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ABSTRACT 

Recent developments in the field of electronic sensors and analytics provide new opportunity for 

accurate characterization of materials often based on portable and non-destructive methods. By 

using several complementary techniques, the material description is precise and complete. The 

data provided by multiple equipment, however, are often not directly comparable due to different 

resolution, sensitivity and/or data format. The complexity related to the data fusion step and its 

further interpretation often leads to not complete exploitation of the available data.  

This paper presents a multi-block approach used for merging experimental data collected by 

measurement of modified wood in service. Characterization of samples appearance (colour and 

gloss) is merged with spectral data that decodes information regarding chemical composition. 

Alternative approaches for data fusion on the low-, mid- and high-levels are introduced, discussed 

and confronted with the standard approach (single sensor data interpretation). Finally, the trial to 

analyse the data with multi-way method is presented and interpreted. 

 

 

Keywords:  modified wood, data fusion, multi-sensor, multi-block, PARAFAC 

1. INTRODUCTION 

Recent advancement in development of scientific instruments provides numerous methods that 

might be used for assessment and monitoring of materials properties. Current trend is to use 

multiple sensors simultaneously, which is more favourable than a single sensor approach, due to 

more accurate representation of the reality. Selection of the optimal sensor, measurement strategy, 

signal processing and interpretation of results is complex and demanding (Sandak et al. 2015a). 

Multi-sensor monitoring generates new issues and challenges, where the strategy for merging the 

different sources of information is fundamental (Hua et al. 2013). Multi-sensor data fusion refers 

to the acquisition, processing and synergistic combination of information gathered by different 

sources to provide a better understanding of certain phenomenon (Varshney 2010). The driving 

force here is that the fusion of complementary information available from different sensors will 

yield increased knowledge of the investigated phenomenon, which is not attainable by any of the 

single sources. Multi-sensor monitoring, however, poses new issues and challenges in the data 

analysis phase, which can be addressed by proper data fusion strategies.  
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Data collected from different types of sensors are often based on diverse physical phenomena, 

therefore, both data integration and interpretation of results is complicated. Some sensors may be 

more accurate than others, since these are more sensitive in certain conditions, they may have 

different resolution, time scan, etc. Finally, the collected data bring shared (correlated) as well as 

distinctive information, which makes it necessary to interpret them altogether (Sandak et al. 

2015b). In general, multi-sensors measurement generates a set of data collected by different 

platforms and available for the entire set of samples, with each set usually referred to as a data 

block. Thus, such data need to be handled by multi-block data analysis methods or other data 

fusion techniques. These approaches allow to jointly extract information from different blocks, 

which is more efficient than creating individual models. Data fusion approaches can be 

distinguished according to the level at which data are fused in low- (fusion of raw data), mid- 

(fusion of features extracted by single data block) and high-level (fusion of results/decisions 

derived by each data block). Multi-block methods usually operate at low-level. Moreover, a 

complicating factor may arise when data blocks are of different order (e.g., matrices and tensors) 

(Cocchi 2019).  

 

Time series data generated within this research refers to multi-sensor measurements and are in the 

form of a three-way array. That is, samples are characterized by several sets of variables at 

different time, thus can be arranged in a data cube of dimensions samples x sensors x measuring 

time. In order to deal with datasets presenting more than two-dimension and showing a trilinear 

structure, parallel factor analysis (PARAFAC) was developed. PARAFAC operates a 

decomposition of the three-way array (in a similar way to PCA for bilinear data) as a sum of triple 

outer product of vectors, which refer to each of the modes of the array (e.g., samples, variables, 

time). The three sets of vectors are called loadings. The loadings referring to samples mode, in 

analogy with PCA, are most often called scores. Differently from PCA, the extracted components 

are not forced to be orthogonal, since PARAFAC allows for so-called unique models. This means 

that if the data follow the PARAFAC model, PARAFAC is able to uniquely uncover the 

underlying components. For example, if data follow Beers law, the PARAFAC loadings will be 

an estimation of the pure spectra, even from a mixture. In general, PARAFAC can be considered 

as recovering the profile corresponding to each unique phenomenon that is generating a variance 

source in the analysed data, such as time profile (Bro 1997). 

 

This paper presents the results regarding performance in service of modified wood during natural 

weathering test. Investigated bio-materials were characterized before, during and after degradation 

by biotic and abiotic agents in order to provide experimental data to be used for better 

understanding of the bio-materials performance/degradation as a function of time and/or weather 

dose. A multi-sensors measurement chain allowed the acquisition of properties at different scales 

(molecular, microscopic, macroscopic). Data fusion results and interpretation are discussed and 

compared with results obtained by models based on a single sensor. Finally, a multi-way approach 

has also been tested and discussed. 

2. EXPERIMENTAL METHODS 

2.1 Experimental samples 

A set of six radiata pine (Pinus radiata D. Don) samples representing different commercially 

available modification processes was selected for the demonstration. Weathering performance of 

these materials was compared with the not treated wood of Scots pine (Pinus sylvestris L.), being 

usually considered as a reference material (#5). The wood modification processes included: 

thermal treatment with penetrating oil (#1), thermal treatment with silicate treatment (#2), thermal 

treatment with coating (#3), furfurylation (#4), thermal treatment (#6), and acetylation (#7) (Fig. 



 

 

4 

1). All investigated modified materials are commercially available on the market (Sandak et al. 

2018). 

 

 
Figure 1:  Appearance of experimental samples before weathering. 

 

2.2 Weathering tests 

Natural weathering tests were performed in San Michele, Italy (46°11’15’’N, 11°08’00’’E), in 

order to provide reference data for simulation of the bio-materials’ performance in a function of 

the exposure time. Samples were exposed on the vertical stands representing building façade. 

Stands were oriented to the four cardinal directions (Fig. 2). The weathering experiment was 

carried out for 12 months. Presented results refer to the southern exposure of samples, with the 

experiment started in March 2017. 

 

 
Figure 2:  Experimental samples exposed to natural weathering. 
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2.3 Multi-sensor materials characterization 

Part of the exposed samples (three replicas per cycle) were exchanged every three months and 

stored in a climatic chamber before characterization. Materials characterization included 

measurement of the colour (CIE L*, a*, b*), scanning with office scanner in order to analyse image 

and to calculate RGB and HSL colour coordinates, gloss (in two cardinal fibre directions), as well 

as spectroscopy in NIR range. 

 

2.3.1 Colour CIE Lab 

Changes in colour were assessed by a spectrometer following the CIE L*a*b* system, where 

colour is expressed with three parameters: L* (lightness), a* (red-green tone) and b* (yellow-blue 

tone). CIE L*a*b* colours were measured using a MicroFlash 200D spectrophotometer 

(DataColor Int, Lawrenceville, USA). The selected illuminant was D65 and viewer angle was 10°. 

All specimens were measured on ten different spots over the weathered surface. 

 

2.3.2 Colour RGB and HSL 

Experimental samples were scanned with office scanner HP Scanjet G2710. The Red (R), Green 

(G) and Blue (B), as well as Hue (H), Saturation (S) and Luminosity (L) values were calculated 

globally and separately for earlywood and latewood. A custom algorithm for identification of 

surface colour in latewood and earlywood zones was implemented in a LabView 2018 (National 

Instruments, Austin, USA) software package. The location (image mask) of earlywood and 

latewood was determined on the basis of the grey image histogram (extreme dark and bright 

pixels). The RGB/HSL colour values were computed as a centre of gravity for histograms obtained 

from the masked areas of source colour images separately for earlywood and latewood. The print 

screen of the software is presented in Fig. 3. 

 

 
Figure 3:  Print screen of the Lab View software used for image analysis. 

 

2.3.3 Gloss 

The mode of light reflection from the surfaces was measured using a REFO 60 (Dr. Lange, 

Düsseldorf, Germany) gloss meter with incidence/reflectance angle of 60°. Ten measurements 

were taken in total on each specimen, following two directions: along and across the fibres. 
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2.3.4 FT-NIR spectroscopy 

Near infrared spectra were collected with a Vector N-22 Fourier-transform NIR spectrometer 

produced by Bruker Optics GmbH (Ettlingen, Germany). The system was equipped with a fibre 

optic probe and the measurement range was between 12000 cm-1 to 4000 cm-1 (833 to 2500 nm). 

The spectral wavenumber interval was 3.85 cm-1 with zero-filling equal to 2. The spectral 

resolution was 8 cm-1 and 32 internal scans were averaged at each spectrum. The background was 

measured every hour on Spectralon® resin. Three measurements were taken on each experimental 

sample. 

 

2.4 Data fusion algorithm and multi-way analysis 

Multi-block algorithm allowed combining multiple measurements taken on the same objects (aka 

samples) or over the same or similar periods of time (for a time-dependent system). The data from 

spectroscopic, colour, image analysis and gloss measurements were analysed with the PLS 

Toolbox software (Eigenvector Research, Inc.). The schema adopted for data fusion is presented 

in Fig. 4. All different data blocks share a common dimension corresponding to the number of 

samples. A mixed low/mid-level data fusion approach was applied. In fact, CIE Lab, RGB, HSI 

and gloss variables were simply concatenated, while the NIR spectroscopic data were compressed 

by PCA (retaining the four components scores as features) in order to reduce the number of 

variables and filter out the noise. The fused data (after autoscaling within each block) were block-

scaled in order to assure equal contribution to the model. In that case each variable was weighted 

by its inverse standard deviation, and additionally corrected taking into account the number of 

variables in each block.  

 

The experimental data represented a time series data type. Therefore, in the data fusion protocol 

implemented, they were unfolded variable-wise by taking wood samples and time in the sample 

direction. It allowed analyses with the multi-way approach, preserving their data structure and 

assuring the most efficient extraction of the time trends. Parallel factor analysis (PARAFAC) was 

identified as a suitable method for the purpose of this research. The numerical calculations were 

performed as well with the PLS Toolbox software (Eigenvector Research, Inc.). 
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Figure 4:  Concept for data fusion as implemented for multi-sensor analysis of the weathered wood 

surface.  

3. RESULTS AND DISCUSSION 

3.1 Single sensor evaluation 

3.1.1 Appearance 

The appearance of investigated materials in the function of time is presented in Fig. 5. Some of 

the materials were relatively stable regarding colour and pattern changes (#1, #3), while others 

(#4, #5, #6, #7) contained noticeable mould discoloration on their surfaces. Material #2 changed 

its original appearance after three months of exposure, with minor colour changes afterward. It 

corresponded to the technical description of the product, as according to the producers it was 
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designed to silver off due to natural exposure. None of investigated materials became grey, even 

if the weathering test was performed for 12 months. Otherwise, the greying of wood surface is a 

usual response of wood to long-term exposure to weathering. An increase of gloss parameters 

(especially across the fibres) was noticed with the progress of the weathering process. The 

numerical values for CIE L*a*b*, gloss parameters and RGB calculated for the entire sample area 

are presented in Fig. 6. 

 

 

 
Figure 5: Change of samples appearance along one year of natural weathering (from up: #1, #2, #3, #4, 

#5, #6, #7). 

 



 

 

9 

 
 

Figure 6:  Change of CIE L*a*b*, gloss and global RGB parameters due to natural weathering. Note 

materials presented in the order from upper row: #1, #2, #3, #4, #5, #6, #7 (Sandak et al. 2018). 
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3.1.2 NIR spectroscopy 

Analysis of NIR spectra allowed determination of the chemical changes kinetic as associated to 

functional groups of wood components. Bands 4404cm-1 and 5219cm-1 (assigned to carbohydrates 

and water, respectively) changed in all investigated materials. Changes in the band 4404cm-1 

indicates degradation of the functional groups (-CH, -CH2, -OH, -CO) in cellulose and 

hemicellulose. The reference sample (not treated pine wood) spectra revealed the highest changes 

for bands: 4198, 4280, 4404 and 5219cm-1. The distinctive changes at 6121cm-1 (assigned to 

hydroxyl groups of cellulose) were observed only in furfurylated wood samples. The band 

5980cm-1 assigned to -CH functional group of lignin was degraded in the case of all investigated 

materials, but with different extents. 

 

The functional groups assigned to crystalline and semi-crystalline cellulose (both -CH and -OH) 

did not degraded due to weathering in all investigated materials. According to Kalnins and Feist 

(1993), the weathering leads to increases of hydroxyl concentration on the wood surface. It is 

confirmed by slight increase of band 7008cm-1, assigned to the -OH groups in amorphous 

cellulose. Analysis of the specific degradation kinetics, associated with particular functional 

groups of wood constituents, allows better understanding of the weathering mechanisms. NIR 

spectroscopy is capable, therefore, to highlight week points of investigated materials that might be 

further improved by adjusting modification process settings. 

 

3.2 Data fusion approach 

The raw signals provided by the selected characterization methods deliver two types of data: 

multiple variables (values at a given type of measurement) in case of colour and gloss, as well as 

spectra (where series of data are representing wavenumber resolved signals) in case of NIR 

spectroscopy. The experimental data can be merged at different levels with various robustness and 

flexibility. Moreover, every block can have a specific pre-processing, including filtering, 

normalization or other scaling methods. In this case, for all measured parameters with the 

exception of NIR spectra, low data fusion has been applied. In order to handle high numbers of 

variables (2075 wavenumbers generated by spectroscopic measurements), PCA analysis has been 

carried out before data fusion. As a result, 3 CIE L*a*b* parameters, 4 PC scores, 6 RGB and 6 

HSL values (calculated separately for earlywood and latewood) were provided for the data fusion 

(Fig. 4). 

 

3.3 Parallel factor analysis 

According to Schmitz et al. (2014), PARAFAC proved to be a suitable numerical method to reveal 

the structure contained in the experimental data. It enables assessment of functional relations 

between the recorded groups of different stimulus conditions and time structures. Fig. 7 presents 

an output of the PARAFAC decomposition by using two factors. The majority of the information 

(88.6%) was captured by factor/component 1, while factor 2 explained 4.8% of variance. The data 

were arranged with mode 1 corresponding to time, mode 2 to measurement and mode 3 to different 

wood samples (modification processes). It can be clearly seen that for all investigated samples 

monotonous increase with time can be noticed for component 1. It means that all the investigated 

materials follow certain patterns of deterioration related to progress of the weathering process. The 

values of component 2 show relatively less variability. Only a slight drop of the component 2 value 

was noticed, even if the overall trend was more persistent when compared to component 1.  

 

Analysis of mode 2 results (component 1) reveals that the CIE L* parameter was most influenced 

by weathering progress. Other parameters providing important information include CIE b*, gloss 

(measured in both directions), RGB parameters (measured for both earlywood and latewood) as 

well as luminosity measured for earlywood. Four PCs calculated for NIR spectra and hue 
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parameter measured for earlywood and latewood seems to be relatively irrelevant. However, it can 

be stated that PC1 and PC2 calculated for NIR spectra as well as gloss parameters provide 

important contribution as highlighted in component 2. Nevertheless, it has to be stated that PC2 of 

NIR spectra covers a relatively low percentage of the explained variance (4.8%).  

 

Mode 3 of the PARAFAC model encodes an influence of the modification process on the 

weathering kinetics. It can be observed by analysing component 1 that material #1 exhibits minor 

changes due to weathering, contrary to material #5 and #7 (reference and acetylated pine, 

respectively). Analysis of component 2 revealed that material #3 (pine thermally treated and 

coated) as well as material #7 (acetylated pine) were the most diverse from others tested in this 

experiment.  

 

 
Figure 7:  PARAFAC model decomposition using 2 factors. Percent variance captured by PARAFAC 

model: comp. 1 = 88.6%, comp. 2 = 4.8%. 

 

PCA of fused data (Fig. 8) highlights that each treatment follows its own weathering kinetics. Even 

though, the trend of changes to the first principal component was similar (i.e., a monotonic increase 

along the exposure time). Most variation occurred during the initial three months, followed by a 

tendency to plateau. PC 1 scores of materials #1 and #3 present more flattened increase. The 

pattern of other modified materials #2, #4, #6, and #7 is much more dynamic. The varying slope 

of the first part of the curve indicated differences in the degradation (changes) kinetics. The only 

exception was noticed in the case of treatment #5 (not modified pine wood), where the value of 

PC1 decreased at the initial phase, followed by the increase.  
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Figure 8:  Score value of first principal component (explaining 51% of variance) for the PCA model of 

the multi-block data set for treated pine wood exposed to natural weathering for one year. 

4. CONCLUSIONS 

This paper presents an alternative concept for fusion and multi-way analysis of multi-sensor data 

related to performance of modified wood in service. Experimental samples were measured with 

different techniques providing information regarding their aesthetics and chemical composition in 

a function of time. Measurement output has been analysed and interpreted separately. 

Additionally, the multi-block approach was used for data merging. For all measured parameters, 

with exception of NIR spectra, low data fusion has been applied. In order to handle high numbers 

of variables generated by spectroscopic measurements, PCA analysis has been carried out before 

data fusion. PARAFAC analysis was performed after data merging, which allowed interpretation 

of time influence on measured variables and treatment method on weathering kinetic.  

 

Presented approach for data fusion and its multi-way analysis can be applied for any kind of 

experimental data generated for assessment of materials performance. It allows more accurate 

interpretation of results and highlights interaction between influencing factors. 
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