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Abstract

In this paper, the advantages of CACSD (Computer
Aided Control System Design) tools for integrating a
robotic system in a packaging machine are illustrated.
Beside the mechanical integration of the robot into the
machine architecture, it is necessary a functional inte-
gration, that requires a precise synchronization with the
other parts of the system. In the proposed application,
a robot with a parallel kinematics is used for pick-and-
place tasks between two conveyor belts. It is therefore
necessary a proper motion planning which allows to syn-
chronize the grasp and release phases with the conveyor
belts, avoiding obstacles and guaranteeing the compli-
ance with bounds on velocity, acceleration and limits in
the workspace. A trajectory composed by quintic poly-
nomials has been considered and a specific tool has been
designed in the Matlab environment, which allows to mod-
ify the parameters of the trajectory and to analyze the
obtained motion profiles from both the kinematic and dy-
namic point of view.

1. Introduction

The integration of robotic systems in automatic ma-
chines is becoming more and more widespread because
of the flexibility which they allow, and the high velocities
of the manipulators which are comparable with those of
the other components of this kind of machines. In par-
ticular, parallel robots, i.e. robots with a closed chain
kinematics, are often used for pick-and-place operations
[3]. As a matter of fact, the actuators located in the base
and the arms made of light composite materials contribute
to drastically reduce the inertia of moving parts allow-
ing very high speeds and high accelerations. Moreover,
the parallel structure increases the robot stiffness and the
precision, but reduces its workspace volume. As shown
in Fig. 1, the robot used in the proposed application is
characterized by a Delta structure [4], with four degrees
of freedom: three translational and one rotational, given
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Figure 1. Robot with the Delta structure
used in the proposed application: Codian
D4-500 [5].

by the rotation of the end effector. However, in the pro-
posed application only the positional motion is taken into
account. The robot Codian D4-500 is designed to perform
with payloads up to 1 kilogram and for applications up to
15G. The chosen version has a cylindrical singularities-
free working envelope of 450 mm in diameter and 135
mm in height. The main features of the manipulator are
reported in Tab. 1. Note that the high velocities and ac-
celerations allow a back and forth movement pick-place-
pick (z1 = 25 mm, y = 305 mm, 2z = 25 mm) con-
sidering a load of 0.1 kg with a total cycle time of 0.3
seconds, which corresponds to the maximum achievable
speed of 200 p/min'. Another considerable characteristics
of this manipulator is its open mechanical interface, that

! p/min stands for pick-and-place actions per minute.

Pick & place actions (max.) 200 p/min

Position repeatability X,Y,Z + 0.2 mm
Angular repeatability Rz +0.3°
Limitation rotation axis torque 2 Nm

Table 1. D4-500 performance features.



Figure 2. Generic trajectory for pick-and-
place operations.

allows to choose various types of motors and gears. In
this way, the robot integrated in an automatic machine can
share with the other components of the machine the same
type of actuators (in this case Yaskawa brushless motors
[6]) and the same hw/sw control architecture. The robot
manipulator can be seen as a set of three motion axes to
be properly coordinated. Therefore, apart from the me-
chanical integration of the robot within the machine, the
main issue remains the definition of the motion laws for
the joint actuators.

In this paper, the use of CACSD (Computer Aided Con-
trol System Design) tools for the design and optimization
of trajectories for the parallel robot is investigated and the
advantages in terms of development time and correctness
of the resulting motions are highlighted. Differently from
other applications [2, 8], where the control and planning
systems are firstly designed in the CACSD environment
and then (automatically) converted in executable code for
the plant’s controller, in this case, because of the com-
plexity of the machine and of the related control system,
only the motion planner of the robot has been taken into
account. After an initial design phase in the Matlab envi-
ronment, the trajectory generator has been manually im-
plemented in a C library (obtaining a very efficient code),
and then integrated again in the Matlab environment in
order to verify its correctness.

2. Trajectory design approach and trajectory
generator structure

Since the specific task has not been defined yet, and it
may change according to the type of automatic machine in
which the robotic system is integrated, a class of trajecto-
ries for pick-and-place applications has been devised. In
Fig. 2 a generic path is reported: the pick-and-place op-
erations are supposed to be composed by a grasp phase
of an object that moves with constant velocity on a con-
veyor belt followed by a transfer phase and by a release
phase on a different conveyor belt with a different ve-
locity. This trajectory must be repeated periodically with
the same cycle time of the machine. Obviously, in many
applications, it may happens that either the grasp or the
release points are motionless. In these cases it is suffi-
cient to set to zero the velocity along the tract that corre-
sponds to the grasp or the release. The trajectory defined
in the robot’s workspace is composed by several polyno-
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Figure 3. Structure of the trajectory genera-
tor.

mial segments, properly joined in order to guarantee the
continuity of velocity and acceleration. In particular, the
use of fifth-degree polynomials assures a smooth transi-
tion between the segments at the knots shown in the figure.
The trajectory generator has the primary task of translat-
ing the specifications of a given application (position and
velocity of grasp and release points, bounds on maximum
velocity and acceleration, maximum height of the path)
in the location of the waypoints, in the values of veloc-
ity and acceleration at these points and in the duration of
each segment. Once the boundary conditions (initial and
final position, velocity, acceleration, and time instants) are
known the analytical expression of a generic tract

qi(t) =aoi+ayi(t—toi)+. . Fasi(t—to:)’ to; <t <ty
(1)
can be easily deduced according to the standard proce-
dure for the computation of the coefficients of fifth-degree
point-to-point trajectories, see [1]. Obviously, the param-
etersaj;, j = 0,...,5 are defined in R®. After the defini-
tion of the trajectory, the motion profile must computed as
a function of the time. This operation, can be performed
off-line by storing the results, i.e. the points of the tra-
jectory, in a table or online by calculating (1) runtime for
each tract. In order to guarantee a perfect synchronization
of the robot with the other subsystems of the machine,
the trajectory profile is also computed as a function of the
angle of the master axis governing the overall machine.
Since the actuators of the robot act at the joint level it is
necessary to transform each point of the trajectory from
the workspace to the joint space. Therefore, in the tra-
jectory generator an additional module that computes the
inverse kinematics of the robot is necessary. The final
structure of the trajectory planner, composed by a set of
routines written in C language, is reported in Fig. 3. Note
the modularity of the structure which allows local changes
in the trajectory definition, if the task changes, or in the in-
verse kinematics, if a different robot is used.
As illustrated in Fig. 4(a), this C library can be di-
rectly embedded in the code of the supervisor that con-
trols the overall machine. This system runs on a stan-
dard industrial PC equipped with VxWorks and sends
the reference points to the motors’ drives via fieldbus
(Yaskawa MECHATROLINK). On the other hand, by us-
ing the functionalities of MEX-functions (Matlab EXe-
cutable functions) [7], it is possible to use the same C
code in the Matlab environment. As matter of fact, MEX-
functions provide an interface between Matlab and the C
library, see Fig. 4(b). In this way, the routines which com-
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Figure 4. Integration of the C library of the
trajectory generator in the machine con-
troller (a) and in the Matlab environment (b).

pose the trajectory generator can be used as standard .m
functions and it is possible to verify the functional correct-
ness of the code by exploiting the tools already present in
the Matlab environment or other tools designed ad hoc,
like the ones presented in the following section.

3. Matlab tools for trajectory definition and
analysis

In order to verify the correctness of the C routines
which compose the trajectory generator a graphical user
interface has been developed in the Matlab environment.
This tool, shown in Fig. 5, allows to set the specifica-
tions for the desired trajectory, such as grasp and release
points, velocity of the conveyor belts, velocity and accel-
eration limits, and to analyze the resulting motion profiles,
in both the workspace and the joint space of the robot. In
Fig. 6 the windows that show these profiles are reported.
Note that the trajectory defined in the workspace is com-
puted as a function of the time, while the corresponding
motions of the robot joint actuators are reported as a func-
tion of the angular position 6,,, of the master axis. The
conversion from time to angle is performed by assuming
a given constant velocity of the virtual master. Note that,
the workspace profiles are useful for evaluating the com-
pliance of the trajectory with the bounds on velocity and
acceleration, while the joint profiles 6(6,,) represent the
values that the machine supervisor will send to the actua-
tor’s drives. The Matlab application allows to export these
values in a CSV (comma-separated values) file. There-
fore, the trajectory generator could be directly used from
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Figure 5. Front-end of the trajectory gener-
ator in the Matlab environment.

the Matlab environment for computing and storing in a file
a trajectory to be used by the machine’s controller, even if
this is not the main purpose of the application, whose aim
is the analysis of the motion. The other tools provided by
the Matlab application are reported in Fig. 7. Both the
windows show the trajectory in the 3D space. In particu-
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Figure 6. Workspace (a) and joint-space (b)
trajectory profiles windows.
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Figure 7. Windows with 3D representation
of the trajectory (a) and simulation with the
Delta robot (b).

lar, the tool of Fig. 7(a) compares, from different perspec-
tives, the geometric path with the feasible workspace of
the robot, while the window of Fig. 7(b) shows the ani-
mation of the robot which tracks the trajectory.

As already mentioned, the use of these tools designed in
a high-level environment like Matlab has a twofold pur-
pose. On the one hand, the graphical interface allows to
quickly check the correctness of the C routines that com-
pose the trajectory generator and to find/solve possible er-
rors or problems. On the other hand, the possibility of
modifying the parameters of the trajectory allows to eas-
ily test the feasibility of the desired task and eventually to
change these parameters, in a interactive manner.

3.1. Dynamic validation of the trajectory

From the Matlab application it is possible to export the
trajectory in an external file or in the Matlab workspace.
This allows further analyses on the trajectory by means of
the toolboxes available in Matlab. In particular, the use
of Simulink and SimMechanics [9] can be extremely ad-
vantageous for studying the dynamic behavior of the sys-
tem during the trajectory tracking. The simulative model
of the robot has been obtained from a 3D CAD model?
and imported in Simulink, by exploiting the SimMechan-
ics toolbox. By applying the trajectory to the robot model,
as illustrated in Fig. 8, it is possible to estimate the torques
that are necessary to perform such a task, see Fig. 9. In
this way, before the implementation of the trajectory on
the real system it is possible to test if the motion is com-
pliant with the dynamic limits of the actuators. Or vice
versa, if the actuators are not available yet, the simulation
can be used for sizing it.

4. Conclusion

In this paper the use of CACSD tools (such as Matlab)
for rapid prototyping motion trajectories for a high dy-
namic robot to be integrated in a packaging machine is il-
lustrated. The proposed approach is based on the develop-

2Since a detailed 3D model was not available, a simplified model of
the robot has been designed in the CAD environment by tacking into
account only the main components and inertias of the system.

M atseanei va+R v SENS
Ol EEX )

Figure 8. SimMechanics simulative scheme
of the robotic system.
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Figure 9. Torques at the robot joints during
trajectory tracking.

ment of a front-end, which exploits the power of Matlab in
terms of analysis and simulation capabilities, directly in-
teracting with the C library containing the routines which
define the desired trajectory. In a first phase, this method
allowed to rapidly test the C routines from a functional
point of view. Currently, the proposed tool is used for cus-
tomizing the trajectories of the robot, which may change
because the differences among the tasks performed by dif-
ferent machines.
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