

DBGREUP

THE COCKTAIL PARTY PROBLEM

How to extract one target speaker's speech among many concurrent sounds.

In the context of speech perception, this ability of human brain is called **cocktail party effect** [1].

PROBLEM DESCRIPTION

Input: mixture of two or more concurrent voices + "attention" signal (e.g. additional information about target speaker, prior knowledge about speech signal properties). Output: time-frequency mask [2].

Attention signal Time-frequency mask Noisy spectrogram SPEECH MODEL $\hat{s} = \hat{m} \circ y$ **Enhanced spectrogram**

 \hat{s} : clean spectrogram \hat{m} : time-frequency mask y: noisy spectrogram

Project page

Contact information: giovanni.morrone@unimore.it luca.pasa@iit.it eonardo.badino@iit.it

44th IEEE International Conference on Acoustics, Speech and Signal Processing 12-17 May, 2019 - Brighton, UK

FACE LANDMARK-BASED SPEAKER-INDEPENDENT AUDIO-VISUAL SPEECH ENHANCEMENT IN MULTI-TALKER ENVIRONMENTS

Giovanni Morrone, Luca Pasa, Vadim Tikhanoff, Sonia Bergamaschi, Luciano Fadiga, Leonardo Badino University of Modena and Reggio Emilia, Istituto Italiano di Tecnologia

AUDIO-VISUAL SPEECH ENHANCEMENT MODELS

"Attention" signal: motion of face landmarks of target speaker

- A pre-trained face landmarks extractor [3] is used.
- Our speech enhancement models do not have to learn useful visual features from raw pixels.
- Visual features extraction does not require parallel audio-visual datasets.

Targets: time-frequency masks

The models estimate two different masks to extract the spectrogram of a target speaker:

- Target Binary Mask (TBM): binary (1: speech; 0: noise/silence), acoustic context independent, approximated reconstruction.
- Ideal Amplitude Mask (IAM): real-valued, acoustic context dependent, perfect reconstruction.

Models

The models receive in input the target speaker's landmark motion vectors and the power-law compressed spectrogram of the single-channel mixed-speech signal. All models contain bi-directional LSTM layers of 250 hidden units.

EXPERIMENTAL RESULTS

The models are trained with mixture of two speakers in a speaker-independent setting.

GRID

Noisy VL2M VL2M AV co AV c-r

TCD-T

Noisy VL2M VL2M AV co AV c-r

- with TBM.

CONCLUSION

- talker setting.

REFERENCES

tion (CVPR).

	2 Spe	eakers	3 Spe	akers
	SDR	PESQ	SDR	PESQ
ref ncat ref	0.21 3.02 6.52 7.37 8.05	 1.94 1.81 2.53 2.65 2.70 	$ \begin{array}{c c} -5.34 \\ -2.03 \\ 2.83 \\ 3.02 \\ 4.02 \end{array} $	1.43 1.43 2.19 2.24 2.33

IMIT	2 Spea	kers	3 Spe	akers
	SDR	PESQ	SDR	PESQ
/	$\begin{array}{c} 0.21 \\ 2.88 \end{array}$	$2.22 \\ 2.25$	$\begin{vmatrix} -3.42 \\ -0.51 \end{vmatrix}$	$\begin{array}{c} 1.92 \\ 1.99 \end{array}$
-ref	9.24	 2.81 2.80 3.03 	5.27	2.44
ncat	9.56		5.15	2.41
ref	10.55		5.37	2.45

• A successful mask generation has to depend on the acoustic context.

• Mask refinement is more effective when it directly refines the estimated clean spectrogram

• The proposed models are the first trained and evaluated on the limited size GRID and TCD-TIMIT datasets that accomplish speakerindependent speech enhancement in multi-

 Experiments show that face landmark motion features are very effective.

• Our models need a **small amount of training data** to achieve very good results.

[1] Cherry, E. C. (1953) Some Experiments on the Recognition of Speech, with One and with Two Ears. The Journal of the Acoustical Society of America, 25(5), 975–979.

[2] Yuxuan Wang, Narayanan, A., and DeLiang Wang (December, 2014) On Training Targets for Supervised Speech Separation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12), 1849–1858.

[3] Kazemi, V. and Sullivan, J. (June, 2014) One Millisecond Face Alignment with an Ensemble of Regression Trees. In The IEEE Conference on Computer Vision and Pattern Recogni-