractions to reason about complex IoT
services and applications and their requirements. In addition,
it will call for the identification of specific methodological
guidelines to drive the design and development process, to be
necessarily accompanied by Fluidware-specific tools to support
the activities of the development process, and to provide
correctness guarantees [14], [15], [16], [13].

Accordingly, there is need of synthesizing from the pre-
viously identified activities in order to make available the
basic engineering instruments supporting the analysis, design
and development of complex IoT systems and services with
Fluidware. To this end, we plan to: (i) identify the key
conceptual abstractions around which the analysis and design
of Fluidware systems and services should rely on, and on
this basis define guidelines for analysis, design, development,
testing, and adaptation of Fluidware services and systems;
and (ii) identify and prototype a set of tools in support of
the development of Fluidware systems and services, including
support to verify service behavior against specifications (by

model-checking or static analysis) and a large-scale simulator
to verify overall system behaviors.

D. Application Studies

We expect Fluidware to be a general-purpose approach,
suitable for developing IoT services and applications in a
variety of emerging scenarios, such as smart homes, smart
cities, traffic control systems, energy control systems, and
smart production systems.

To keep focus without losing generality, we intend to stick
to a specific scenario of ambient assistant living similar to
that of the case study scenario here adopted [12]. This will
enable putting the Fluidware approach at work in real-world
problems, to guide its development strategies, and to assess
the effectiveness of the approach. In particular, we intend to
test ambient assisted living application both at the scale of a
real-life domestic indoor testbed and of a large-scale simulated
urban scenario. The domestic testbed will be aimed at verifying
ease and expressiveness of programmability of Fluidware, as
well as the effectiveness of the platform and its adaptability
properties. The large-scale simulated scenario will be useful
to verify Fluidware scalability and flexibility.

V. RELATED WORK

The Fluidware computational model definitely owes to
methods proposing simplification of distributed programming
by abstracting from individual networked devices, and working
at the level of their collective behaviors, such as SCEL [17],
SAPERE [2], or DECCO [9]. These also include space-time
models for the universal manipulation of field data structures
diffused in space and evolving with time, as in field-based [2]
and aggregate computing [5]. Fluidware, with its concept of
funnel processes, will advance such approaches by enabling
the seamless modeling of small-scale composite services as
well as large-scale collective services, and by supporting
the integration of semi-decentralized approaches with fully
distributed ones. Also, by exploiting the lessons of process
algebraic [18] and formal approaches [19], Fluidware can
add a process layer which (i) internally carries on stream
computation, and (ii) externally defines life-cycle aspects such
as funnel process generation, space-time extension, interaction
with environment, and deallocation.

By taking inspiration from frameworks to automatically
split data processing behavior for cloud- and cluster-style
execution (e.g., Spark [20], and Flink [21]), Fluidware will
enrich traditional collective and aggregate approaches to dis-
tributed programming by considering a transition from han-
dling collective “fields” of data to the notion of distributed
stream of events, thus addressing also non-functional aspects
concerning the control of dynamic aspects of event generation
and diffusion.

Some recent approaches to programming IoT services
propose new computational abstractions as building blocks of
IoT services, such as the microservices of Osmotic computing
[22], the core processors of EdgeIoT [8], or the deployment
units of Elastic Computing [10]. These approaches share with
Fluidware the idea of enabling the adaptive deployment of such
building blocks at the level of both cloud or edge computers,
and possibly at the level of IoT devices. However, Fluidware

will enrich them with an operational semantics addressing
dynamically multi-layered architectures, with the possibility
of also acting in collective terms at the level of devices to
enforce large-scale adaptive service composition.

Concerning middleware, a variety of platforms have been
proposed to support the deployment and execution of IoT
services and applications (see [6] for a survey) and including
solutions to adaptively handle interoperability [16], context-
dependency [23], spatial aggregation [24] and adaptivity [2].
Similarly to them, the Fluidware platform will promote inter-
operability (thanks to device-independence of the funnel pro-
cess abstraction), adaptivity (thanks to the flexible deployment
of funnel processes) and context-dependency (events digested
by funnel processes are inherently contextual). However, it
will also provide solutions for the collective execution and
coordination of funnel processes on the large-scale.

VI. CONCLUSIONS

In this article, we have presented Fluidware, a proposal
for an innovative programming model for IoT services and
applications, conceived, to ease the development of flexible
and robust large-scale IoT services and applications.

The key innovations that Fluidware promises to bring
about are as follows: (i) the funnel process abstraction can
go significantly beyond the state-of-the-art in computational
models for distributed and collective systems, allowing to
declaratively express distributed processes managing contex-
tualized streams of events in a way that is effectively scale-
independent, device-independent, and adaptive; (ii) the in-
terplay between Fluidware model and middleware will fully
provide utility-driven exploitation of infrastructure, enabling
execution of funnel processes along the entire IoT/edge/cloud
stack; and (iii) the definition of novel software engineering
abstractions, methodologies, and tools to support activities
performed to develop Fluidware applications can shed new
lights into the general software engineering issues associated
to the development of complex IoT systems and services in
general, independently of Fluidware.

Currently, we are in the process of developing the presented
ideas, in the hope to actually deliver the Fluidware identified
potentials.

REFERENCES

[1] T. Teixeira, S. Hachem, V. Issarny, and N. Georgantas, “Service oriented
middleware for the internet of things: A perspective,” in Proceedings
of the 4th European Conference on Towards a Service-based Internet,
ser. ServiceWave’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp.
220–229.

[2] F. Zambonelli, A. Omicini, B. Anzengruber, G. Castelli, F. L. D.
Angelis, G. D. M. Serugendo, S. A. Dobson, J. L. Fernandez-Marquez,
A. Ferscha, M. Mamei, S. Mariani, A. Molesini, S. Montagna, J. Niem-
inen, D. Pianini, M. Risoldi, A. Rosi, G. Stevenson, M. Viroli, and
J. Ye, “Developing pervasive multi-agent systems with nature-inspired
coordination,” Pervasive and Mobile Computing, vol. 17, pp. 236–252,
2015.

[3] M. Mamei and F. Zambonelli, “Programming pervasive and mobile
computing applications: The TOTA approach,” ACM Trans. Softw. Eng.
Methodol., vol. 18, no. 4, pp. 15:1–15:56, 2009.

[4] V. Andrikopoulos, A. Bucchiarone, S. G. Sáez, D. Karastoyanova, and
C. A. Mezzina, “Towards modeling and execution of collective adaptive
systems,” in International Conference on Service-Oriented Computing.
Springer, 2013, pp. 69–81.

[5] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the
Internet of Things,” IEEE Computer, vol. 48, no. 9, pp. 22–30, 2015.

[6] A. Palade, C. Cabrera, G. White, M. A. Razzaque, and S. Clarke,
“Middleware for internet of things: a quantitative evaluation in small
scale,” in 2017 IEEE 18th International Symposium on A World of
Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE, 2017,
pp. 1–6.

[7] F. Zambonelli, “Toward sociotechnical urban superorganisms,” IEEE
Computer, vol. 45, no. 8, pp. 76–78, 2012.

[8] X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the internet
of things,” IEEE Communications Magazine, vol. 54, no. 12, pp. 22–29,
2016.

[9] T. Bures, F. Plasil, M. Kit, P. Tuma, and N. Hoch, “Software abstractions
for component interaction in the Internet of Things,” IEEE Computer,
vol. 49, no. 12, pp. 50–59, 2016.

[10] D. Moldovan, G. Copil, and S. Dustdar, “Elastic systems: Towards
cyber-physical ecosystems of people, processes, and things,” Computer
Standards & Interfaces, vol. 57, pp. 76–82, 2018.

[11] R. Cognini, F. Corradini, A. Polini, and B. Re, “Business process feature
model: an approach to deal with variability of business processes,” in
Domain-Specific Conceptual Modeling. Springer, 2016, pp. 171–194.

[12] F. Corno, L. De Russis, and A. M. Roffarello, “A semantic web
approach to simplifying trigger-action programming in the IoT,” IEEE
Computer, vol. 50, no. 11, pp. 18–24, 2017.

[13] M. Viroli, G. Audrito, J. Beal, F. Damiani, and D. Pianini, “Engineering
resilient collective adaptive systems by self-stabilisation,” ACM Trans-
action on Modelling and Computer Simulation, vol. 28, no. 2, pp. 16:1–
16:28, Mar. 2018.

[14] I. Jacobson, I. Spence, and P.-W. Ng, “Is there a single method for the
internet of things?” Queue, vol. 15, no. 3, p. 20, 2017.

[15] F. Zambonelli, “Key abstractions for iot-oriented software engineering,”
IEEE Software, vol. 34, no. 1, pp. 38–45, 2017.

[16] G. Fortino, W. Russo, C. Savaglio, W. Shen, and M. Zhou, “Agent-
oriented cooperative smart objects: From iot system design to im-
plementation,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 48, no. 11, pp. 1949–1956, 2018.

[17] R. De Nicola, D. Latella, A. Lluch-Lafuente, M. Loreti, A. Margheri,
M. Massink, A. Morichetta, R. Pugliese, F. Tiezzi, and A. Vandin, “The
SCEL language: Design, implementation, verification,” in Software En-
gineering for Collective Autonomic Systems - The ASCENS Approach,
2015, pp. 3–71.

[18] Y. Choe and M. Lee, “Algebraic method to model secure iot,” in
Domain-Specific Conceptual Modeling. Springer, 2016, pp. 335–355.

[19] L. Belzner, M. Hölzl, N. Koch, and M. Wirsing, “Collective autonomic
systems: Towards engineering principles and their foundations,” in
Transactions on Foundations for Mastering Change I. Springer, 2016,
pp. 180–200.

[20] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
spark: a unified engine for big data processing,” Communications of the
ACM, vol. 59, no. 11, pp. 56–65, 2016.

[21] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, vol. 36, no. 4, 2015.

[22] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Osmotic
computing: A new paradigm for edge/cloud integration,” IEEE Cloud
Computing, vol. 3, no. 6, pp. 76–83, 2016.

[23] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the internet of things: A survey,” IEEE communi-
cations surveys & tutorials, vol. 16, no. 1, pp. 414–454, 2014.

[24] R. Casadei, G. Fortino, D. Pianini, W. Russo, C. Savaglio, and M. Viroli,
“Modelling and simulation of opportunistic iot services with aggregate
computing,” Future Generation Computer Systems, vol. 91, pp. 252–
262, 2019.

