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Abstract— In this paper, an analytical procedure to derive the
efficiency of linear and nonlinear physical systems is presented.
This procedure allows to compute the efficiency map both on
the plane of the input power variables and on the plane of
the output power variables. Additionally, the paper highlights
the parameters to be adjusted in order to enlarge the high-
efficiency region of the system. The presented procedure can
also be used in conjunction with a least square algorithm in
order to estimate the unknown parameters of the considered
physical system. The effectiveness of the procedure has been
tested in Matlab/Simulink to estimate the parameters of an
actual PMSM electric motor. The obtained results show a very
good matching between the actual and the estimated efficiency
maps.

I. INTRODUCTION

The concept of efficiency is much appreciated in the
world of industry as it is intuitive and allows the user to
determine the cost, in terms of dissipated power, related to
the introduction of a specific physical element within the
overall system. Industries typically use simplified methods
to derive the average efficiency of a physical system, and
usually the computed efficiency refers only to a particular
operating point. In this paper, the problem of the power
flow-based efficiency of a physical system is addressed as
a general case, and the analysis is applied to both linear
and nonlinear systems. The presented procedure shows the
most efficient operating regions for the considered physical
system, thus providing an insight of how the overall per-
formance of the system can be improved. In the paper, the
presented procedure is applied to three practical case studies:
a DC electric motor, a mechanical gear transmission system
and a Permanent Magnet Synchronous Motor (PMSM). The
presented analysis can also be used to identify the unknown
parameters of the considered system if its efficiency map
on the output plane is given. This identification method has
been applied in this paper to the PMSM case study. The same
problem has been addressed, for example, in [1] and in [2].
In [1] the authors propose a technique to identify the motor
parameters by trying to adaptively minimize the current
vector error between the considered model and the actual
system. In [2] the authors estimate the motor parameters by
using a 2nd-order Extended Kalman Filter. In this paper, a
new method which allows to identify the motor parameters
by trying to minimize the mean squared error between the
efficiency points on the actual and estimated efficiency maps
is presented. Finally, the presented method has been used to
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estimate the unknown parameters of an industrial three-phase
electric motor: the obtained good matching between the
actual and estimated efficiency maps shows the effectiveness
of the proposed method.

II. EFFICIENCY OF LINEAR SYSTEMS

Let us consider a linear dissipative system H(s) charac-
terized by two power sections, see Fig. 1. Let (y1, u1) and
(y2, u2) denote the power variables of the input and output
sections, and let us suppose the positive directions of the

H(s)

y1

u1

y2

u2

Fig. 1. Linear system H(s) characterized by two power sections.

power variables to be chosen in such a way that the power
flow P1 = u1y1 is positive if it is entering the system and
power flow P2 = u2y2 is positive if it is exiting the system.
The POG (standing for Power-Oriented Graphs, see [3]) state
space equations of the considered linear system are:

{

Lẋ = Ax+Bu

y = Cx+Du
, u =

[
u1

u2

]

, y =

[
y1
y2

]

.

The transfer matrix H(s) can be determined as follows:

H(s) = C(Ls−A)-1B+D.

In steady-state condition, matrix H(s) can be replaced with
the static gain matrix H0:

H0 = H(s)|s=0 = −CA-1B+D. (1)

Let vectors y, u and matrix H0 be denoted as follows:
[

y1
y2

]

︸ ︷︷ ︸

y

=

[
a b
c −d

]

︸ ︷︷ ︸

H0

[
u1

u2

]

︸ ︷︷ ︸

u

(2)

When det(H0) 6= 0, relation (2) can be graphically repre-
sented as shown in Fig. 2. System H(s) is dissipative if the
total power flow Pin entering the system is positive:

Pin = P1 − P2 = u1y1 − u2y2 =
[
u1 −u2

]
[
y1
y2

]

> 0 (3)

By using (2) and (3), power Pin can be expressed in the
following way:

Pin =
[
u1 u2

]
[

a b
−c d

]

︸ ︷︷ ︸

Hp

[
u1

u2

]

= uT Hp u > 0

2019 18th European Control Conference (ECC)
Napoli, Italy, June 25-28, 2019

978-3-907144-00-8 ©2019 EUCA 3829



u1

y1

P1

- -

a

?

?

� � � �b

- c - - -

d

6

6
� �

P2

y2

u2

Fig. 2. Graphical representation of relation (2) when det(H0) 6= 0.

One can easily prove that power Pin is positive if:

a > 0, d > 0, det(Hp) = ad+ bc > 0. (4)

When det(Hp) = 0, power Pin is equal to zero and
the system exhibits internal steady-state conditions without
dissipations.

A. Definition of power flow efficiency

Definition. The “power flow efficiency” E(t) of a system
having the structure shown in Fig. 1 is defined as follows:

E(t) =
u2(t) y2(t)

u1(t) y1(t)
. (5)

Relation (2) can also be expressed as follows:
[
u1

y1

]

=

[
d
c

1
c

a d+b c
c

a
c

][
u2

y2

]

,

[
u2

y2

]

=

[
−a

b
1
b

a d+b c
b

−d
b

][
u1

y1

]

. (6)

From (5) and (6), one can observe that the efficiency of
the system only depends on coefficients a, b, c, d which are
present within the static gain matrix H0, see (2). From this
observation, the following important property that applies to
all physical systems can be derived.

Property 1: The efficiency of a physical system is not
affected by the dynamic elements present within matrix L.

By substituting (6) in (5), one obtains the following two
equivalent ways of expressing efficiency E(t):

E(y2, u2) =
c2 u2 y2

(d u2 + y2) [(a d+ b c)u2 + a y2]
(7)

E(y1, u1) =
(−a u1 + y1) [(a d+ b c)u1 − d y1]

b2 u1 y1
(8)

From (7) and (8), it follows that E(t) can be given in two dif-
ferent equivalent ways: by plotting function E(y2, u2) on the
plane of the output variables (y2, u2), or by plotting function
E(y1, u1) on the plane of the input variables (y1, u1).

B. Efficiency of linear systems on input and output planes.

Property 2: The efficiency E(t) of a linear system is
constant along straight lines exiting from the origin of the
output plane (y2, u2):

u2 = γ y2, γ ∈ [0, ∞] (9)

and reaches its maximum value E∗ for:

γ =

√
a

d (a d+ c b)
= γ∗ (10)
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Fig. 3. Efficiency map shown on the plane of the output variables (y2, u2).

Proof. By substituting (9) in (7), it is possible to express
E(t) as a function of parameter γ:

E(t) =
c2γ

(d γ + 1) [(a d+ b c) γ + a]
= E(γ) (11)

Efficiency E(γ) in (11) can also be rewritten as follows:

E(γ)=
c2γ

a+ β γ + δ γ2
where

{

β = 2 a d+ c b

δ = d (a d+ c b)
(12)

By deriving E(γ) with respect to γ, one obtains:

∂E(γ)

∂γ
=

c2(a− δ γ2)

(a+ β γ + δ γ2)2
.

Efficiency E(γ) is maximized when ∂E(γ)
∂γ

= 0, that is when
γ =

√
a
δ

. By using δ from (12), one directly obtains relation
(10). �

By means of (11), one obtains the maximum efficiency E∗ =
E(γ∗):

E∗ = E(γ∗) =
c2
√

a
δ

a+ β
√

a
δ
+ δ

(√
a
δ

)2 =
c2

2
√
a δ + β

By exploiting (12), E∗ can also be expressed as follows:

E∗ =
c2

2
√

a d (a d+ c b) + 2 a d+ c b

=
c (
√
a d+ c b−

√
a d)

b (
√
a d+ c b+

√
a d)

=
c (
√

1 + c b
a d

− 1)

b (
√

1 + c b
a d

+ 1)

(13)

Moreover, by using (4) one can easily prove that E∗ in (13) is
always less than 1, that is: E∗ ≤ 1. Fig. 3 shows an example,
where the efficiency of a linear system H(s) characterized
by parameters a = 0.2, b = 0.6, c = 0.8, d = 0.1 and
Pmax = 100W is reported on the output plane (y2, u2) .
The values of γ∗ and E∗ are: γ∗ = 2 and E∗ = 0.8889.

Property 3: The efficiency E(t) of a linear system is
constant along straight lines exiting from the origin of the
input plane (y1, u1):

u1 = α y1, α ∈ [0, ∞] (14)

and reaches its maximum value E∗ for:

α =

√

d

a(a d+ b c)
= α∗ (15)
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Fig. 4. Efficiency map shown on the plane of the input variables (y1, u1).

Proof. By substituting (14) in (8), it is possible to express
E(t) as a function of parameter α:

E(t) =
(1− aα) [(a d+ b c)α− d]

b2α
= E(α) (16)

Efficiency E(α) in (16) can also be rewritten as follows:

E(α)=
−d+ β α− η α2

b2α
where

{

β = 2 a d+ c b

η = a(a d+ b c)
(17)

By deriving E(α) with respect to α, one obtains:

∂E(α)

∂α
=

(d− η α2)b2

(b2α)2

Efficiency E(α) is maximized when ∂E(α)
∂α

= 0, that is when

α =
√

d
η

. By using η from (17), one directly obtains relation
(15). �

By means of (16), the maximum efficiency E∗ = E(α∗) is:

E∗ = E(α∗) =
−d+ β

√
d
η
− η (

√
d
η
)2

b2
√

d
η

=
β − 2

√
η d

b2

By using (17), E∗ = E(α∗) can also be expressed as:

E∗ =
2 a d+ c b− 2

√

a d (a d+ c b)

b2

=
c (
√
a d+ c b−

√
a d)

b (
√
a d+ c b+

√
a d)

=
c (
√

1 + c b
a d

− 1)

b (
√

1 + c b
a d

+ 1)

(18)

Obviously, the maximum efficiency value E∗ obtained in
(18) coincides with the maximum efficiency value E∗ ob-
tained in (13). Moreover, slopes α and γ are related as
follows:

α =
dγ + 1

(a d+ b c)γ + a
, γ =

aα− 1

d− α(a d+ b c)
. (19)

Fig. 4 shows the efficiency of the same linear system H(s)
considered in Fig. 3 reported on the input plane (y1, u1) .
In this case, it is: α∗ = 1 and E∗ = 0.8889.

III. EFFICIENCY OF NONLINEAR SYSTEMS

Two different cases will be considered: A) a linear system
H(s) with additional nonlinear terms; B) a full nonlinear
system ẋ = f(x,u).
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ū2
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Fig. 5. Linear system H(s) with additional nonlinear friction terms.
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Fig. 6. Efficiency map on plane (y2, u2) in presence of nonlinearities.

A. Linear system H(s) with additional nonlinear terms

The block scheme shown in Fig. 5 describes a linear
system H(s) with additional nonlinear friction terms. The
structure of nonlinear functions f1(y1) and f2(y2) is sup-
posed to be the following:

f1(y1) = bc1sgn(y1)+bd1 y
2
1 , f2(y2) = bc2sgn(y2)+bd2 y

2
2 .

The efficiency of the overall nonlinear system, having
(y1, u1) and (y2, u2) as input and output power sections,
can be expressed as follows:

1) Efficiency on the output plane (y2, u2):

E(y2, u2) =
u2 y2
u1 y1

=
u2 y2

(ū1 + f1(y1)) y1

where
[
ū1

y1

]

=

[
d
c

1
c

a d+b c
c

a
c

] [
ū2

y2

]

, ū2 = u2 + f2(y2). (20)

2) Efficiency on the input plane (y1, u1):

E(y1, u1) =
u2 y2
u1 y1

=
(ū2 − f2(y2)) y2

u1 y1

where
[
ū2

y2

]

=

[

−a
b

; 1
b

a d+b c
b

;−d
b

] [
ū1

y1

]

, ū1 = u1 − f1(y1).

By referring to the linear system H(s) defined in Sec. II-
B and introducing nonlinear friction coefficients bc1 = 0.6,
bc2 = 0.9, bd1 = 0.02 and bd2 = 0.03, one obtains the
efficiency maps on planes (y2, u2) and (y1, u1) shown in
Fig. 6 and Fig. 7, respectively.
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Fig. 7. Efficiency map on plane (y1, u1) in presence of nonlinearities.
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Fig. 8. Nonlinear system ẋ = f(x,u) with nonlinear friction terms.

B. A full nonlinear system ẋ = f(x,u).

The block scheme shown in Fig. 8 describes a nonlinear
system in presence of additional nonlinear friction terms.
In steady-state condition, the considered nonlinear system is
described by the following nonlinear static equations:







0 = f(xss, ū1, ū2)
[
y1
y2

]

= g(xss, ū1, ū2)
(21)

The first equation 0 = f(xss, ū1, ū2) must be solved with
respect to the internal state space vector xss = f -1(ū1, ū2).
By using xss, the output nonlinear equation of system (21)
can be expressed as follows:

[
y1
y2

]

= g(f -1(ū1, ū2), ū1, ū2).

This system consists of two nonlinear static equations which
are function of the four power variables ū1, y1, ū2 and y2.
By solving this nonlinear system with respect to (ū1 , y1) and
(ū2 , y2) one obtains, respectively, the following solutions:

[
ū1

y1

]

=

[

p1(ū2, y2)

q1(ū2, y2)

]

,

[
ū2

y2

]

=

[

p2(ū1, y1)

q2(ū1, y1)

]

. (22)

The efficiency of the overall nonlinear system can be ex-
pressed in the following ways:

1) Efficiency on the output plane (y2, u2):

E(y2, u2) =
u2 y2
u1 y1

=
u2 y2

(ū1 + f1(y1)) y1

where ū1=p1(ū2, y2), y1=q1(ū2, y2) and ū2=u2+ f2(y2).
Functions p1(ū2, y2) and q1(ū2, y2) are defined in (22).

2) Efficiency on the input plane (y1, u1):

E(y1, u1) =
u2 y2
u1 y1

=
(ū2 − f2(y2)) y2

u1 y1

where ū2=p2(ū1, y1), y2=q2(ū1, y1) and ū1=u1− f1(y1).
Functions p2(ū1, y1) and q2(ū1, y1) are defined in (22).

IV. SIMULATION RESULTS

A. Efficiency of an electric DC motor.

Consider the POG block scheme of an electric DC motor
shown in Fig. 9. The parameters of the system have the
following meaning: L is the stator inductance, R is the stator
resistance, J is the rotor moment of inertia, B is the rotor
linear friction coefficient and K is the torque constant of
motor. The POG state space equations of the system are the

V

I

P1

- �

1

R+ Ls

?

?

� -- K -
τm

�E �K � -

1

B + Js

6

6

- �

P2

ω

τ

Fig. 9. POG block scheme of an electric DC motor.

following:






[
L
J

]

︸ ︷︷ ︸

L

[

İ
ω̇

]

︸ ︷︷ ︸

ẋ

=

[
−R −K
K −B

]

︸ ︷︷ ︸

A

[
I
ω

]

︸ ︷︷ ︸

x

+

[
1 0
0 −1

]

︸ ︷︷ ︸

B

[
V
τ

]

︸ ︷︷ ︸

u

y =

[
1 0
0 1

]

︸ ︷︷ ︸

C

x+

[
0 0
0 0

]

︸ ︷︷ ︸

D

u

Matrix H0, for the considered electric DC motor, is:

H0 =







B

RB +K2

K

RB +K2

K

RB +K2

−R

RB +K2






=





a b

c −d





Parameters a, b, c, d defined in (2) are the following:

a =
B

RB +K2
, b =

K

RB +K2
= c, d =

R

RB +K2
.

In this case, the maximum efficiency E∗, see (18), is:

E∗=

(√

1+ K2

RB
−1

)

(√

1+ K2

RB
+1

)=

(√
1 + q − 1

)

(√
1 + q + 1

) where q =
K2

RB
.

Efficiency E∗(q) of the electric DC motor as a function of
parameter q is shown in Fig. 10. From the figure, it is evident
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Fig. 10. DC motor efficiency E∗(q) as a functions of parameter q.
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Fig. 11. Efficiency map of the DC motor on the output plane (ω, τ).

that:






E∗(q) > 0.8 if q > 81.6 ⇔ K2 > 81.6RB
E∗(q) > 0.85 if q > 152 ⇔ K2 > 152RB
E∗(q) > 0.9 if q > 361.6 ⇔ K2 > 361.6RB
E∗(q) > 0.95 if q > 1522 ⇔ K2 > 1522RB

From (10), it is known that on the plane of the output
variables (ω, τ), the maximum efficiency E∗(q) is obtained
for the following slope:

γ∗ =

√

B(RB +K2)

R
= B

√

1 +
K2

RB
= B

√

1 + q.

Consequently, for constant q (i.e. constant maximum effi-
ciency E∗), the optimal slope γ∗ is proportional to coefficient
B: DC motors characterized by a large value of B are
suitable for working in high torque-low speed operating
regions, whereas DC motors characterized by a low value
of B are suitable for working in low torque-high speed
operating regions. The efficiency map of the DC motor on
the plane of the output variables (ω, τ) is shown in Fig. 11.

B. Efficiency of a mechanical gear transmission.

Let us consider the POG block scheme shown in Fig. 12
describing the dynamics of a mechanical gear transmission
system. The parameters of the system have the following
meaning: J1, b1 and R1 are the moment of inertia, the
linear friction coefficient and the radius of the first gear,
respectively. Equivalently, J2, b2 and R2 are the moment
of inertia, the linear friction coefficient and the radius of
the second gear, respectively. Finally, K is the stiffness of
the spring acting in between the two gears. The state space
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Fig. 12. POG block scheme of a mechanical gear transmission system.
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Fig. 13. Efficiency map of the gear transmission on output plane (ω2, τ2).

equations of the considered gear transmission system are the
following:










J1 ω̇1

K -1 Ḟ
J2 ω̇2





︸ ︷︷ ︸

L ẋ

=





−b1 −R1 0
R1 0 −R2

0 R2 −b2





︸ ︷︷ ︸

A





ω1

F
ω2





︸ ︷︷ ︸

x

+





1 0
0 0
0 −1





︸ ︷︷ ︸

B

[
τ1
τ2

]

︸︷︷︸

u

[
ω1

ω2

]

︸ ︷︷ ︸

y

=

[
1 0 0
0 0 1

]

︸ ︷︷ ︸

C

x+

[
0 0
0 0

]

︸ ︷︷ ︸

D

u

(23)

Matrix H0 of the considered system, see (1) and (2), is:

H0 =






1
b1+b2r2

−r
b1+b2r2

r
b1+b2r2

−r2

b1+b2r2




 =

[
a b

c −d

]

(24)

where r = R1

R2

. For the gear transmission system, see (18),
the maximum efficiency E∗ is equal to 1:

E∗ =

c

(√

1 + c b
a d

− 1

)

b

(√

1 + c b
a d

+ 1

) =
−
(√

1− 1− 1
)

(√
1− 1 + 1

) = 1

On the plane of the output variables (ω2, τ2), the maximum
efficiency E∗ = 1 is obtained for γ∗ = ∞ when ω = 0:

γ∗ =

√
a

d (a d+ c b)
=

√

(b1 + b2r2)2

r2 (r2 − r2)
= ∞.

The efficiency map of the gear transmission system on the
output plane (ω2, τ2) is shown in Fig. 13. When K → ∞,
the dynamic equation of the reduced system is:

(J1 + r2J2)ω̇1 = −(b1 + r2b2)ω1 +
[
1 −r

]
u (25)
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One can easily verify that matrix H0 of the reduced sys-
tem (25) is exactly equal to the one obtained in (24) for
the original system (23), meaning that the efficiency of a
mechanical gear transmission does not depend on the value
of the dynamic element K. This result agrees with what is
stated in Prop. 1.

C. Efficiency of a electric PMSM.

The steady-state equations of a Permanent Magnet Syn-
chronous Motor (PMSM) in the rotating frame Σω , see [4],
have the following structure:




pRs − p2ωmLse 0
p2ωmLse pRs

ωKq

0 − ωKq bm









ωId
ωIq
ωm



−





ωVd
ωVq

−τe



=





0
0
0





︸ ︷︷ ︸

f(xss,u) = 0

(26)

The meaning of the system parameters is reported in Tab. I.

p Number of polar expansions;
Rs Stator phase resistance (p = 1);
Lse Ls + 1

2
Ms0;

Ls Stator phase self inductance coefficient (p = 1);
Ms0 Maximum value of mutual inductance between stator phases;
bm Rotor linear friction coefficient;
ωm Motor angular velocity;
ωKq Motor torque constant;
ωVd Direct component of the motor input voltage vector;
ωVq In-quadrature component of the motor input voltage vector;
ωId Direct component of the motor output current vector;
ωIq In-quadrature component of the motor output current vector;
τe External load torque applied to the motor;

TABLE I

PARAMETERS OF SYSTEM (26).

1) Controlled PMSM: if voltage ωVd is chosen in order to
impose the condition ωId = 0, the nonlinear static equations
(26) simplify as follows:





ωVd
ωVq

−τe



 =





− p2 ωm Lse 0
pRs

ωKq

− ωKq bm





[
ωIq
ωm

]

(27)

By solving with respect to ωIq , ωVd and ωVq, one obtains:





ωIq
ωVd
ωVq



 =











bm ωm + τe
ωKq

−p2 ωm Lse(bm ωm + τe)
ωKq

ωm
ωK2

q +Rs τe p+Rs bm pωm

ωKq











(28)

Without the first equation, system (27) can be rewritten as:

[
u1

u2

]

=

[
ωVq

τe

]

︸ ︷︷ ︸

u

=

[
pRs

ωKq

ωKq −bm

] [
ωIq
ωm

]

︸ ︷︷ ︸

y

By solving with respect to y, it results:

[
y1
y2

]

=

[
ωIq
ωm

]

︸ ︷︷ ︸

y

=







bm
pRsbm+ ωK2

q

ωKq

pRsbm+ ωK2
q

ωKq

pRsbm+ ωK2
q

− pRs

pRsbm+ ωK2
q







︸ ︷︷ ︸

H0

[
ωVq

τe

]

︸ ︷︷ ︸

u

The obtained matrix H0 has the structure defined in (2),
where parameters a, b, c, d are:

a =
bm
∆

, b =
ωKq

∆
= c, d =

pRs

∆
(29)

where ∆ = pRsbm+ ωK2
q . For the considered PMSM, the

maximum efficiency value E∗, see (18), is:

E∗ =

(√
1 + q − 1

)

(√
1 + q + 1

) where q =
ωK2

q

pRs bm
. (30)

2) Electric PMSM: the general case: if the electric motor
is not controlled, both currents ωId and ωIq are different
from zero. In this case, system (26) can be rewritten as
follows:




0
ωKq ωm

bmωm+τe





︸ ︷︷ ︸

b

=





−pRs p2ωmLse 1 0
− p2ωmLse −pRs 0 1

0 ωKq 0 0





︸ ︷︷ ︸

A







ωId
ωIq
ωVd
ωVq







︸ ︷︷ ︸

x

(31)

The solution of system (31) is:

x=









p ωm Lse(bm ωm+τe)
ωKq Rs

bm ωm+τe
ωKq

0
p(p2ω2

m
L2

se
+R2

s
)(bmωm+τe)+

ωK2

q
Rs ωm

ωKq Rs









︸ ︷︷ ︸

x0

+







α
0

αpRs

αp2ωmLse







︸ ︷︷ ︸

ker(A)

(32)
where α ∈ R is an arbitrary real parameter. Solution (32)
can also be expressed as follows:

x=







Id0 + α
Iq0

αpRs

Vq0+αp2ωmLse







where







Id0
Iq0
0
Vq0






=x0. (33)

The power P1 = ωVd
ωId+

ωVq
ωIq entering the system is

given by:

P1 = α pRs(Id0 + α) + Iq0(Vq0 + α p2 ωm Lse).

The efficiency E(ωm, τe) =
P2

P1

of the PMSM on the output
plane can be expressed as follows:

E(ωm, τe)=
ωm τe

αpRs(Id0+α)+Iq0(Vq0+αp2ωmLse)
(34)

where P2 = ωm τe is the power exiting the system. Efficiency
E(ωm, τe) is a function of parameter α. The maximum
efficiency is obtained when the partial derivative of function
E(ωm, τe) with respect to α is equal to zero:

∂E(ωm, τe)

∂α
=

−ωmτe(pRs(Id0+2α)+Iq0p
2ωmLse)

(pRs(αId0+α2)+Iq0(Vq0+αp2ωmLse))2
=0
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By solving with respect to α, one obtains:

α∗ =
−Rs Id0 − Iq0 pωm Lse

2Rs

. (35)

By substituting (32) in (35), it results:

α∗ = − pωm Lse(bm ωm + τe)
ωKq Rs

= −Id0 (36)

By substituting (36) in (33), one obtains:

x∗ =













0
bm ωm + τe

ωKq

−p2 ωm Lse(bm ωm + τe)
ωKq

ωm
ωK2

q +Rs τe p+Rs bm pωm

ωKq













(37)

Note that the obtained solution x∗ is equal to the solution
obtained in (28) when the control strategy imposes the
condition ωId = 0.

D. Electric PMSM: parameters identification.

The analysis presented in the previous sections can be
used, for example, to estimate the parameters of a PMSM.
The efficiency map of electric PMSM is typically given on
the output plane (y2, u2) = (ωm, τe). For these systems,
Eq. (20) can be rewritten as follows:

[
ū1
ωIq

]

=

[
d
c

1
c

a d+b c
c

a
c

] [
ū2

ωm

]

where a, b, c, d are the coefficients of matrix H0 defined
in (29) and inputs u1 and u2 are defined as follows:

{
u2=τe= ū2 − bc sign(ωm)

u1=
ωVq= ū1 +Rsq

ωI2q
(38)

Parameters bc and Rsq in (38) are, respectively, the am-
plitude of the Coulomb friction acting on the rotor, and
the dissipative coefficient accounting for the Joule losses
of the motor. The efficiency of the PMSM depends on
the values of the dissipative parameters bm, bc, Rs, Rsq,
which are usually unknown. Nevertheless, their values can
be estimated if the efficiency map of the system on the
output plane (ωm, τe) in given. Let us consider, for example,
the normalized efficiency map of an industrial three-phase
synchronous electric motor shown in Fig. 14. From this
figure, one can read the efficiency of the system on a properly
chosen set of points. Then, a least square algorithm can be
used to minimize the mean squared error between the real
efficiency on the selected points and the efficiency of the
PMSM model on the same points. By applying this procedure
to the normalized efficiency map shown in Fig. 14, one
obtains the following estimated parameters for the considered
industrial PMSM: bm = 6.46 10−3 [Nm/(rad/s)], bc = 1.97
[Nm], Rs = 2.8 [mΩ], Rsq = 3.52 [µV/A2]. Fig. 15 shows
the obtained estimated efficiency maps of the considered
industrial electric motor. Comparing Fig. 15 with Fig. 14
one can see a very good matching between the estimated
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Fig. 14. Normalized efficiency map of an industrial electric motor on plane
(ωm, τe).
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Fig. 15. Estimated efficiency map of an industrial electric motor on plane
(ωm, τe).

and the actual efficiency maps, denoting the effectiveness of
the presented procedure.

V. CONCLUSIONS

In this paper, a theoretical analysis regarding the power
flow-based efficiency of linear and nonlinear systems has
been presented. This analysis highlights the main relations
affecting the efficiency of the analyzed physical system
and shows how to change the system parameters in order
to enlarge the high-efficiency region as much as possible.
Based on this analysis and using a least square algorithm, a
procedure allowing to estimate the parameters of a PMSM
has been presented and its effectiveness has been verified by
applying it to an actual PMSM.
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