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Introduction: Patients with transient ischemic attack (TIA) andminor stroke demonstrate

cognitive impairment, and a four-fold risk of late-life dementia.

Aim: To study the extent to which the rates of brain volume loss in TIA patients differ

from healthy controls and how they are correlated with cognitive impairment.

Methods: TIA or minor stroke patients were tested with a neuropsychological battery

and underwent T1 weighted volumetric magnetic resonance imaging scans at fixed

intervals over a 3 years period. Linear mixed effects regression models were used to

compare brain atrophy rates between groups, and to determine the relationship between

atrophy rates and cognitive function in TIA and minor stroke patients.

Results: Whole brain atrophy rates were calculated for the TIA and minor stroke

patients; n = 38 between 24 h and 18 months, and n = 68 participants between 18

and 36 months, and were compared to healthy controls. TIA and minor stroke patients

demonstrated a significantly higher whole brain atrophy rate than healthy controls over a

3 years interval (p= 0.043). Diabetes (p= 0.012) independently predicted higher atrophy

rate across groups. There was a relationship between higher rates of brain atrophy and

processing speed (composite P = 0.047 and digit symbol coding P = 0.02), but there

was no relationship with brain atrophy rates and memory or executive composite scores

or individual cognitive tests for language (Boston naming, memory recall, verbal fluency

or Trails A or B score).

Conclusion: TIA andminor stroke patients experience a significantly higher rate of whole

brain atrophy. In this cohort of TIA and minor stroke patients changes in brain volume

over time precede cognitive decline.

Keywords: brain, transient ischemic attack, stroke, cognition battery, atrophy rates, diffusion weighted imaging,

white matter lesion, longitudinal
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INTRODUCTION

Transient ischemic attack (TIA) and minor stroke, traditionally
considered as risk factors for major ischemic stroke, are common
medical emergency (incidence 0.37–1.1 per 1,000) associated
with a four-fold increase risk of cognitive decline and dementia
(1–3). Mechanisms linking TIA and minor stroke with cognitive
decline are poorly understood. More than a third of patients
with TIA have impairment of more than one cognitive domain
within 3 months of their TIA that is not entirely explained by
silent brain infarcts (4). Pathological studies link late life cognitive
impairment and brain atrophy to two dominant disease entities,
Alzheimer’s disease (AD) and small vessel disease (5, 6). Fifty
per cent of late-life cognitive impairment is attributed to vascular
and lifestyle-related risk factors in midlife. Still unknown are the
incipient disease processes which may contribute to cognitive
dysfunction, and whether these can be modified through vascular
risk reduction strategies guided by biologically relevant markers
of disease progression (7). For instance, early macroscopic brain
loss (i.e., volume loss in ml/year), measured by serial magnetic
resonance imaging (MRI), has been shown to be a predictor
of cognitive decline in AD and mild cognitive impairment (8).
Yet, studies identifying early incipient disease stroke and TIA
cohorts vary considerably in clinical selection criteria, cognitive
measures and methods for measuring changes in brain structure
over time (9–11).

In this longitudinal cohort study of non-demented TIA/minor
stroke patients, we hypothesize the TIA/minor stroke cohort
will have increased rates of cerebral brain atrophy (annualized
percent brain volume change, PBVC) compared to healthy
controls (HC) measured with repeated high-resolution
MR imaging. We aim to correlate PBVC with change in
neuropsychological performance over a 3 years period.

MATERIALS AND METHODS

Study Population
Patients were recruited from the Extended-CATCH (CT and
MRI in the Triage of TIA and minor Cerebrovascular events to
identify High risk patients) study (12) at the Foothills Medical
Center or Calgary Stroke Prevention Clinic from March 2009
to December 2012, while healthy controls were drawn from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. TIA
was diagnosed by disruptions to speech and motor symptoms
that lasted longer than 5min but <24 h. Minor ischemic stroke
was defined by a National Institute of Health Stroke Scale
(NIHSS) score of<4. Demographic andmedical information was
collected including vascular risk factors such as blood pressure,
body mass index (BMI), history of hypertension and diabetes.
Hypertension positive was defined as past medical history
of hypertension or is currently prescribed anti-hypertension
medications. MRI was acquired 48 h of symptoms (baseline),
at 18 months and 3 years. The MRI protocol at each time
point included a high-resolution T1-weighted and 3D FLAIR
sequences as described below.

Inclusion criteria for Ex CATCH TIA/minor stroke cohort
included: (1) age 50–80 years; (2) established vascular risk factors;

and (3) the acquisition of serial brain MRI scans at all 3 time
points. Exclusion criteria for Ex CATCH TIA/minor stroke
cohort included: (1) dementia as defined by the National Institute
of Aging-Alzheimer Association Criteria (13); (2) other central
nervous system diseases (e.g., MS), alcoholism, substance abuse,
sedatives, antipsychotic medications and history of psychiatric
illness that might impact cognitive testing and follow-up;
(3) Other comorbidities that could significantly interfere with
cognitive performance and functional outcome (e.g., recent
coronary bypass surgery, comorbidities), English as a second
language, and the inability to complete neuropsychological
testing. The University of Calgary Conjoint Health Research
Ethics Board formally approved the study, and all patients
provided written informed consent prior to participation.

The healthy control data used in the preparation of this article
were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial MRI, positron emission
tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD). For up-to-date information, see
www.adni-info.org. Well-characterized healthy control data was
obtained through ADNI, made permissible through approval by
the ADNI collaborators. The use of ADNI data for scientific
investigations has been established by other studies that compare
specific disease groups with the ADNI subjects (14–16).

ADNI inclusion criteria for healthy controls included a
Mini Mental State Examination (MMSE) score between 24
and 30, a Clinical Dementia Rating of 0, no indication of
depression, MCI, or dementia, cognitively normal, modified
Hachinski score ≤ 4, Geriatric Depression Scale <6, and normal
memory function. ADNI exclusion criteria included significant
neurological disease, MR evidence of infection, infarction, or
lesions, inability to complete MRI due to medical devices in
the body, psychiatric disorders, history of alcohol or substance
abuse, any significant illness or medical instability, use of
psychoactive medication.

Clinical Data Collection
At study entry baseline evaluation included clinical review,
fasting cholesterol, glucose, and renal function. Treatments for
hypertension, diabetes, hyperlipidemia, anti-thrombotic agents,
and other medications that could influence cognition such as
sedatives, anxiolytics, or psychotropic medications are collected.
We screened for obstructive sleep apnea (17). Blood pressure
(BP) measurement was recorded from average of 3 sitting BPs at
baseline and each subsequent visit. All participants are managed
according to current stroke prevention guidelines (18).

Image Acquisition
Extended CATCH TIA/Minor Stroke Cohort
To evaluate whole brain atrophy rates, TIA and minor stroke
patients underwent a T1-weighted volumetric acquisition using
a 3T scanner (Signa NV/I or Discovery 750; General Electric
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Healthcare, Waukesha, WI). High-resolution T1 images were
acquired at baseline (within 48 h of symptoms) and at follow-
up (TE/TR= 2.73 ms/7.0ms, flip angle = 8◦, TI = 650ms,
acquisition matrix = 256 × 256). 3D FLAIR (TE/TR/flip angle
140 ms/ 9,000 ms/90◦, acquisition matrix = 256 × 256) were
acquired at the same time points. Whole brain atrophy rates were
measured between baseline (within 48 h of stroke symptoms) and
18 months (Interval 1), and 18 months to 3 years (Interval 2).
In the middle of our study, a hardware upgrade occurred to a
GE Discovery 750 scanner preventing whole brain atrophy rates
being calculated at Interval 1 in those cases where MRI data
was acquired before the system upgrade. Quality assurance to
detect image distortion was conducted to assess the adequacy
of key image properties including image uniformity, image
contrast, and signal-to-noise. This visual imaging inspection was
performed on every scan and exclusion criteria and image quality
was graded according to neck and head movement, quality of
registration and intensity inhomogeneities.

For Extended CATCH subject a stroke neurologist and
neuroradiologist reviewed all images. Acute infarct location was
recorded as follows: (1) cortical (2) deep (basal ganglia, internal
capsule, thalamus, and deep white matter tracts) (3) cortical and
deep, and (4) infratentorial. DWI lesion volume were calculated
using Quantomo (Cybertrials Inc., Calgary, Canada), and have
been previously reported (19). For the segmentation of white
matter hyperintensities (WMHs) baseline and follow up fluid-
attenuated inversion recovery (FLAIR) images were registered
to the high-resolution T1 images using a rigid transformation
and cost function of the mutual information. WMH volume
(corrected for total intracranial volume) were calculated using
Cerebra-WML software, a semi-automated software measured
the volume (ml) of white matter lesions segmentation is based
on the global threshold and contrast between the different
anatomical regions of the brain (20), following international
recommendations for the reporting, image acquisition and
analysis of small vessel disease reported by our group (21, 22). To
evaluate the accuracy of these WM segmentations, two trained
clinicians conducted quality control of the semi- automated
segmentations by visually inspecting all the FLAIR images.

ADNI Healthy Controls
ADNI controls were imaged using the standardized ADNI
protocol (adni.loni.usc.edu/methods/documents/mri-protocols)
(23). Initial inspection of the ADN1-and ADNI GO database
revealed 417 healthy controls, and then identified 70 healthy
controls that met the age inclusion criteria, and had undergone
3T MRI at baseline, and follow up at years 1 and 3 years ± 6
months. 3T MRI data was download from the ADNI website
and included MRIs from Siemens Medical Solutions, Phillips,
and General Electric Healthcare. MR protocols included the
acquisition of sagittal high-resolution volumetric T1-weighted,
inversion recovery prepared, structural images, and 3D FLAIR.
MPRAGE (or vendor equivalent) high resolution T1 sequences
were acquired (TE = min full echo, TR + 2,300, TI = 900ms,
acquisition matrix = 256 × 256 @1 × 1 × 1mm) and SD
FLAIR (Effective TE = 119, TR = 4,800, T1 = 1,650, acquisition
matrix= 256× 256 @ 1.2× 1× 1mm).

Image Analysis
Measurement of Baseline Brain, Cortical Gray Matter,

and White Matter Volume
SIENAX (Structural Imaging Evaluation Using Normalization
of Atrophy, Cross-sectional) was used to measure the brain
volume, normalized for head size, cortical gray and white matter
volume (24, 25). Image analysis using SIENAX consists of 4
main steps: brain extraction, registration to MNI152 standard
template, standard-space masking, tissue-type segmentation, and
calculation of total brain volume.

Measurement of Whole Brain Atrophy Rates
Adetailed outline of the procedure is provided elsewhere (24, 25).
Measurement of whole brain atrophy rates was conducted using
SIENA (24). Each MRI underwent an imaging quality control,
which included ensuring proper brain extraction results that
did not include non-brain tissue, proper registration to MNI152
template and accurate segmentation of the whole-brain. Briefly,
the surface of the brain and the internal brain/cerebrospinal
fluid boundaries were identified automatically (Structural Image
Evaluation, using Normalization, of Atrophy, SIENA, part of
FMRIB Software Library, FSL; https://www.fmrib.ox.ac.uk/fsl),
followed by inspection and manual correction (26). These
corrections included distortion due to gradient non-linearity;
for image intensity non-uniformity (N3); for B1 non-uniformity
where required; and scaling based on ADNI phantom measures
(23). The 18 months and 3 years high resolution T1-weighted
acquisition were also registered to the baseline T1-w acquisition
via neighborhood-normalized cross-correlation.

Neuropsychological Assessment
TIA and minor stroke patients underwent neuropsychological
testing 90 days post ictus, and then annually for 3 years.
A modified version of the Canadian Stroke Network and
National Institute on Neurological Disorders and Stroke Vascular
Cognitive Impairment battery was used (27). The battery
tested frontal/executive, memory, language, and visuospatial
domains, and required ∼60–70min to administer. Specifically,
the tests used were: Trail making Test (Parts A and B) (28),
WAIS-III Digit Symbol Coding (29), Controlled Oral Word
Association Task (30), Boston Naming Test second edition—
short form (31), California Verbal Learning Test—II (32), Rey
Osterrieth Complex Figure Task (33), Boston Diagnostic Aphasia
Examination third edition—Complex Ideational Material subtest
(34), and CLOX1 clock drawing task (35). Domain-specific
composite z-score variables were created: (1) EF (average of Trails
B and COWAT FAS), (2) psychomotor processing speed, PS
(average of Trails B and Digit Symbol Coding), and (3) verbal
memory-Memory: CVLT List A Delayed Free Recall which was
calculated by taking the average of [2/3(average of trials 1–5)
+1/3(trials 12 and 12 false positives). Performance on composite
measures for each patient (19). Median (IQR) is reported in
the Table S1.

Statistical Analysis
Differences between TIA and minor stroke patients and ADNI
healthy controls demographic and clinical characteristics were
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tested using t-test or Fisher’s exact tests. An analysis of
variance was performed using all time points within each
neuropsychological test. A linear mixed effects regression model
with a random intercept was used to compare longitudinal
changes in brain atrophy between patients and healthy controls,
adjusting for demographic characteristics and vascular risk
factors. The linear mixed-effects regression model considers
the effects of both the within-subject and between-subject
variation. For example, a TIA/minor stroke patient can respond
differently over a longitudinal study with respect to brain volume
(within-subject) and the variation in response of each individual
patient may be different from another patient (between-subject).
In our study, we anticipated a linear relationship between
the independent and dependent variables. This relationship is
characterized by the linear coefficient, which highlights the trend
of the response variable with the predictor. Linear regression
helps model the outcome and response variables while still
incorporating patients who may vary in their independent
variable. The model is best suited to longitudinal studies as it can
incorporate missing values at specified time points of the study
design, such as missing imaging or neuropsychological.

Our analysis consisted of two parts: (1) to determine
whether Extended CATCH patients had increased whole brain
atrophy rates, a linear mixed-effects regression analysis was
employed to model atrophy rates between Extended-CATCH
with ADNI. The model incorporated independent covariates
that may independently modify whole brain atrophy rates
such as age (years), sex (female), time (years), and vascular
risk factors including history of hypertension, smoking, white-
matter hyperintensity volume (mL) and diabetes; (2) a series
of mixed effects regression models were estimated to determine
the relationship between baseline MRI (whole brain volume,
gray matter volume, white matter volume, and white matter
hyperintensity volume), and annualized percentage volume
change (PBVC) of whole brain with cognitive functioning defined
by the selected cognitive tests and for three cognitive domains
(executive function, processing speed and memory).

In the first part of the analysis, imaging time interval
was a dichotomous variable coded zero if the atrophy rate
measurement spanned 24 h to 18 months for patients or baseline
to 1 year for healthy controls (labeled as the first interval). It was
coded one if the atrophy rate measurement spanned 18 months
to 3 years for TIA/minor stroke patients or 1 year to 3 years for
ADNI data (labeled as the second interval). All atrophy rates were
annualized to account for differences in interval duration.

In the second part of the analysis, there was no comparative
neuropsychological data for the ADNI controls, in the TIA/
minor stroke cohort only, a series of linear mixed effects models
were used to estimate longitudinal cognitive test performance
vs. annualized rate of brain atrophy, while controlling for
demographic and medical characteristics, and including a
random slope and intercept for each participant. Covariates in the
cognitive outcome models are: Time of cognitive testing (years,
∼4 measurements beginning 90 days post-ictus and annually
for 3 years thereafter), age at first assessment (years), Education
(years), initial DiffusionWeighted Imaging Lesion Volume (mL),
baseline White Matter Hyperintensity Volume (mL), baseline

Gray Matter Volume, and baseline White matter volume. As
atrophy rate intervals (48 h, 18 months, 3 years) did not align
with cognitive testing (90 days, 1 year, 2 years, 3 years), they were
estimated as a time-varying covariate and grouped as follows:
interval 1 PBVC (48 h to 18 months) with first two cognitive
testing time points (90 days, 1 year); interval 2 PBVC (18 months
to 3 years) with second two cognitive testing time points (2 years,
3 years). To determine if the results were sensitive to grouping
of these variables, the 1 year and 2 years cognitive testing time
points were grouped with the opposite intervals in two models,
however no difference in results was noted.

In all mixed effects models described above, a subject-specific
intercept and slope was estimated for each participant. Mixed
effects regression permits modeling of longitudinal outcomes
using all available data, for example, if a participant is missing
the cognitive assessment at 2 years, a slope and intercept
for them would still be estimated based on their cognitive
performance at 90 days, 1 year, and 3 years while controlling
for atrophy rate and covariates. In a process analogous to meta-
analysis, these subject-specific regression lines are summarized
across participants while accounting for the added error due
to missing data points (36). Statistical analysis was carried
out using R (version 3.3.2, R Core Team) using the package
LME4 (36) and p < 0.05 was used to determine statistical
significance, except on the analysis of cognitive performance,
where a Bonferroni correction was applied to control for
inflation of the family-wise error rate producing a more
conservative significance threshold of p < 0.006. All mixed
effects models were fitted using Restricted Maximum Likelihood
estimation. Where appropriate means ± standard deviations
are reported.

RESULTS

Patient Demographics, Imaging and
Neuropsychological Outcomes
A total of 90 patients were recruited to the Extended-CATCH
study and those patients with 2 consecutive MRI scans by March
2014 were included into the study. Over the course of 3 years,
2 patients were deceased, 8 withdrew from the study, resulting
in 80 patients (10% attrition) completing the study at 3 years. A
total of 78 had baseline MRI, and cognitive assessment at least
two time points. Demographic data and vascular risk factors for
TIA and minor stroke patients, and healthy control participants
are summarized inTable 1. On average, the TIA andminor stroke
patient group were younger than the ADNI healthy control
group (p < 0.001), contained a higher proportion of men (p
< 0.001), those with hypertension (p = 0.005), and current
smokers (p = 0.002). The TIA and minor stroke patients had
significantly higher white matter hyperintensity volume (p <

0.001). Neuropsychological testing was performed for the patient
group on average 111 ± 24 days’ post-event, and then annually
for 3 years (year 1 = 430 ± 76 days; year 2 = 746 ± 43 days;
year 3 = 1,130 ± 43 days). In the Ex CATCH cohort there was a
significant improvement in compositememory andCVLT scores,
and digit symbol coding between baseline and 3 years (Table S1).
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TABLE 1 | Demographic and medical characteristics of TIA and minor stroke

patients and healthy controls.

Characteristics Patient group Healthy control

group

p

Number of subjects, n 80 70

Age, years 64.5 ± 12.7 70 ± 4.4 <0.001

Gender, males (%) 63 (78.8%) 32 (45.7%) <0.001

Hypertension, n (%) 42 (52.5%) 20 (28.6%) 0.005

Diabetes, n (%) 11 (13.8%) 3 (4.3%) 0.053

BMI, kg/m2 (SD) 27.2 ± 4.1 26.8 ± 6.8 0.685

Current Smoker, n (%) 10 (12.5%) 24 (34.3%) 0.002

White matter hyperintensity

volume, mL (SD)

10.2 ± 8.8 5.3 ± 6 <0.001

Annualized rate of atrophy

at first interval (SD)

−0.636 ± 0.552 −0.547 ± 0.813 0.503

Annualized rate of atrophy

at second interval (SD)

−0.966 ± 0.812 −0.583 ± 0.498 0.001

Normalized Brain volume,

mL (SD)

1400.4 ± 87.2 1,421 ± 79.1 0.551

Gray matter brain volume,

mL (SD)

724 ± 54.8 730.3 ± 46.3 0.847

White matter volume, mL

(SD)

675.5 ± 44.8 691.5 ± 45.5 0.316

Atrophy Rates
Whole Brain atrophy rates were calculated for 80 unique
participants: 39 participants over the first interval, and 72
participants over the second interval. One atrophymeasurements
over the first interval and 4 over the second-time interval were
excluded because one or both T1-weighted volumetric images
did not meet quality control criteria. Therefore, 38 subjects were
included in Interval 1 and 68 subjects in Interval 2. Twenty-eight
subjects had available MRI data from Interval 1 and 2. For the
ADNI group, 70 healthy controls were included in the study. A
total of 210 T1-weighted volumetric images were included: 70 at
baseline; 70 at 1 year; and 70 were available at 3 years.

Among patients over the first interval, a group mean whole
brain atrophy rate of−0.64± 0.55% was documented, compared
with −0.54 ± 0.32% for the healthy controls (p = 0.33). Over
the second interval, patients demonstrated a whole brain atrophy
rate of −0.97 ± 0.81% compared with healthy controls at −0.58
± 0.50% (p < 0.001). Overall, when pooled over both intervals,
in TIA/minor stroke patients the annualized whole-brain atrophy
rate was −0.85% ± 0.74 while in ADNI the annualized whole-
brain atrophy was−0.53%± 0.38 (p < 0.001).

Table 2 shows the association between annualized rate of
brain atrophy and group effect (TIA vs. controls) controlling
for subject demographic and vascular characteristics. TIA/minor
stroke patients demonstrated a higher annualized rate of brain
atrophy than ADNI controls. On average, patients with diabetes
demonstrated significantly higher levels of brain atrophy than
those without. But there was no evidence of any statistical
significant effect of imaging time interval, sex, hypertension,
BMI, smoking status or the baseline, WMH volume on
annualized rate of brain atrophy. As there appeared to be

TABLE 2 | Annualized whole brain atrophy rate of TIA and minor ischemic stroke

participants and healthy controls.

Unstandardized

regression

coefficient

95% CI p

Group (CATCH = 1,

ADNI = 0)

−0.228 [−0.462, −0.016] 0.043

Time (first interval = 0;

second interval = 1)

−0.155 [−0.324, 0.016] 0.09

Age (years) −0.01 [−0.021, 0] 0.051

Gender (female) −0.018 [−0.224, 0.147] 0.854

Diabetes −0.419 [−0.716, −0.085] 0.012

Hypertension 0.103 [−0.115, 0.292] 0.295

Current smoker 0.035 [−0.2, 0.253] 0.745

WMH Volume (mL) −0.013 [−0.025, −0.001] 0.057

WMH, white matter hyperintensity. The unstandardized regression coefficients (estimate)

are provided for each covariate.

no relationship with WMH volume and rates of whole brain
atrophy, additional statistical analysis of sub-classification of
WMH with brain atrophy or cognition was not performed.

The relationship between neuropsychological test
performance and atrophy rate is shown in Table 3. Each row in
Table 3 denotes a separate mixed-effects regression model where
the indicated cognitive outcome is estimated longitudinally
by atrophy rate and covariates. Only the regression weights,
confidence intervals, and p-values for atrophy rate are reported,
while the covariates are not. Table 3 shows that there is a modest
relationship with higher rates of brain atrophy and processing
speed composite and digit symbol coding but no relationship was
seen between brain atrophy rates andmemory, executive or other
individual cognitive test scores (CVLT, Boston Naming, Trails A
and B, verbal fluency). After correcting for multiple comparisons,
PBVC was not significantly associated with cognitive functioning
above and beyond the effects of time, age, DWI lesion volume,
education, white matter hyperintensity volume, baseline gray
matter volume, and baseline white matter volume. Neither was
there a relationship with baselineWMH volume, and normalized
brain volume (or gray and white matter volume) compared to
cognitive outcomes after applying Bonferroni correction to the
p-value. With regard to covariate significance after applying the
Bonferroni correction, the participants’ scores on the Memory
Composite Index [unstandardized regression weight = 0.19,
standard error = 0.03, t(40.73) = 6.17, p < 0.001] and the
California Verbal Learning Test [unstandardized regression
weight = 0.24, standard error = 0.036, t(36.85) = 6.71, p <

0.001] significantly improved over time. Education significantly
predicted Digit Symbol Coding total score above and beyond
the other variables [unstandardized regression weight = 0.09,
standard error= 0.03, t(71.17) = 2.91, p= 0.005].

DISCUSSION

This study shows that TIA andminor stroke patients experienced
higher whole-brain atrophy rates than healthy controls over a 3
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TABLE 3 | The relationship of annualized whole brain atrophy with neuropsychological test performance of Extended-CATCH patients.

Cognitive functioning composite/test

score

Unstandardized regression coefficient 95% CI Standardized regression coefficient p

Executive functioning composite (n = 78 with

195 observations)

0.103 [−0.096, 0.306] 0.076 0.328

Processing speed composite (n = 78 with 198

observations)

0.192 [0.006, 0.378] 0.139 0.045

Memory composite (n = 78 with 199

observations)

0.008 [−0.128, 0.148] 0.007 0.906

CVLT (n = 78 with 205 observations) −0.013 [−0.155, 0.144] −0.011 0.87

Boston short form (Total Score) (n = 78 with

201 observations)

−0.168 [−0.395, 0.053] −0.105 0.14

Trail making test—Part A (seconds) (n = 78

with 201 observations)

0.081 [−0.159, 0.32] 0.049 0.54

COWA (Total new words) (n = 78 with 200

observations)

−0.067 [−0.274, 0.136] −0.048 0.534

Trail making test—Part B (s) (n = 78 with 200

observations)

0.211 [−0.063, 0.488] 0.108 0.169

Digit-symbol coding (Total Score) (n = 78 with

200 observations)

0.199 [0.035, 0.366] 0.159 0.019

COWA, Controlled Oral Word Association Test (total score); CVLT, California Verbal Learning Test (Total recall = total recall over 5 learning trials; Delayed Recall = free recall after

20–25min); Each row denotes a separate mixed-effects regression model where the indicated cognitive outcome is estimated by atrophy rate and covariates. Only the regression

weights, confidence intervals, and p-values for atrophy rate are reported, while the covariates are not. Covariates are: Time of cognitive testing (years), Age (years), Lesion Volume

(mL), Education (years), White Matter Hyperintensity Volume (mL), Baseline Gray Matter Volume, Baseline White matter volume. Each Regression model is fit with a random slope and

intercept over time for each participant; Bonferroni-adjusted significance level set to p < 0.006.

The unstandardized regression coefficients (estimate) are provided for each covariate.

years period. In addition, age and presence of diabetes were also
significant predictors of whole-brain atrophy rate. But we did not
find evidence of a significant effect for history of hypertension,
sex, BMI, smoking status, or imaging time interval, or DWI
lesion volume, or normalized brain volume on brain atrophy
rates. The cognitive profile revealed that subjects who had more
delayed processing speed composite scores (WAIS-III Digit-
Symbol Substitution) had higher rates of whole brain atrophy.
However, these results were not significant after correcting for
multiple comparisons. Memory composite and CVLT scores
improved over the course of the study, and we found that digital
symbol coding was strongly related to educational attainment.
These results concur with the previous study of TIA patients that
revealed high rates of cerebral atrophy over a year which was
associated with higher diastolic blood pressure and white matter
hyperintensities (9). Our findings provide further evidence that
structural changes in the brain, in this case change in whole
brain volume, may underlie a heightened risk of dementia
in a TIA/ minor stroke patient population (37) and occurs
before deterioration in cognitive tests can be measured. The
measurement of whole brain atrophy rate may help identify high-
risk patients for targeted intervention. This data expands on
previous findings by demonstrating that patients show elevated
whole-brain atrophy rates early in the disease progression, before
symptoms or signs of cognitive decline develop (38, 39).

The use of rate of brain atrophy may have some advantages
as a surrogate marker of preclinical disease progression (40,
41). Rates of brain atrophy have been shown to correlate
with cognitive decline and vascular disease and AD (42).
Measurement of brain atrophy rate is also more sensitive

at predicting cognitive decline and can be measured more
precisely than neuropsychological outcomes (43), which are
subject to several potential confounders (e.g., baseline cognitive
performance, problems with standardization procedures, co-
morbid disease and treatment factors, and learning effects).
The link between TIA and minor stroke and late life
cognitive decline is not known, but a recent study has
established that cardiovascular risk factors appear to influence
neurodegeneration independent of amyloid markers of AD (44).

The progression of cognitive decline has been reported in
patients with stroke. In a recent prospective cohort study,
longitudinal telephone cognitive testing in participants aged
45 years or older was conducted pre and post stroke over 6
years (45). Those that experienced stroke were older men with
more vascular risk factors, low socio-economic indicators and
worse health status, and lower pre-stroke cognition. While acute
stroke was associated with acute decline in global cognition in
new learning and verbal memory, intriguingly participants with
incident stroke later had statistically significant faster declines
in global cognition and executive function than in learning or
verbal memory when compared to pre-stroke. Another study of
stroke and TIA patients detected progressive decline in verbal
memory 3 years post stroke in patients without clinical or
radiological evidence of recurrent stroke (10). The same study
also showed that decline in composite neuropsychological scores
was associated with smaller hippocampi, and brain atrophy at
3 years (as a cross-sectional measure) (10). Important potential
modifiers of decline in verbal memory and brain atrophy, such
as stroke size or location, incipient cerebrovascular disease,
presence of in vivo AD pathology were not established (46–49).
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Another recent study selected patients with “TIA presentation”
and CT perfusion deficits, and remarkably demonstrated cross-
sectional changes in whole brain volume from baseline to 90
days later (11). The paper did not report DWI volume despite
reporting moderately large CT perfusion deficits, and changes
in cortical gray matter volumes and decline in the Montreal
Cognitive Assessment was reported after a short follow-p period
of 90 days. Our data adds to these studies by demonstrating
improvement in memory and executive composite test scores
and relatively modest changes in other cognitive tests using
a comprehensive battery despite showing absolute changes in
whole brain volume over time.

Expanding on these studies, The Predementia Neuroimaging
of Transient Ischemic Attack (PREVENT) prospective
longitudinal cohort study is targeting patients presenting
with clinically defined motor or language TIA (50). These
subjects are generally younger, not demented and in better
physical condition than stroke patients, thereby permitting the
acquisition of detailed serial neuropsychological assessments in
participants that are not disabled and cooperative with cognitive
testing, and avoiding high attrition rates caused by stroke related
co-morbidity and frailty that can prohibit the study of cognition
over time (10). Prospective longitudinal studies design in
patients with cerebrovascular presentations utilizing serial high
resolution structural MRI and cognitive testing will permit more
precise estimates of the relationship of neurodegenerative disease
and progressive white matter lesions with rates of cerebral
atrophy and cognitive decline than cross-sectional studies.
Identifying the disease that contributes to the change in brain
volume will be important because the response to preventative
treatments may depend on the stage of disease and its pathology.
Currently available biomarkers include cerebrospinal fluid AD
biomarkers of tau and Aβ1−42 that precede cognitive decline and
correlate with atrophy (51, 52). Whole brain atrophy is a global,
non-specific indicator/marker of diffuse neurodegenerative
processes involved in disease such as AD but does not highlight
the regional changes that are known to exist through different
stages of disease progression in AD patients and cerebrovascular
disease (42).

The use of ADNI controls is a potential source of error,
however there is precedence for their use in similar comparison
studies (53, 54). We were careful to perform regular quantitative
and qualitative assessments to optimize signal to noise and
reduce image distortion related to uniform and geometric
fidelity according to manufacturer specifications. It has been
previously demonstrated that scanner variability related to field
strength (53, 54) and vendor (55) appears to have minimal
effect on such volumetric measurements. There was significant
disparity of age and gender between Extended CATCH and
HC groups. The ADNI subjects were on average 5 years older
than the TIA/ minor stroke group, yet despite being slightly
older, they had lower rates of cerebral atrophy across the two-
interval time points than the TIA and minor stroke group.
Additionally, the measurements of percentage annualized change
in brain volume that we have measured in our control subjects
conforms with published data (8, 26). The higher proportion
of men in the CATCH cohort is expected because men have a

higher incidence of TIA and stroke. Nevertheless, gender in our
analysis was not a predictor of increased rates of whole brain
atrophy. Another potential limitation is the under-diagnosis of
hypertension because we restricted our analysis to prior history of
hypertension or concurrent antihypertensive treatment. Finally,
our study population was compromised by the absence of whole
brain atrophy rate measurements in a substantial portion at
interval one because of technical reasons related to a MRI
system upgrade.

Our findings indicate that patients presenting with TIA and
minor stroke demonstrate greater brain atrophy rates than
healthy controls over a 3 years post-event period. The elevated
atrophy rate in this population was significant beyond the effects
of demographic and vascular risk factors. Whole brain atrophy
rates in TIA and minor stroke patients appear to be weakly
related to cognitive function. However, if neurodegenerative
changes continue and precede cognitive symptoms, atrophy rates
could be used to assess the efficacy of vascular risk factor-
reduction treatments. This would provide a therapeutic window
for slowing changes in brain volume that precede cognitive
decline in patients at a high risk of dementia.

AUTHOR CONTRIBUTIONS

MM: contributed to post processing of imaging data, data
interpretation, assisted in writing the manuscript; JU:
contributed to the statistical analysis and interpretation of
the data, writing the manuscript; MR: contributed to post
processing of imaging data and analysis; GZ: contributed to
the imaging analysis and interpretation of data, and writing
and editing of the manuscript; LG: contributed to the imaging
analysis and interpretation of data, and proof reading of the
manuscript; RG: performed image analysis, quality control check
and edited and proof read the manuscript; AS: contributed to
the measurement of white matter lesion segmentation, data
collection and proof reading of the manuscript; AA: contributed
to the measurement of white matter lesion segmentation, data
collection and proof reading of the manuscript; ST: assisted
with the data collection, statistical analysis and proof reading
of the manuscript; RF: assisted in developing the MRI protocol,
data collection and writing of the manuscript; TS and MW:
conceived the statistical analysis of the data, and proof read the
manuscript. SC and ES: conceived the CATCH study, recruited
patients, involved in data collection and assisted in writing the
manuscript; CD: contributed to post processing of imaging data,
organization of the cognitive data, data interpretation, and edited
the final version of the manuscript; PB: conceived the hypothesis
and formulated the ideas, recruited patients and carried out
clinical workup, collected data, and wrote the manuscript. All
authors contributed to the final version of the manuscript.

FUNDING

The CATCH study and the baseline imaging was funded by
a Canadian Institute of Health Research Operating Grant. We
would like to thank the Calgary Stroke Program and Seaman

Frontiers in Neurology | www.frontiersin.org 7 February 2019 | Volume 10 | Article 18

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Munir et al. Brain Atrophy and Cognition in TIA

Family MR Research Center staff for helping with this study.
Data collection and sharing for this project was funded by the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National
Institutes of Health Grant U01 AG024904) and DOD ADNI
(Department of Defense award number W81XWH-12-2-0012).
ADNI is funded by the National Institute on Aging, the
National Institute of Biomedical Imaging and Bioengineering,
and through generous contributions from the following:
AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery
Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-
Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan
Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F.
Hoffmann-La Roche Ltd and its affiliated company Genentech,
Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer
Immunotherapy Research & Development, LLC.; Johnson
& Johnson Pharmaceutical Research & Development LLC.;
Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics,
LLC.; NeuroRx Research; Neurotrack Technologies; Novartis

Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging;
Servier; Takeda Pharmaceutical Company; and Transition
Therapeutics. The Canadian Institutes of Health Research is
providing funds to support ADNI clinical sites in Canada.
Private sector contributions are facilitated by the Foundation
for the National Institutes of Health (www.fnih.org). The
grantee organization is the Northern California Institute for
Research and Education, and the study is coordinated by the
Alzheimer’s Therapeutic Research Institute at the University
of Southern California. ADNI data are disseminated by
the Laboratory for Neuro Imaging at the University of
Southern California.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fneur.
2019.00018/full#supplementary-material

REFERENCES

1. Pendlebury ST, Wadling S, Silver LE, Mehta Z, Rothwell PM. Transient

cognitive impairment in TIA and minor stroke. Stroke (2011) 42:3116–21.

doi: 10.1161/STROKEAHA.111.621490

2. Heath CA, Mercer SW, Guthrie B. Vascular comorbidities in younger people

with dementia: a cross-sectional population-based study of 616 245 middle-

aged people in Scotland. J Neurol Neurosurg Psychiatry (2014) 86:959–64.

doi: 10.1136/jnnp-2014-309033

3. Li JQ, Tan L, Wang HF, Tan MS, Tan L, Xu W, et al. Risk factors

for predicting progression from mild cognitive impairment to Alzheimer’s

disease: a systematic review and meta-analysis of cohort studies. J Neurol

Neurosurg Psychiatry (2015) 87:476–84. doi: 10.1136/jnnp-2014-310095

4. Van Rooij FG, Schaapsmeerders P, Maaijwee NA, Van Duijnhoven

DA, De Leeuw FE, Kessels RP, et al. Persistent cognitive

impairment after transient ischemic attack. Stroke (2014) 45:2270–4.

doi: 10.1161/STROKEAHA.114.005205

5. Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery

WR. Brain infarction and the clinical expression of Alzheimer disease. Nun

Study JAMA (1997) 277:813–7. doi: 10.1001/jama.1997.03550020046024

6. Tariq S, Barber PA. Dementia risk and prevention by targeting modifiable

vascular risk factors. J Neurochem. (2018) 144:565–81. doi: 10.1111/jnc.14132

7. Kivipelto M, Helkala EL, Hanninen T, Laakso MP, Hallikainen M,

Alhainen K, et al. Midlife vascular risk factors and late-life mild

cognitive impairment: a population-based study.Neurology (2001) 56:1683–9.

doi: 10.1212/WNL.56.12.1683

8. Barnes J, Carmichael OT, Leung KK, Schwarz C, Ridgway GR,

Bartlett JW, et al. Vascular and Alzheimer’s disease markers

independently predict brain atrophy rate in Alzheimer’s disease

neuroimaging initiative controls. Neurobiol Aging (2013) 34:1996–2002.

doi: 10.1016/j.neurobiolaging.2013.02.003

9. Walters RJ, Fox NC, Schott JM, Crum WR, Stevens JM, Rossor MN,

et al. Transient ischaemic attacks are associated with increased rates of

global cerebral atrophy. J Neurol Neurosurg Psychiatry (2003) 74:213–6.

doi: 10.1136/jnnp.74.2.213

10. Sachdev PS, Lipnicki DM, Crawford JD, Wen W, Brodaty H. Progression of

cognitive impairment in stroke/TIA patients over 3 years. J Neurol Neurosurg

Psychiatry (2014) 85:1324–30. doi: 10.1136/jnnp-2013-306776

11. Bivard A, Lillicrap T, Marechal B, Garcia-Esperon C, Holliday

E, Krishnamurthy V, et al. Transient ischemic attack results in

delayed brain atrophy and cognitive decline. Stroke (2018) 49:384–90.

doi: 10.1161/STROKEAHA.117.019276

12. Coutts SB, Modi J, Patel SK, Aram H, Demchuk AM, Goyal M, et al. What

causes disability after transient ischemic attack and minor stroke?: Results

from the CT andMRI in the Triage of TIA and minor Cerebrovascular Events

to Identify High Risk Patients (CATCH) Study. Stroke (2012) 43:3018–22.

doi: 10.1161/STROKEAHA.112.665141

13. Jack CR Jr, Bennett DA, BlennowK, CarrilloMC, Dunn B, Haeberlein SB, et al.

NIA-AA research framework: toward a biological definition of Alzheimer’s

disease. Alzheimer Dement. (2018) 14:535–62. doi: 10.1016/j.jalz.2018.02.018

14. Murphy EA, Holland D, Donohue M, Mcevoy LK, Hagler DJ Jr, Dale

AM, et al. Six-month atrophy in MTL structures is associated with

subsequent memory decline in elderly controls. Neuroimage (2010) 53:1310–

7. doi: 10.1016/j.neuroimage.2010.07.016

15. Nettiksimmons J, Beckett L, Schwarz C, Carmichael O, Fletcher E, Decarli C.

Subgroup of ADNI normal controls characterized by atrophy and cognitive

decline associated with vascular damage. Psychol Aging (2013) 28:191–201.

doi: 10.1037/a0031063

16. Nigro S, Cerasa A, Zito G, Perrotta P, Chiaravalloti F, Donzuso G, et al. Fully

automated segmentation of the pons andmidbrain using human T1MR brain

images. PLoS ONE (2014) 9:e85618. doi: 10.1371/journal.pone.0085618

17. JohnsMW.Daytime sleepiness, snoring, and obstructive sleep apnea. Epworth

Sleep Scale Chest (1993) 103:30–6. doi: 10.1378/chest.103.1.30

18. Coutts SB, Wein TH, Lindsay MP, Buck B, Cote R, Ellis P, et al. Canadian

stroke best practice recommendations: secondary prevention of stroke

guidelines, update 2014. Int J Stroke (2015) 10:282–91. doi: 10.1111/ijs.12439

19. Mandzia JL, Smith EE, Horton M, Hanly P, Barber PA, Godzwon C, et al.

Imaging and baseline predictors of cognitive performance in minor ischemic

stroke and patients with transient ischemic attack at 90 days. Stroke (2016)

47:726–31. doi: 10.1161/STROKEAHA.115.011507

20. Gobbi Dg LQ, Frayne R, Salluzzi M. The cerebra software environment for

quantitative lesion assessment. In: Canadian Stroke Conference. Calgary, AB

(2017).

21. Moreau F, Patel S, Lauzon ML, Mccreary CR, Goyal M, Frayne R,

et al. Cavitation after acute symptomatic lacunar stroke depends

on time, location, and MRI sequence. Stroke (2012) 43:1837–42.

doi: 10.1161/STROKEAHA.111.647859

22. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R,

et al. Neuroimaging standards for research into small vessel disease and

its contribution to ageing and neurodegeneration. Lancet Neurol. (2013)

12:822–38. doi: 10.1016/S1474-4422(13)70124-8

23. Jack CR Jr, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey

D, et al. The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI

methods. J Magn Reson Imaging (2008) 27:685–91. doi: 10.1002/jmri.

21049

24. Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A,

et al. Accurate, robust, and automated longitudinal and cross-sectional brain

change analysis. Neuroimage (2002) 17:479–89. doi: 10.1006/nimg.2002.1040

Frontiers in Neurology | www.frontiersin.org 8 February 2019 | Volume 10 | Article 18

www.fnih.org
https://www.frontiersin.org/articles/10.3389/fneur.2019.00018/full#supplementary-material
https://doi.org/10.1161/STROKEAHA.111.621490
https://doi.org/10.1136/jnnp-2014-309033
https://doi.org/10.1136/jnnp-2014-310095
https://doi.org/10.1161/STROKEAHA.114.005205
https://doi.org/10.1001/jama.1997.03550020046024
https://doi.org/10.1111/jnc.14132
https://doi.org/10.1212/WNL.56.12.1683
https://doi.org/10.1016/j.neurobiolaging.2013.02.003
https://doi.org/10.1136/jnnp.74.2.213
https://doi.org/10.1136/jnnp-2013-306776
https://doi.org/10.1161/STROKEAHA.117.019276
https://doi.org/10.1161/STROKEAHA.112.665141
https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.1016/j.neuroimage.2010.07.016
https://doi.org/10.1037/a0031063
https://doi.org/10.1371/journal.pone.0085618
https://doi.org/10.1378/chest.103.1.30
https://doi.org/10.1111/ijs.12439
https://doi.org/10.1161/STROKEAHA.115.011507
https://doi.org/10.1161/STROKEAHA.111.647859
https://doi.org/10.1016/S1474-4422(13)70124-8
https://doi.org/10.1002/jmri.21049
https://doi.org/10.1006/nimg.2002.1040
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Munir et al. Brain Atrophy and Cognition in TIA

25. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE,

Johansen-Berg H, et al. Advances in functional and structural MR image

analysis and implementation as FSL. Neuroimage (2004) 23(Suppl. 1):S208–

219. doi: 10.1016/j.neuroimage.2004.07.051

26. Evans MC, Barnes J, Nielsen C, Kim LG, Clegg SL, Blair M, et al. Volume

changes in Alzheimer’s disease and mild cognitive impairment: cognitive

associations. Eur Radiol. (2010) 20:674–82. doi: 10.1007/s00330-009-1581-5

27. Hachinski V, Iadecola C, Petersen RC, Breteler MM, Nyenhuis DL, Black SE,

et al. National institute of neurological disorders and stroke-canadian stroke

network vascular cognitive impairment harmonization standards. Stroke

(2006) 37:2220–41. doi: 10.1161/01.STR.0000237236.88823.47

28. Strauss E, Sherman E, Spreen O. A Compendium of Neuropsychological Tests.

1st ed. New York, NY: Oxford University Press (2006).

29. Kaplan E, Fein D, Morris R, Delis D. WAIS-R as a Neuropsychological

Instrument. San Antonio, TX: Psychological Corporation (1991).

30. Benton A, Hamsher K, Rey G, Sivan A.Multilingual Aphasia Examination. 3rd

ed. Iowa City: AJA Associates (1994).

31. Mack W, Freed D, Williams B, Henderson V. Boston naming test: shortened

versions for use in Alzheimer’s disease. J Gerontol. (1992) 47:154–8.

32. Delis D, Kramer J, Kaplan E, Ober B. California Verbal Learning Test. 2nd ed.

San Antonio, TX: Psychological Corporation (2000).

33. Osterrieth P. Le test de copie d’une figure complexe. Arch Psychol. (1944)

30:206–356.

34. Goodglass H, Kaplan E, Barresi B. The Assessment of Aphasia and Related

Disorders. 3rd ed. Austin, TX: Pro-Ed (2001).

35. Royall DR, Cordes JA, Polk M. CLOX: an executive clock drawing task. J

Neurol Neurosurg Psychiatry (1998) 64:588–94. doi: 10.1136/jnnp.64.5.588

36. Bates D, Machler M, Bolker B, Walker S. Fitting linear mixed-effects models

using lme4. J Stat Softw (2015) 67:1–48. doi: 10.18637/jss.v067.i01

37. Hurford R, Charidimou A, Fox Z, Cipolotti L, Jager R, Werring DJ. MRI-

visible perivascular spaces: relationship to cognition and small vessel disease

MRI markers in ischaemic stroke and TIA. J Neurol Neurosurg Psychiatry

(2014) 85:522–5. doi: 10.1136/jnnp-2013-305815

38. Jack CR Jr, Petersen RC, Xu YC, Waring SC, O’brien PC, Tangalos EG, et al.

Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s

disease. Neurology (1997) 49:786–94. doi: 10.1212/WNL.49.3.786

39. Jack CR Jr, Shiung MM, Weigand SD, O’brien PC, Gunter JL, Boeve

BF, et al. Brain atrophy rates predict subsequent clinical conversion

in normal elderly and amnestic MCI. Neurology (2005) 65:1227–31.

doi: 10.1212/01.wnl.0000180958.22678.91

40. Schott JM, Crutch SJ, Frost C, Warrington EK, Rossor MN,

Fox NC. Neuropsychological correlates of whole brain atrophy

in Alzheimer’s disease. Neuropsychologia (2008) 46:1732–7.

doi: 10.1016/j.neuropsychologia.2008.02.015

41. Leung KK, Clarkson MJ, Bartlett JW, Clegg S, Jack CR Jr, Weiner MW,

et al. Robust atrophy rate measurement in Alzheimer’s disease using multi-

site serial MRI: tissue-specific intensity normalization and parameter

selection. Neuroimage (2010) 50:516–23. doi: 10.1016/j.neuroimage.

2009.12.059

42. Kalaria RN. Neuropathological diagnosis of vascular cognitive impairment

and vascular dementia with implications for Alzheimer’s disease. Acta

Neuropathol. (2016) 131:659–85. doi: 10.1007/s00401-016-1571-z

43. Jack CR Jr, KnopmanDS, JagustWJ, Petersen RC,WeinerMW,Aisen PS, et al.

Tracking pathophysiological processes in Alzheimer’s disease: an updated

hypothetical model of dynamic biomarkers. Lancet Neurol. (2013) 12:207–16.

doi: 10.1016/S1474-4422(12)70291-0

44. Vemuri P, Scholl M. Linking amyloid-beta and tau deposition in alzheimer

disease. JAMA Neurol. (2017) 74:766–8. doi: 10.1001/jamaneurol.2017.0323

45. Levine DA, Galecki AT, Langa KM, Unverzagt FW, Kabeto MU, Giordani

B, et al. Trajectory of cognitive decline after incident stroke. JAMA (2015)

314:41–51. doi: 10.1001/jama.2015.6968

46. Kril JJ, Hodges J, Halliday G. Relationship between hippocampal volume and

CA1 neuron loss in brains of humans with and without Alzheimer’s disease.

Neurosci Lett. (2004) 361:9–12. doi: 10.1016/j.neulet.2004.02.001

47. Firbank MJ, Burton EJ, Barber R, Stephens S, Kenny RA, Ballard C, et al.

Medial temporal atrophy rather than white matter hyperintensities predict

cognitive decline in stroke survivors. Neurobiol Aging (2007) 28:1664–9.

doi: 10.1016/j.neurobiolaging.2006.07.009

48. Fjell AM, Walhovd KB. Structural brain changes in aging: courses,

causes and cognitive consequences. Rev Neurosci. (2010) 21:187–221.

doi: 10.1515/REVNEURO.2010.21.3.187

49. Gemmell E, Bosomworth H, Allan L, Hall R, Khundakar A, Oakley

AE, et al. Hippocampal neuronal atrophy and cognitive function in

delayed poststroke and aging-related dementias. Stroke (2012) 43:808–14.

doi: 10.1161/STROKEAHA.111.636498

50. Tariq S, D’esterre CD, Sajobi TT, Smith EE, Longman RS, Frayne R, et al.

A longitudinal magnetic resonance imaging study of neurodegenerative and

small vessel disease, and clinical cognitive trajectories in non demented

patients with transient ischemic attack: the PREVENT study. BMC Geriatr.

(2018) 18:163. doi: 10.1186/s12877-018-0858-4

51. Schott JM, Bartlett JW, Barnes J, Leung KK, Ourselin S, Fox NC.

Reduced sample sizes for atrophy outcomes in Alzheimer’s disease trials:

baseline adjustment. Neurobiol Aging (2010) 31:1452–62, 1462 e1451–1452.

doi: 10.1016/j.neurobiolaging.2010.04.011

52. Schott JM, Bartlett JW, Fox NC, Barnes J. Increased brain atrophy rates in

cognitively normal older adults with low cerebrospinal fluid Abeta1-42. Ann

Neurol. (2010) 68:825–34. doi: 10.1002/ana.22315

53. Dickerson BC, Fenstermacher E, Salat DH, Wolk DA, Maguire RP, Desikan

R, et al. Detection of cortical thickness correlates of cognitive performance:

reliability across MRI scan sessions, scanners, and field strengths. Neuroimage

(2008) 39:10–8. doi: 10.1016/j.neuroimage.2007.08.042

54. Scorzin JE, Kaaden S, Quesada CM, Muller CA, Fimmers R, Urbach

H, et al. Volume determination of amygdala and hippocampus at 1.5

and 3.0T MRI in temporal lobe epilepsy. Epilepsy Res. (2008) 82:29–37.

doi: 10.1016/j.eplepsyres.2008.06.012

55. Stonnington CM, Tan G, Kloppel S, Chu C, Draganski B, Jack CR

Jr, et al. Interpreting scan data acquired from multiple scanners:

a study with Alzheimer’s disease. Neuroimage (2008) 39:1180–5.

doi: 10.1016/j.neuroimage.2007.09.066

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Munir, Ursenbach, Reid, Sah, Wang, Sitaram, Aftab, Tariq,

Zamboni, Griffanti, Smith, Frayne, Sajobi, Coutts, d’Esterre, Barber and Alzheimer’s

Disease Neuroimaging Initiative. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neurology | www.frontiersin.org 9 February 2019 | Volume 10 | Article 18

https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1007/s00330-009-1581-5
https://doi.org/10.1161/01.STR.0000237236.88823.47
https://doi.org/10.1136/jnnp.64.5.588
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1136/jnnp-2013-305815
https://doi.org/10.1212/WNL.49.3.786
https://doi.org/10.1212/01.wnl.0000180958.22678.91
https://doi.org/10.1016/j.neuropsychologia.2008.02.015
https://doi.org/10.1016/j.neuroimage.2009.12.059
https://doi.org/10.1007/s00401-016-1571-z
https://doi.org/10.1016/S1474-4422(12)70291-0
https://doi.org/10.1001/jamaneurol.2017.0323
https://doi.org/10.1001/jama.2015.6968
https://doi.org/10.1016/j.neulet.2004.02.001
https://doi.org/10.1016/j.neurobiolaging.2006.07.009
https://doi.org/10.1515/REVNEURO.2010.21.3.187
https://doi.org/10.1161/STROKEAHA.111.636498
https://doi.org/10.1186/s12877-018-0858-4
https://doi.org/10.1016/j.neurobiolaging.2010.04.011
https://doi.org/10.1002/ana.22315
https://doi.org/10.1016/j.neuroimage.2007.08.042
https://doi.org/10.1016/j.eplepsyres.2008.06.012
https://doi.org/10.1016/j.neuroimage.2007.09.066
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

	Longitudinal Brain Atrophy Rates in Transient Ischemic Attack and Minor Ischemic Stroke Patients and Cognitive Profiles
	Introduction
	Materials and Methods
	Study Population
	Clinical Data Collection
	Image Acquisition
	Extended CATCH TIA/Minor Stroke Cohort
	ADNI Healthy Controls

	Image Analysis
	Measurement of Baseline Brain, Cortical Gray Matter, and White Matter Volume
	Measurement of Whole Brain Atrophy Rates

	Neuropsychological Assessment
	Statistical Analysis

	Results
	Patient Demographics, Imaging and Neuropsychological Outcomes
	Atrophy Rates

	Discussion
	Author Contributions
	Funding
	Supplementary Material
	References


