
18/04/2024 02:03

Embodied Vision-and-Language Navigation with Dynamic Convolutional Filters / Landi, Federico; Baraldi,
Lorenzo; Corsini, Massimiliano; Cucchiara, Rita. - (2019), pp. 1-12. (Intervento presentato al convegno
30th British Machine Vision Conference tenutosi a Cardiff, UK nel 9th-12th September 2019).

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

LANDI, ET AL: EMBODIED VLN WITH DYNAMIC CONVOLUTIONAL FILTERS 1

Embodied Vision-and-Language Navigation
with Dynamic Convolutional Filters
Federico Landi
federico.landi@unimore.it

Lorenzo Baraldi
lorenzo.baraldi@unimore.it

Massimiliano Corsini
massimiliano.corsini@unimore.it

Rita Cucchiara
rita.cucchiara@unimore.it

University of Modena and
Reggio Emilia, Italy

Abstract

In Vision-and-Language Navigation (VLN), an embodied agent needs to reach a tar-
get destination with the only guidance of a natural language instruction. To explore the
environment and progress towards the target location, the agent must perform a series
of low-level actions, such as rotate, before stepping ahead. In this paper, we propose
to exploit dynamic convolutional filters to encode the visual information and the lingual
description in an efficient way. Differently from some previous works that abstract from
the agent perspective and use high-level navigation spaces, we design a policy which de-
codes the information provided by dynamic convolution into a series of low-level, agent
friendly actions. Results show that our model exploiting dynamic filters performs better
than other architectures with traditional convolution, being the new state of the art for
embodied VLN in the low-level action space. Additionally, we attempt to categorize
recent work on VLN depending on their architectural choices and distinguish two main
groups: we call them low-level actions and high-level actions models. To the best of our
knowledge, we are the first to propose this analysis and categorization for VLN.

1 Introduction
Imagine finding yourself in a large conference hall, with an assistant giving you instructions
on how to reach the room for your talk. You are likely to hear something like: turn right at
the end of the corridor, head upstairs and reach the third floor: your room is immediately on
the left. Succeeding in the task of finding your target location is rather nontrivial because of
the length of the instruction and its sequential nature: the flow of actions must be coordinated
with a series of visual examinations – like recognizing the end of the corridor or the floor
number. Furthermore, navigation complexity dramatically increases if the environment is
unknown, and no prior knowledge, such as a map, is available.

Vision-and-Language Navigation (VLN) [3] is a challenging task that demands an em-
bodied agent to reach a target location by navigating unseen environments, with a natural
language instruction as its only clue. Similarly to the previous example, the agent must

© 2019. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Anderson, Wu, Teney, Bruce, Johnson, S{ü}nderhauf, Reid, Gould, and vanprotect unhbox voidb@x penalty @M {}den Hengel} 2018{}

2 LANDI, ET AL: EMBODIED VLN WITH DYNAMIC CONVOLUTIONAL FILTERS

Take a right, going past the kitchen into the hallway Walk into the sitting area and stop before the couch

Figure 1: Given a fixed visual observation, dynamic convolutional filters can extract a subset
of specific features depending on the leading instruction. In this example, the agent focuses
on two different parts of the same environment (best viewed in color).

assess different sub-tasks to succeed. First, a fine-grained comprehension of the given in-
struction is needed. Then, the agent must be able to map parts of the description into the
visual perception. For example, walking past the piano requires to find and focus on the pi-
ano, rather than considering other objects in the scene. Finally, the agent needs to understand
when the navigation has been completed and send a stop signal.

VLN has been first proposed by Anderson et al. [3], with the aim of connecting the
research efforts on vision-and-language understanding [2, 4, 6, 7, 13, 23, 26] with the raising
area of embodied AI [1, 8, 9, 25]. This is particularly challenging, as embodied agents must
deal with a series of issues that do not belong to traditional vision and language tasks [1], like
contextual decision-making and planning. Recent works on VLN [11, 17, 18, 21] integrate
the agent with a simplified action space in which it “only needs to make high-level decisions
as to which navigable direction to go next” [11]. In this scenario, the agent does not need to
infer the sequence of actions to progress in the environment (e.g., turn right 30 degrees, then
move forward) but it exploits a navigation graph to teleport itself to an adjacent location. The
adoption of this high-level action space allowed for a significant boost in success rates, while
partly depriving the task of its embodied nature, and leaving space for little more than pure
visual and language understanding. We claim that this type of approach is inconvenient,
as it strongly relies on prior knowledge on the environment. Depending on information
such as the position and the availability of navigable directions, it reduces the task to a pure
graph navigation. Moreover, it ignores the active role of the agent, as it only perceives the
surrounding scene and selects the next target viewpoint from a limited set. We claim instead
that the agent should be the principal component of embodied VLN [1]. Consequently, the
output space should match with the low-level set of movements that the agent can perform.

In this paper, we propose a novel architecture for embodied VLN which employs dy-
namic convolutional filters [16] to identify the next target direction, without getting any
information about the navigable viewpoints from the simulator. Convolutional filters are
produced via an attention mechanism which follows the given instruction, and are in turn
used to attend relevant directions of the scene towards which the agent should move. We
then rely on a policy network to predict the sequence of low-level actions.

Dynamic convolutional filters, proposed by Li et al. [16], were first conceived to identify
and track people by a natural language specification. They were then successfully employed
in other computer vision tasks, such as actor and action video segmentation from a sen-
tence [12]. Nonetheless, these works considered mainly short descriptions, while we deal

Citation
Citation
{Anderson, Wu, Teney, Bruce, Johnson, S{ü}nderhauf, Reid, Gould, and vanprotect unhbox voidb@x penalty @M {}den Hengel} 2018{}

Citation
Citation
{Anderson, He, Buehler, Teney, Johnson, Gould, and Zhang} 2018{}

Citation
Citation
{Antol, Agrawal, Lu, Mitchell, Batra, Zitnick, and Parikh} 2015

Citation
Citation
{Das, Kottur, Gupta, Singh, Yadav, Moura, Parikh, and Batra} 2017{}

Citation
Citation
{Das, Kottur, Moura, Lee, and Batra} 2017{}

Citation
Citation
{Goyal, Khot, Summers{-}Stay, Batra, and Parikh} 2017

Citation
Citation
{Vinyals, Toshev, Bengio, and Erhan} 2015

Citation
Citation
{Xu, Ba, Kiros, Cho, Courville, Salakhudinov, Zemel, and Bengio} 2015

Citation
Citation
{Anderson, Chang, Chaplot, Dosovitskiy, Gupta, Koltun, Kosecka, Malik, Mottaghi, Savva, etprotect unhbox voidb@x penalty @M {}al.} 2018{}

Citation
Citation
{Das, Datta, Gkioxari, Lee, Parikh, and Batra} 2018{}

Citation
Citation
{Das, Gkioxari, Lee, Parikh, and Batra} 2018{}

Citation
Citation
{Xia, Zamir, He, Sax, Malik, and Savarese} 2018

Citation
Citation
{Anderson, Chang, Chaplot, Dosovitskiy, Gupta, Koltun, Kosecka, Malik, Mottaghi, Savva, etprotect unhbox voidb@x penalty @M {}al.} 2018{}

Citation
Citation
{Fried, Hu, Cirik, Rohrbach, Andreas, Morency, Berg-Kirkpatrick, Saenko, Klein, and Darrell} 2018

Citation
Citation
{Ma, Lu, Wu, AlRegib, Kira, Socher, and Xiong} 2019{}

Citation
Citation
{Ma, Wu, AlRegib, Xiong, and Kira} 2019{}

Citation
Citation
{Tan, Yu, and Bansal} 2019

Citation
Citation
{Fried, Hu, Cirik, Rohrbach, Andreas, Morency, Berg-Kirkpatrick, Saenko, Klein, and Darrell} 2018

Citation
Citation
{Anderson, Chang, Chaplot, Dosovitskiy, Gupta, Koltun, Kosecka, Malik, Mottaghi, Savva, etprotect unhbox voidb@x penalty @M {}al.} 2018{}

Citation
Citation
{Li, Tao, Gavves, Snoek, and Smeulders} 2017

Citation
Citation
{Li, Tao, Gavves, Snoek, and Smeulders} 2017

Citation
Citation
{Gavrilyuk, Ghodrati, Li, and Snoek} 2018

LANDI, ET AL: EMBODIED VLN WITH DYNAMIC CONVOLUTIONAL FILTERS 3

"Go straight then turn right and
pass the many desks until you get to

the ping pong table. Wait there."

Instruction
Encoder

PolicyAttended instruction

...
1x1

Dynamic filters

Visual Encoder Dynamic convolution

Instruction Embedding

Response map

"go ahead"

Attention

Figure 2: Schema of the proposed architecture for VLN. The input instruction is encoded via
an attentive mechanism. We then generate dynamic convolutional filters that let the agent
attend relevant regions of the input scene. The resulting visual information is used to feed a
policy network controlling the movements of the embodied agent in a low-level action space.

with complex sentences and long-term dependencies. We generate dynamic filters according
to the given instruction, to extract only the relevant information from the visual context. In
this way, the same observation can lead to different feature maps, depending on the part of
the instruction that the agents must complete (Fig. 1).

The proposed method is competitive with prior work that performs high-level navigation
exploiting information about the reachable viewpoints (i.e. the navigation graph). Addition-
ally, our approach is fully compliant with recent recommendations for embodied naviga-
tion [1]. When compared with models that are compliant with the VLN setup, we overcome
the current state of the art by a significant margin.
To sum up, our contributions are as follows:

• We propose a new encoder-decoder architecture for embodied VLN, which for the
first time employs dynamic convolutional filters to attend relevant regions of the visual
scene and control the actions of the agent.

• We show, through extensive experimental evaluations, that in a mutable environment
with shifting goals dynamic convolutional filters can provide better performance than
traditional convolutional filters. Results show that our proposed architecture over-
comes the state of the art on the embodied VLN task.

• As a complementary contribution, we categorize previous work on VLN basing on
their level of abstraction and generalizability. We distinguish a group of works that
strongly relies on the simulating platform and on the navigation graph, we call them
high-level actions models. A second group, named low-level actions models, includes
methods that are more agnostic on the underlying implementation and that directly
predicts agent actions. With this categorization, we hope to encourage further research
to consider low-level and high-level action spaces as distinct fields of application when
dealing with VLN.

2 Method
We propose an encoder-decoder architecture for vision-and-language navigation. Our work
employs dynamic convolutional filters conditioned on the current instruction to extract the
relevant piece of information from the visual perception, which is in turn used to feed a
policy network which controls the actions performed by the agent. The output of our model

Citation
Citation
{Anderson, Chang, Chaplot, Dosovitskiy, Gupta, Koltun, Kosecka, Malik, Mottaghi, Savva, etprotect unhbox voidb@x penalty @M {}al.} 2018{}

4 LANDI, ET AL: EMBODIED VLN WITH DYNAMIC CONVOLUTIONAL FILTERS

is a probability distribution over a low-level action space A = {ai}6
i=1, which comprises the

following actions: turn 30° left, turn 30° right, raise elevation, lower elevation, go ahead,
<end episode>. The output probability distribution at a given step, pt = P(at |X ,Vt ,ht−1),
depends on a natural language instruction X , the current visual observation Vt , and on the
policy hidden state at time step t−1. Our architecture is depicted in Fig. 2 and detailed next.

2.1 Encoder
To represent the two inputs of the architecture, i.e. the instruction and the visual input at
time t, we devise an instruction and a visual encoder. The instruction encoder provides a
representation of the navigation instructions that is employed to guide the whole naviga-
tion episode. On the other hand, the visual encoding module operates at every single step,
building a representation of the current observation which depends on the agent position.

Instruction Encoding. The given natural language instruction is split into single words
via tokenization, and stop words are filtered out to obtain a shorter description. Differently
from previous works that train word embeddings from scratch, we rely on word embeddings
obtained from a large corpus of documents. Beside providing semantic information which
could not be learned purely from VLN instructions, this also let us handle words that are not
present in the training set (see Sec. 3.2 for a discussion). Given an instruction with length N,
we denote its embeddings sequence as L = (l1, l2, ..., lN), where li indicates the embedding
for the i-th word. Then, we adopt a Long Short-Term Memory (LSTM) network to provide
a timewise contextual representation of the instruction:

X = (x1,x2, ...,xN) = LSTM(L), (1)

where each xi denotes the hidden state of the LSTM at time i, thus leading to a final repre-
sentation with shape (N,d), where d is the size of the LSTM hidden state.

Visual Features Encoding. As visual input, we employ the panoramic 360° view of the
agent, and discretize the resulting equirectangular image in a 12×3 grid, consisting of three
different elevation levels and 30° heading shift from each other. Each location of the grid
is then encoded via the 2048-dimensional features extracted from a ResNet-152 [14] pre-
trained on ImageNet [10]. We also append to each cell vector a set of coordinates relative to
the current agent heading and elevation:

coordt = (sinφt ,cosφt ,sinθt) , (2)

where φt ∈ (−π,π] and θt ∈ [−π

2 ,
π

2] are the heading and elevation angles w.r.t. the agent
position. By adding coordt to the image feature map, we encode information related to
concepts such as right, left, above, below into the agent observation.

2.2 Decoder
Given the instruction embedding X for the whole episode, we use an attention mechanism to
select the next part of the sentence that the agent has to fulfill. We denote this encoded piece
of instruction as st . We detail our attentive module in the next section.

Dynamic Convolutional Filters. Dynamic filters are different from traditional, fixed
filters typically used in CNN, as they depend on an input rather than being purely learnable
parameters. In our case, we can think about them as specialized feature extractors reflecting
the semantics of the natural language specification. For example, starting from an instruction

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

LANDI, ET AL: EMBODIED VLN WITH DYNAMIC CONVOLUTIONAL FILTERS 5

like “head towards the red chair” our model can learn specific filters to focus on concepts
such as red and chair. In this way, our model can rely on a large ensemble of specialized
kernels and apply only the most suitable ones, depending on the current goal. Naturally, this
approach is more efficient and flexible than learning a fixed set of filters for all the navigation
steps. We use the representation of the current piece of instruction st to generate multiple
1×1 dynamic convolutional kernels, according to the following equation:

ft = `2[tanh(Wf st +b f)], (3)

where `2[·] indicates L2 normalization, and ft is a tensor of filters reshaped to have the same
number of channels as the image feature map. We then perform the dynamic convolution
over the image features It , thus obtaining a response map for the current timestep as follows:

Dt = ft ∗ It . (4)

As the aforementioned operation is equivalent to a dot product, we can conceive the dynamic
convolution as a specialized form of dot-product attention, in which It acts as key and the
filters in ft act as time-varying queries. Following this interpretation, we rescale Dt by

√
d f ,

where d f is the dynamic filter size [22] to maintain dot products smaller in magnitude.
Action Selection. We use the response maps dynamically generated as input for the pol-

icy network. We implement it with an LSTM whose hidden state at time step t is employed
to obtain the action scores. Formally,

ht = LSTM([D̃t ,at−1],ht−1), pt = softmax(Waht +ba), (5)

where [·, ·] indicates concatenation, at−1 is the one-hot encoding of the action performed at
the previous timestep, and D̃t is the flattened tensor obtained from Dt . To select the next
action at , we sample from a multinomial distribution parametrized with the output proba-
bility distribution during training, and select at = argmax pt during the test. In line with
previous work, we find out that sampling during the training phase encourages exploration
and improves overall performances.

Note that, as previously stated, we do not employ a high-level action space, where the
agent selects the next viewpoint in the image feature map, but instead make the agent re-
sponsible of learning the sequence of low-level actions needed to perform the navigation.
The agent can additionally send a specific stop signal when it considers the goal reached, as
suggested by recent standardization attempts [1].

2.3 Encoder-Decoder Attention
The navigation instructions are very complex, as they involve not only different actions but
also temporal dependencies between them. Moreover, their high average length represents
an additional challenge for traditional embedding methods. For these reasons, we enrich our
architecture with a mechanism to attend different locations of the sentence representation,
as the navigation moves towards the goal. In line with previous work on VLN [3, 11],
we employ an attention mechanism to identify the most relevant parts of the navigation
instruction. We employ the hidden state of our policy LSTM to get the information about
our progress in the navigation episode and extract a time-varying query qt =Wqht−1+bq. We
then project our sentence embedding into a lower dimensional space to obtain key vectors,
and perform a scaled dot-product attention [22] among them.

αt =
qtKT
√

datt
, where K =WkX +bk (6)

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Anderson, Chang, Chaplot, Dosovitskiy, Gupta, Koltun, Kosecka, Malik, Mottaghi, Savva, etprotect unhbox voidb@x penalty @M {}al.} 2018{}

Citation
Citation
{Anderson, Wu, Teney, Bruce, Johnson, S{ü}nderhauf, Reid, Gould, and vanprotect unhbox voidb@x penalty @M {}den Hengel} 2018{}

Citation
Citation
{Fried, Hu, Cirik, Rohrbach, Andreas, Morency, Berg-Kirkpatrick, Saenko, Klein, and Darrell} 2018

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

6 LANDI, ET AL: EMBODIED VLN WITH DYNAMIC CONVOLUTIONAL FILTERS

After a softmax layer, we obtain the current instruction embedding st by matrix multiplica-
tion between the initial sentence embedding and the softmax scores.

st = softmax(αt)X (7)

At each timestep of the navigation process st is obtained by attending the instruction embed-
ding at different locations. The same vector is in turn used to obtain a time-varying query
for attending spatial locations in the visual input.

2.4 Training
Our training sample consists of a batch of navigation instructions and the corresponding
ground truth paths coming from the R2R (Room-to-Room) dataset [3] (described in section
3). The path denotes a list of discretized viewpoints that the agent has to traverse to progress
towards the goal. The agent spawns in the first viewpoint, and its goal is to reach the last
viewpoint in the ground truth list. At each step, the simulator is responsible for providing
the next ground truth action in the low-level action space that enables the agent to progress.
Specifically, the ground truth action is computed by comparing the coordinates of the next
target node in the navigation graph with the agent position and orientation. At each time step
t, we minimize the following objective function:

L =−∑
t

yt log pt (8)

where pt is the output of our network, and yt is the ground truth low-level action provided
by the simulator at time step t. We train our network with a batch size of 128 and use Adam
optimizer [15] with a learning rate of 10−3. We adopt early stopping to terminate the training
if the mean success rate does not improve for 10 epochs.

3 Experiments
3.1 Experimental Settings
For our experiments, we employ the R2R (Room-to-Room) dataset [3]. This challenging
benchmark builds upon Matterport3D dataset of spaces [5] and contains 7,189 different nav-
igation paths in 90 different scenes. For each route, the dataset provides 3 natural language
instructions, for a total of 21,567 instructions with an average length of 29 words. The R2R
dataset is split into 4 partitions: training, validation on seen environments, validation on
unseen scenes, and test on unseen environments.

Evaluation Metrics. We adopt the same evaluation metrics employed by previous work
on the R2R dataset: navigation error (NE), oracle success rate (OSR), success rate (SR),
and success rate weighted by path length (SPL). NE is the mean distance in meters between
the final position and the goal. SR is fraction of episodes terminated within no more than 3
meters from the goal position. OSR is the success rate that the agent would have achieved if
it received an oracle stop signal in the closest point to the goal along its navigation. SPL is the
success rate weighted by normalized inverse path length and penalizes overlong navigations.

Implementation Details. For each LSTM, we set the hidden size to 512. Word embed-
dings are obtained with GloVe [19]. In our visual encoder, we apply a bottleneck layer to
reduce the dimension of the image feature map to 512. We generate dynamic filters with 512
channels using a linear layer with dropout [20] (p = 0.5). In our attention module, q and K

Citation
Citation
{Anderson, Wu, Teney, Bruce, Johnson, S{ü}nderhauf, Reid, Gould, and vanprotect unhbox voidb@x penalty @M {}den Hengel} 2018{}

Citation
Citation
{Kingma and Ba} 2015

Citation
Citation
{Anderson, Wu, Teney, Bruce, Johnson, S{ü}nderhauf, Reid, Gould, and vanprotect unhbox voidb@x penalty @M {}den Hengel} 2018{}

Citation
Citation
{Chang, Dai, Funkhouser, Halber, Niessner, Savva, Song, Zeng, and Zhang} 2017

Citation
Citation
{Pennington, Socher, and Manning} 2014

Citation
Citation
{Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov} 2014

LANDI, ET AL: EMBODIED VLN WITH DYNAMIC CONVOLUTIONAL FILTERS 7

Validation-Seen Validation-Unseen
Method NE ↓ SR ↑ OSR ↑ SPL ↑ NE ↓ SR ↑ OSR ↑ SPL ↑
Random agent 9.45 15.9 21.4 - 9.23 16.3 22.0 -
Baseline w/ traditional convolution [3] 6.01 38.6 52.9 - 7.81 21.8 28.4 -
Ours w/o encoder-decoder attention 5.86 41.3 51.2 36.3 7.72 22.0 29.3 19.3
Ours w/o pre-trained embedding 5.62 42.0 54.0 36.3 7.32 25.8 33.3 22.1
Ours w/ dynamic filters 4.68 53.1 66.1 46.0 6.65 31.6 43.6 26.8

Table 1: Ablation study for our architecture on the validation sets of R2R. The full model
works better than when attention is removed or when conventional filters are used.

1 2 4 8 16
of dynamic filters

20

25

30

35

40

45

50

%

OSR
SR
SPL

of Validation-Unseen
filters NE ↓ SR ↑ OSR ↑ SPL ↑

1 6.79 29.7 39.9 25.8
2 6.77 30.3 40.5 26.2
4 6.65 31.6 43.6 26.8
8 7.19 28.7 39.1 24.5
16 7.03 27.8 37.9 23.2

Figure 3: Comparison with different numbers of dynamic filters on the validation-unseen set
of R2R. The best results for all the metrics are obtained using four different dynamic filters.

have 128 channels and we apply a ReLU non-linearity after the linear transformation. For
our action selection, we apply dropout with p = 0.5 to the policy hidden state before feeding
it to the linear layer.

3.2 Ablation Study

In our ablation study, we test the influence of our implementation choices on VLN. As a first
step, we discuss the impact of dynamic convolution by comparing our model with a similar
seq2seq architecture that employs fixed convolutional filters. We then detail the importance
of using an attention mechanism to extract the current piece of instruction to be fulfilled.
Finally, we compare the results obtained using a pre-trained word embedding instead of
learning the word representation from scratch. Results are reported in Table 1.

Static Filters Vs. Dynamic Convolution. As results show, dynamic convolutional filters
surpass traditional fixed filters for VLN. This because they can easily adapt to new instruc-
tions and reflect the variability of the task. When compared to a baseline model that employs
traditional convolution [3], our method performs 14.5% and 9.8% better, in terms of success
rate, on the val-seen and val-unseen splits respectively.

Fixed Instruction Representation Vs. Attention. The navigation instructions are very
complex and rich. When removing the attention module from our architecture, we keep
the last hidden state hN as instruction representation for the whole episode. Even with this
limitation, dynamic filters achieve better results than static convolution, as the success rate is
higher for both of the validation splits. However, our attention module further increases the
success rate by 11.8% and 9.6%.

Word Embedding from Scratch Vs. Pre-trained Embedding. Learning a meaningful
word embedding is nontrivial and requires a large corpus of natural language descriptions.
For this reason, we adopt a pre-trained word embedding to encode single words in our in-
structions. We then run the same model while trying to learn the word embedding from
scratch. We discover that a pre-trained word embedding significantly eases VLN. Our model
with GloVe [19] obtains 11.1% and 5.8% more on the val-seen and val-unseen splits respec-
tively, in terms of success rate.

Citation
Citation
{Anderson, Wu, Teney, Bruce, Johnson, S{ü}nderhauf, Reid, Gould, and vanprotect unhbox voidb@x penalty @M {}den Hengel} 2018{}

Citation
Citation
{Anderson, Wu, Teney, Bruce, Johnson, S{ü}nderhauf, Reid, Gould, and vanprotect unhbox voidb@x penalty @M {}den Hengel} 2018{}

Citation
Citation
{Pennington, Socher, and Manning} 2014

8 LANDI, ET AL: EMBODIED VLN WITH DYNAMIC CONVOLUTIONAL FILTERS

Validation-Seen Validation-Unseen Test (Unseen)
Low-level Actions Methods NE ↓ SR ↑ OSR ↑ SPL ↑ NE ↓ SR ↑ OSR ↑ SPL ↑ NE ↓ SR ↑ OSR ↑ SPL ↑

Random 9.45 0.16 0.21 - 9.23 0.16 0.22 - 9.77 0.13 0.18 0.12
Student-forcing [3] 6.01 0.39 0.53 - 7.81 0.22 0.28 - 7.85 0.20 0.27 0.18

RPA [24] 5.56 0.43 0.53 - 7.65 0.25 0.32 - 7.53 0.25 0.33 0.23
Ours 4.68 0.53 0.66 0.46 6.65 0.32 0.44 0.27 7.14 0.31 0.42 0.27

Ours w/ data augmentation 3.96 0.58 0.73 0.51 6.52 0.34 0.43 0.29 6.55 0.35 0.45 0.31

High-level Actions Methods NE ↓ SR ↑ OSR ↑ SPL ↑ NE ↓ SR ↑ OSR ↑ SPL ↑ NE ↓ SR ↑ OSR ↑ SPL ↑
Speaker-Follower [11] 3.36 0.66 0.74 - 6.62 0.36 0.45 - 6.62 0.35 0.44 0.28
Self-Monitoring [17] 3.22 0.67 0.78 0.58 5.52 0.45 0.56 0.32 5.99 0.43 0.55 0.32

Regretful [18] 3.23 0.69 0.77 0.63 5.32 0.50 0.59 0.41 5.69 0.48 0.56 0.40

Table 2: Comparison with state-of-art methods for VLN. For compliance with the evaluation
server, we report success rates as fractions. The results for high-level models comprehend
data augmentation with synthetic data provided by [11], as in our final setup. Our method
outperforms comparable models by a large margin, while being competitive with or even
better than some high-level actions architectures.

3.3 Multi-headed Dynamic Convolution
In this experiment, we test the impact of using a different number of dynamically-generated
filters. We test our architecture when using 1, 2, 4, 8, and 16 dynamic filters. We find out
that the best setup corresponds to the use of 4 different convolutional filters. Results in Fig. 3
show that the success rate and the SPL increase linearly with the number of dynamic kernels
for a small number of filters, reaching a maximum at 4. The metrics then decrease when
adding new parameters to the network. This suggests that a low number of dynamic filters
can represent a wide variety of natural language specifications. However, as the number
of dynamic filters increase, the representation provided by the convolution becomes less
efficient.

3.4 Comparison with the State-of-the-art
Finally, we compare our architecture with the state-of-the-art methods for VLN. Results are
reported in Table 2. We distinguish two main categories of models, depending on their out-
put space: the first, to which our approach belongs, predicts the next atomic action (e.g.
turn right, go ahead). We call architectures in this category low-level actions methods. The
second, instead, searches in the visual space to match the current instruction with the most
suitable navigable viewpoint. In these models, atomic actions are not considered, as the
agent displacements are done with a teleport system, using the next viewpoint identifier as
target destination. Hence, we refer to these works as high-level actions methods. While
the latter achieve better results, they make strong assumptions on the underlying simulating
platform and on the navigation graph. Our method, exploiting dynamic convolutional filters
and predicting atomic actions, outperforms comparable architectures and achieves state of
the art results for low-level actions VLN. Our final implementation takes advantage of the
synthetic data provided by Fried et al. [11] and overcomes comparable methods [3, 24] by
15% and 10% success rate points on the R2R test set. Additionally, we note that our method
is competitive with some high-level actions models, especially in terms of SPL. When con-
sidering the test set, we notice in fact that our model outperforms Speaker-Follower [11] by
3%, while performing only 1% worse than [17].

Low-level Action Space or High-level Navigation Space? While previous work on
VLN never considered this important difference, we claim that it is imperative to categorize
navigation architectures depending on their output space. In our opinion, ignoring this aspect
would lead to inappropriate comparisons and wrong conclusions. Considering the results in

Citation
Citation
{Anderson, Wu, Teney, Bruce, Johnson, S{ü}nderhauf, Reid, Gould, and vanprotect unhbox voidb@x penalty @M {}den Hengel} 2018{}

Citation
Citation
{Wang, Xiong, Wang, and Yangprotect unhbox voidb@x penalty @M {}Wang} 2018

Citation
Citation
{Fried, Hu, Cirik, Rohrbach, Andreas, Morency, Berg-Kirkpatrick, Saenko, Klein, and Darrell} 2018

Citation
Citation
{Ma, Lu, Wu, AlRegib, Kira, Socher, and Xiong} 2019{}

Citation
Citation
{Ma, Wu, AlRegib, Xiong, and Kira} 2019{}

Citation
Citation
{Fried, Hu, Cirik, Rohrbach, Andreas, Morency, Berg-Kirkpatrick, Saenko, Klein, and Darrell} 2018

Citation
Citation
{Fried, Hu, Cirik, Rohrbach, Andreas, Morency, Berg-Kirkpatrick, Saenko, Klein, and Darrell} 2018

Citation
Citation
{Anderson, Wu, Teney, Bruce, Johnson, S{ü}nderhauf, Reid, Gould, and vanprotect unhbox voidb@x penalty @M {}den Hengel} 2018{}

Citation
Citation
{Wang, Xiong, Wang, and Yangprotect unhbox voidb@x penalty @M {}Wang} 2018

Citation
Citation
{Fried, Hu, Cirik, Rohrbach, Andreas, Morency, Berg-Kirkpatrick, Saenko, Klein, and Darrell} 2018

Citation
Citation
{Ma, Lu, Wu, AlRegib, Kira, Socher, and Xiong} 2019{}

LANDI, ET AL: EMBODIED VLN WITH DYNAMIC CONVOLUTIONAL FILTERS 9

Table 2, we separate the two classes of work and highlight the best results for each category.
Please note that the random baseline was initially provided by [3] and belongs to low-level
actions architectures (a random high-level actions agent was never provided by previous
work). We immediately notice that, with this new categorization, intra-class results have less
variance and are much more aligned to each other. We believe that future work on VLN
should consider this new taxonomy in order to provide meaningful and fair comparisons.

3.5 Qualitative Results
Fig. 4 shows two navigation episodes from the R2R validation set. We display the predicted
action in a green box on the bottom-right corner of each image. Both examples are success-
ful.

Legend: left right forward end episode

Instruction: From bathroom, enter bedroom and walk straight
across down two steps, wait at loungers.

Instruction: Walk past the fireplace and to the left.
Stop in the entryway of the kitchen.

Figure 4: Qualitative results from the R2R validation set. Each episode is detailed by eight
pictures, representing the current position of the agent and containing the next predicted
action (from left to right, top to bottom). To make the visualization more readable, we do
not display the 360° panoramic images.

Citation
Citation
{Anderson, Wu, Teney, Bruce, Johnson, S{ü}nderhauf, Reid, Gould, and vanprotect unhbox voidb@x penalty @M {}den Hengel} 2018{}

10 LANDI, ET AL: EMBODIED VLN WITH DYNAMIC CONVOLUTIONAL FILTERS

4 Conclusion
In this paper, we propose dynamic convolution for embodied Vision-and-Language Naviga-
tion. Instead of relying on a high-level action space, where the agent is teleported from one
viewpoint to the other, we predict a series of action in an agent friendly action space. Basing
on this substantial difference, we propose a new categorization based on the model output
space. We then separate previous VLN architectures into low-level actions and high-level
actions methods. We claim that comparisons made considering this new taxonomy are more
fair and reasonable than previous analysis. Our method with dynamic convolutional filters
achieves state-of-the-art results for the low-level actions category, and it is competitive with
high-level actions architectures that rely on much more information and have a higher level
of abstraction during the navigation episode. We hope this work encourages further research
on low-level VLN, and in general we consider this a step towards the use of more realistic
action spaces for this task. While our experiments show promising results in this setting,
much work remains to inspect the possible connections between low-level and high-level
Vision-and-Language Navigation.

Acknowledgements: This work was partially supported by the Fondazione Cassa di Ri-
sparmio di Modena project “AI for Digital Humanities” (Prot. n. 505.18.8b del 18/10/2018
- Pratica Sime n. 2018.0390). We also want to thank the anonymous reviewers for their
insightful remarks and their constructive criticism.

References

[1] Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy, Saurabh
Gupta, Vladlen Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi, Mano-
lis Savva, et al. On evaluation of embodied navigation agents. arXiv preprint
arXiv:1807.06757, 2018.

[2] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen
Gould, and Lei Zhang. Bottom-up and top-down attention for image captioning and
visual question answering. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018.

[3] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf,
Ian Reid, Stephen Gould, and Anton van den Hengel. Vision-and-language navigation:
Interpreting visually-grounded navigation instructions in real environments. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[4] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C. Lawrence Zitnick, and Devi Parikh. VQA: Visual Question Answering. In Pro-
ceedings of the International Conference on Computer Vision, 2015.

[5] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner,
Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning
from rgb-d data in indoor environments. In International Conference on 3D Vision,
2017.

LANDI, ET AL: EMBODIED VLN WITH DYNAMIC CONVOLUTIONAL FILTERS 11

[6] Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José M.F.
Moura, Devi Parikh, and Dhruv Batra. Visual Dialog. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[7] Abhishek Das, Satwik Kottur, José M.F. Moura, Stefan Lee, and Dhruv Batra. Learning
cooperative visual dialog agents with deep reinforcement learning. In Proceedings of
the International Conference on Computer Vision, 2017.

[8] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv
Batra. Embodied question answering. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018.

[9] Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra. Neural
modular control for embodied question answering. In Conference on Robot Learning,
2018.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2009.

[11] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-
Philippe Morency, Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Dar-
rell. Speaker-follower models for vision-and-language navigation. In Advances in
Neural Information Processing Systems, 2018.

[12] Kirill Gavrilyuk, Amir Ghodrati, Zhenyang Li, and Cees GM Snoek. Actor and ac-
tion video segmentation from a sentence. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018.

[13] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Mak-
ing the V in VQA matter: Elevating the role of image understanding in Visual Question
Answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

[15] Diederik Kingma and Jimmy Ba. Adam: a method for stochastic optimization. In
Proceedings of the International Conference on Learning Representations, 2015.

[16] Zhenyang Li, Ran Tao, Efstratios Gavves, Cees GM Snoek, and Arnold WM Smeul-
ders. Tracking by natural language specification. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017.

[17] Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan AlRegib, Zsolt Kira, Richard Socher,
and Caiming Xiong. Self-monitoring navigation agent via auxiliary progress estima-
tion. In Proceedings of the International Conference on Learning Representations,
2019.

[18] Chih-Yao Ma, Zuxuan Wu, Ghassan AlRegib, Caiming Xiong, and Zsolt Kira. The
regretful agent: Heuristic-aided navigation through progress estimation. Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2019.

12 LANDI, ET AL: EMBODIED VLN WITH DYNAMIC CONVOLUTIONAL FILTERS

[19] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vec-
tors for word representation. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, 2014.

[20] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[21] Hao Tan, Licheng Yu, and Mohit Bansal. Learning to navigate unseen environments:
Back translation with environmental dropout. In Annual Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics, 2019.

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems, 2017.

[23] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A
neural image caption generator. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015.

[24] Xin Wang, Wenhan Xiong, Hongmin Wang, and William Yang Wang. Look before
you leap: Bridging model-free and model-based reinforcement learning for planned-
ahead vision-and-language navigation. In Proceedings of the European Conference on
Computer Vision, 2018.

[25] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio
Savarese. Gibson env: Real-world perception for embodied agents. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[26] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image
caption generation with visual attention. In Proceedings of the International Confer-
ence on Machine Learning, 2015.

