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ABSTRACT 

The SDEWES Index is obtained by aggregating several numerical indicators related to 

sustainable development. In the context of Multi-Criterion Decision Analysis (MCDA) this 

index can be seen as the solution to the “ranking problematic” for an underlying decisional 

problem. Accordingly, in this work we look at the SDEWES Index from an MCDA point of 

view. First, we consider some theoretical aspects, in particular the one usually referred to as 

“rank reversal”. Then we consider some (classic as well as original) visual tools for decision 

aid, showing how they can be adapted and exploited. 
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INTRODUCTION 

The SDEWES (Sustainable Development of Energy, Water, and Environment Systems) Index 

is a recently proposed benchmarking tool related to sustainable development. This tool has two 

main features: 

 it addresses local systems, in particular, it applies to the evaluation of cities; 

 it adopts an integrated approach, i.e., it is a composite index spanning across different 

(and often complementary) aspects. 

An in-depth analysis of the SDEWES Index goes far beyond the scope of this work. We refer 

the reader to [1-5] for a technical description of the approach, and for an appraisal of its 

historical development and its future growth. Nevertheless, we point out a couple of relevant 

features here. 

First, the computation of the SDEWES Index involves a substantial amount of work for data 

collection. Looking at things the other way round: a city to be evaluated via the SDEWES Index 

must have a SEAP (Sustainable Energy Action Plan) and maintain reliable statistics on its local 

energy system. Furthermore, collected data usually require pre-processing, e.g. for computing 

main indicators based on sub-indicators; in later versions, preprocessing also includes 

winsorization techniques to get rid of outliers. We somehow skip all these issues here: actually, 

our work starts after data collection and pre-processing. 

Second, the SDEWES Index is descriptive in nature but it also has a relevant prescriptive value. 

Indeed, it may allow city planners to learn successful policies and/or to find promising 

directions for enhancing the sustainability of local energy systems. This can be obtained in 

several ways, the most obvious ones being enhancing awareness and identifying best practices. 

A more involved effect is related to “city pairing” [3,5]. Roughly speaking, cities showing 

similar performances across the whole set of indicators may be “paired” to each other, thus 

defining a network of “similar” cities. Cities in such a network may cooperate to develop 
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common policies. In a similar way, one may design a network of “opposite” cities, that may 

balance each other’s weaknesses by sharing their successful practices. Last but not least, the 

SDEWES Index may be adopted as the “objective function” in the process of selecting new 

environmental policies or projects. In other words, a city (or a network of cities) should consider 

solutions that will improve the value of multiple indicators, that is, take integrated actions 

addressing several aspects of sustainability [5]. 

 

Being integrated and quantitative, the SDEWES Index is a numerical aggregation of measures 

arising from different indicators. These measures are expressed in many different scales, 

ranging from purely qualitative or ordinal (that essentially sort elements into categories) to 

strongly cardinal ones, that have a sound physical meaning and specific units (such as “EURO” 

or “tons of CO2”). The aggregation of multiple evaluations on different scales is the subject of 

Multi-Criterion Decision Analysis (MCDA) [6]. Essentially, the goal of MCDA is to develop 

reliable tools for decision support. This includes, among many other aspects, the analysis of the 

properties of aggregation methods, and the use of advanced visual tools for enhancing the 

comprehension of the decisional problems. 

In fact, the SDEWES Index can be seen as the “solution” of an underlying MCDA problem. In 

particular, it addresses the “ranking problematic” [6, ch. 5], i.e., establishing a complete order 

among a set of alternatives. Actually, the index is the result of applying a very well-known 

MCDA methodology, namely the weighted sum method. In this work we look at the SDEWES 

Index from an MCDA point of view. More precisely, we consider the ranking problem 

underlying the index, and we try to get some insight on this problem applying some concepts 

and tools developed in the context of MCDA. We pursue two main lines of thought. 

On one side, we point out a paradoxical effect that may arise when the SDEWES Index is 

applied to an increasing number of cities. This effect is often referred to as “rank reversal” in 

the MCDA literature, and is known to affect many existing methodologies, see for example 

[7,8]. Rank reversal may be rather disappointing, in particular when the index is adopted as a 

prescriptive tool. We suggest some possible ways to circumvent these problems. 

On the other side, we apply visual tools to the SDEWES Index, actually to the underlying 

MCDA problem. In particular, we adapt the GAIA visual methodology [6, ch. 6], [9] and we 

apply it to the city samples addressed in [1-3]. This allows us to reveal interesting relations 

between different dimensions, indicators, and set of cities. In addition, we suggest a simple 

visual tool that may help, in particular, to reveal some information that is disregarded by the 

SDEWES Index. 

 

The layout of this paper is as follows. In Section 2 we discuss the rank reversal effect. In Section 

3 we consider the adaptation and application of visual tools. In Section 4 we draw some 

conclusions. 

 

THE SDEWES INDEX AS AN MCDA METHODOLOGY 

The indicators considered by the SDEWES Index define a two-level hierarchy. At the top level 

we find seven macro-criteria, referred to as dimensions and denoted by D1, D2,…, D7. At the 

bottom level we find the actual criteria, i.e., the main indicators. There are exactly five 

indicators (criteria) for each dimension (macro-criterion), and this gives an MCDA problem 

with m=35 criteria. The alternatives (or actions) correspond to cities, that may vary depending 

on the sample. Here we consider the samples from [1-3], containing n=58 cities overall. 

 

For each x[1,7] and y[1,5] denote by 𝐸𝑥,𝑦(𝐶𝑗) the evaluation of city Cj according to the yth 

criterion of dimension Dx. The computation of the SDEWES Index involves three steps: 
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1. Normalization of evaluations within each indicator; 

2. Computation of a sub-index for each dimension; 

3. Aggregation of sub-indexes. 

Normalization maps evaluations into the interval [0,1]; for maximization criteria, the 

normalized value is defined as  

𝐼𝑥,𝑦(𝐶𝑗) =
𝐸𝑥,𝑦(𝐶𝑗) − 𝑚𝑥,𝑦

𝑀𝑥,𝑦 − 𝑚𝑥,𝑦
  

while for minimization criteria the equation is 

𝐼𝑥,𝑦(𝐶𝑗) =
𝐸𝑥,𝑦(𝐶𝑗) − 𝑀𝑥,𝑦

𝑚𝑥,𝑦 − 𝑀𝑥,𝑦
  

where 𝑚𝑥,𝑦 and 𝑀𝑥,𝑦 denote the minimum and the maximum values 𝐸𝑥,𝑦(𝐶𝑗) across all cities. 

Note that for each criterion the best (resp. worst) value is mapped into the normalized value 1 

(resp. 0). Then, for each dimension we define an aggregated sub-index 

𝐴𝑥(𝐶𝑗) = ∑ 𝐼𝑥,𝑦(𝐶𝑗) 

5

𝑦=1

 

Note that each sub-index is normalized in [0,5]. 

Finally, the SDEWES Index is obtained as 

𝑆𝐼(𝐶𝑗) = ∑  𝛼𝑥

7

𝑥=1

𝐴𝑥(𝐶𝑗) 

where 𝛼𝑥 = 0.225 for x=1 and x=5, and 𝛼𝑥 = 0.11 for the other dimensions. Note that the 

weights α sum to one, thus the index is normalized in [0,5]. In fact, the SDEWES Index can be 

seen as the result of the well-known weighted sum MCDA method, where each alternative is 

assigned a score defined as the weighted sum of the normalized evaluations w.r.t. the criterion 

weights; in this case, the yth indicator of dimension Dx has weight 𝛼𝑥, therefore 

𝑆𝐼(𝐶𝑗) = ∑ ∑ 𝛼𝑥𝐼𝑥,𝑦(𝐶𝑗)

5

𝑦=1
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Note that the weighted sum is a totally compensatory method, where the weaknesses of an 

alternative can be compensated by its strengths. This means that the SDEWES Index of a city 

can be good even if some of the indicators have a quite poor evaluation. More precisely, a score 

𝑆𝐼(𝐶𝑗) does not depend on the dispersion of the values 𝐼𝑥,𝑦(𝐶𝑗) or 𝐴𝑥(𝐶𝑗), i.e., on these values 

being rather similar across the whole set of indicators or spread in a large interval. On the 

contrary, other MCDA methods are sensitive to dispersion: this is the case e.g. of TOPSIS, see 

[10]. Later on, we propose a visual tool that captures the information related to dispersion. 

 

Rank Reversal 

The “rank reversal” effect occurs when the order of preference between two alternatives 

changes if an alternative is added to or removed from the decision problem. This means that the 

relative ranking of two alternatives may depend on the other alternatives. Rank reversal is rather 

ubiquitous in MCDA ranking methodologies [7,8]. We illustrate this effect with the following 

example, where we have four alternatives evaluated on two maximization criteria as follows:  

 

C1 1 200 

C2 2 100 

C3 1 75 

C4 0 100 

0225-3



4 

 

Both criteria have weight one. Here we apply the same weighted sum technique used for the 

SDEWES Index, and we show the normalized evaluations, and the corresponding scores, for 

the sets of alternatives S1={C1, C2}, S2={C1, C2, C3}, and S3={C1, C2, C3, C4}: 

 

 S1   S2   S3  

C1 0 1 1  0 1 1  0.5 1 1.5 

C2 1 0 1  1 0.2 1.2  1 0.2 1.2 

C3     0 0 0  0.5 0 0.5 

C4         0 0.2 0.2 

 

If considered alone, the two first alternatives get equal score; if we add C3, C2 is the winner, 

while by (further) adding C4 we make C1 win. Note that rank reversal between C1 and C2 is 

related to normalization, and more precisely, due to the fact that the minimum evaluations 

decrease by adding new alternatives. Moreover, rank reversal is due to the addition of poor 

(actually, dominated) alternatives. More precisely, poor alternatives can increase, up to 

different extents, the score of “good” ones. In addition, it turns out that the addition of “good” 

alternatives can decrease some scores: in the above example, the scores of C1 and C2 would 

decrease if the evaluation of C4 on the second criterion was greater than 200. 

 

It should be clear from the above example that the SDEWES Index is prone to rank reversal. 

This implies that non only the index, but also the relative preference between two cities may 

(repeatedly) change, as long the sample of evaluated cities is extended.  

 

Towards a stable index? 

As a matter of fact, rank reversal is almost ubiquitous in existing MCDA methodologies [7,8]. 

Being prone to this phenomenon does not seem to seriously affect the descriptive power of the 

SDEWES Index. However, it may have some impact on its prescriptive value, due to the fact 

that the index is not stable along time. Indeed, as long as new cities are added to the sample, 

the score of a city may be artificially increased or decreased, regardless of the actual evolution 

of its local energy system. This seems to imply that the SDEWES Index cannot be considered 

as a reliable tool for monitoring the evolution of energy systems along time, and more 

important, for evaluating the impact of sustainable development policies. Therefore, the 

question arises of whether it is possible, and relevant, to address this “stability issue”. 

 

A possible objection is that energy systems are inherently dynamic: technological development, 

as well as social pressure, lead to setting higher and higher standards, to which a city should 

continuously struggle for complying. Accordingly, a local system should be evaluated in 

relation to other evolving systems, rather than based solely on its own features. From this point 

of view, a scoring method such as the SDEWES Index should be considered an inherently 

dynamic tool, and stability should not be an issue. We believe that this objection is only partially 

convincing: It is acceptable that scores decrease as higher standards are set (i.e., “good” cities 

are added) but the addition of “poor” cities should not lead, in our opinion, to improving a score. 

More important, a reliable tool for evaluating the impact of development policies would be 

definitely useful. On the other hand, solving the stability issue is not a trivial task, since it 

requires to deal with such an elusive phenomenon as rank reversal. We do not have any simple 

solution to propose, yet we can sketch three different attitudes towards this issue. 

 

Wait and see. Stick to the current methodology, and keep expanding the city sample: possibly, 

the index (more precisely, the bounds 𝑚𝑥,𝑦 and 𝑀𝑥,𝑦 used for normalization) will become more 
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and more stable, also due to winsorization. A sufficiently reliable tool might be obtained in a 

short time. 

 

Multiple indexes. Maintain several successive versions, e.g. the 58-city Index, the 120-city 

Index, and so on. Within each version, the normalization bounds are kept unchanged, so that 

the evolution of each city can be monitored. Moreover, to allow for consistent comparisons, 

“new” cities may be evaluated according to different versions; eventually, this may yield some 

normalized value 𝐼𝑥,𝑦(𝐶𝑗) lying outside of the interval [0,1], however, 𝐴𝑥(𝐶𝑗) and 𝑆𝐼(𝐶𝑗) are 

not likely to lie outside the interval [0,5], due to the compensatory nature of the weighted sum. 

 

Stabilize Index. Define a version of the index once and for all. In practice, this requires to devise 

a normalization technique that does not depend on the city sample, i.e., to define a set of utility 

functions that map any (reasonably possible) value of 𝐸𝑥,𝑦(𝐶𝑗) into a normalized value 𝐼𝑥,𝑦(𝐶𝑗). 

This task mat be relatively easy from a mathematical point of view, but requires a quite deep 

understanding of the meaning and properties of all the indicators. 

 

VISUAL TOOLS FOR THE SDEWES INDEX 

Since long time, visual tools have been part of MCDA methodologies and software. Here we 

are interested in those tools representing the overall structure of the decision problem. In 

particular, we concentrate on the GAIA methodology, and we restrict ourselves to 2D 

representation, even if 3D options are already available in the Visual Promethee package [9]. 

 

A GAIA-like tool 

The GAIA methodology addresses the “description problematic” [6, ch. 5], and has been 

developed as a visual companion of the PROMETHEE method [6, ch. 6]. Alternatives, as well 

as criteria and weights, are represented by points on the GAIA plane, identified by the axes U 

(horizontal) and V (vertical). A third axis W allows to define the secondary planes (U,W) and 

(V,W). This representation is obviously approximated, since it only shows the projections on 

the plane of points in a space of dimension p, i.e., the number of criteria. Nevertheless, it may 

reveal several aspects of the decision problem, such as conflicting criteria or sensitivity to 

changes in the weights, and many more. The method also provides a measure of the “quality” 

of the representation, which can be seen as the percentage of information retained after 

projection. 

In order to find the axes U, V and W, GAIA applies Principal Component Analysis (CPA) to 

the matrix of profiles computed by PROMETHEE. The profile of an alternative is a (row) vector 

of scores, one for each criterion. Profiles are particularly suitable for CPA since they are 

normalized in [-1,1] and centered, i.e., the sum of scores over all alternatives is zero for each 

criterion. 

Obviously, in the context of the SDEWES Index we do not have profiles, but we can still apply 

PCA to the available evaluations. We have two possibilities here, namely, apply PCA at the top 

level or at the bottom level of the criteria hierarchy. In the former case, a city 𝐶𝑗 is represented 

by the sub-indexes 𝐴𝑥(𝐶𝑗), for x=1,2,…,7. In the latter case, we apply PCA separately for each 

dimension 𝐷𝑥, and a city 𝐶𝑗 is represented by its evaluations 𝐸𝑥,𝑦(𝐶𝑗), y=1,2,…,5. In both cases, 

let M be the n×p evaluation matrix where n is the number of cities and p is either 7 or 5; each 

city 𝐶𝑗 is represented by row j in M. The CPA method for finding the axes U, V, W, and the 

qualities of the projection planes, can be summarized as follows. 
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Algorithm CPA 

Input: an evaluation matrix M 

Output: axes U, V, W; quality of planes (U,V), (U,W), (V,W) 

1) Compute the matrix of centered evaluations C: 𝐶𝑗𝑘 = 𝑀𝑗𝑘 − 𝑀̅𝑘, where 𝑀̅𝑘 is the average 

of the values in column k of M; 

2) Compute the normalized matrix N: 𝑁𝑗𝑘 = 𝐶𝑗𝑘/‖𝐶∙𝑘‖2, where 𝐶∙𝑘 is column k of C; 

3) Compute the p×p correlation matrix 𝐴 = 𝑁𝑇𝑁; 

4) Compute the three largest eigenvalues 𝜆1 ≥ 𝜆2 ≥ 𝜆3 of A, and the corresponding 

eigenvectors x1, x2 and x3; let U= x1, V= x2, and W= x3; 

5) For the planes (U,V), (U,W) and (V,W), the quality is given by 100(𝜆1 + 𝜆2) tr(𝐴)⁄ , 

100(𝜆1 + 𝜆3) tr(𝐴)⁄  and 100(𝜆2 + 𝜆3) tr(𝐴)⁄ , respectively. 

 

We can now compute the coordinates of relevant points on the plane (U,V): 

 city 𝐶𝑗 has coordinates (𝑁𝑗∙
𝑇𝑈, 𝑁𝑗∙

𝑇𝑉), where 𝑁𝑗∙ ∈ ℝ𝑝 is row j of N; 

 criterion (or dimension) k has coordinates (𝑈𝑘, 𝑉𝑘); 

 the vector of weights α has coordinates (𝑤𝑇𝑈, 𝑤𝑇𝑉), where 𝑤 = 𝛼 ‖𝛼‖2⁄ ; 

the computation for the secondary planes (U,W) and (V,W) is similar. 

 

In the following we show some figures obtained by our GAIA-like tool. We consider the city 

samples used in [1], [2] and [3], referred to as MED, SEE and AUT, respectively. The city of 

Instanbul, used both in [1] and in [2], is showed separately. Figure 1 shows the top-level 

representation, namely, the dimensions D1,…,D7 and the weights α, represented by the red 

“stick”. Recall [6, ch. 6] that the stick represents the direction along which better alternatives 

are found, in our case, the direction along which the SDEWES Index increases. 

 

 
 

Figure 1. Top level, dimensions and weights, plane (U,V) 
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Figure 1 reveals some interesting facts. First of all, the stick coincides almost perfectly with the 

vertical axis V, in particular, its length is almost one: recall that the stick is the projection of a 

unit length vector. This means that the direction of maximal dispersion of the aggregated sub-

indexes 𝐴𝑥(𝐶𝑗) (the principal axis U) is orthogonal to the direction along which the SDEWES 

Index increases. Here it turns out that 𝜆1 = 39.2 and 𝜆2 = 22.7 which means, roughly speaking, 

that the dispersion of the sub-indexes along U is about twice the dispersion of the index values, 

which accounts for about 1/5 of the total dispersion. 

Moreover, we can see that some dimensions are “more relevant” than others to determine the 

index. Dimension D5 is the most relevant, since it has the greatest vertical coordinate, i.e., 

longest projection onto the stick; dimension D7 is the least relevant, being almost orthogonal to 

the stick. Dimensions also have quite different projections on the axis U. Two criteria pointing 

in opposite directions on the GAIA plane are likely to be conflicting, or more precisely, such 

that good alternatives for on criterion are (statistically) bad for the other. Here we may observe 

that dimension D1 is somehow conflicting with dimensions D2, D6 and D7. This is confirmed 

by Figure 2, where we consider the auxiliary plane (U,W): note that the stick is almost 

orthogonal to this plane. Informally speaking, these conflicts mean that: innovation and social 

wellness come at the expenses of energy consumption, while saving measures are more 

developed where consumption is higher. Figure 2 also shows that D3 and D4 have opposite 

projections on axis W. Actually, both D3 and D4 are positively correlated to the index (see Figure 

1) but show a “residual” conflicting behaviour along axis U and W. 

 

 
 

Figure 2. Top level, dimensions and weights, plane (U,W) 

 

Figure 3 shows the projection of the cities on the (U,V) plane. The convex hull of each sample 

is shown too. The following observations can be drawn. 

 MED and SEE cities are concentrated into relatively small areas, while AUT cities are 

spread in a larger portion of the plane; 

0225-7



8 

 

 overall, SEE cities have a slightly better index w.r.t. MED cities (recall that the index 

increases along axis V) while the indexes of AUT cities have a larger dispersion; 

 SEE and MED cities appear towards the left, i.e., they perform better in dimensions D1 

and (up to a minor extent) D4 and D5; AUT cities appear on the right, i.e., they are better 

for dimensions D2, D6 and D7. 

The auxiliary planes (U,W) and (V,W) show similar patterns, and are not reported here. 

 

 
 

Figure 3. Top level, cities, plane (U,V) 

 

In the following we consider the bottom level representation for dimension D1. In Figure 4 we 

show the five indicators of D1, denoted as I1, I2,…,I5, as well as the stick, on the plane (U,V). We 

can observe that the most relevant indicators are I1, I2 and I3, while I4 and I5 are less relevant 

(almost orthogonal to the stick) and conflicting. This conflict is not surprising, since I4 and I5 

measure yearly use of heating and cooling systems, respectively. Figure 5 shows the city 

projections on the same plane. Also in this case, the AUT sample is more spread around w.r.t. 

MED and SEE. However, here MED cities perform slightly better than SEE cities, while AUT 

cities have the best results. Not surprisingly, the pattern obtained considering dimension D1 differs 

from the one obtained considering all the dimensions. 

 

A visual representation of dispersion 

As discussed earlier, the Weighted Sum method is totally compensatory, i.e., not sensitive to 

dispersion of indicator values. Accordingly, the SDEWES Index does not take dispersion into 

consideration. On the other hand, distribution patterns of values are relevant for city pairing. 

Actually, the GAIA methodology allows to reveal some information about dispersion, and this 

feature was quite evident in the previous figures. However, we are not aware of any MCDA 

methodology (either a ranking method or a visual support system) that explicitly addresses 

dispersion as a component of the decision process. Devising such a methodology goes definitely 

out of the scope of this work. Here we consider a rather straightforward approach to visualizing 

dispersion, and devise a quite simple “visual companion” for the Weighted Sum method, in 
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particular for the SDEWES Index. In this tool, a city is represented by a point in the plane, where 

the horizontal coordinate is the SDEWES Index, and the vertical one is a measure of dispersion. 

 

 
 

Figure 4. Bottom level, dimension D1, indicators and weights, plane (U,V) 

 

 
 

Figure 5. Bottom level, dimension D1, cities, plane (U,V) 
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As a matter of facts, there are many different measures of dispersion that can be adopted: here we 

follow a straightforward geometrical approach. We only consider the top level of the hierarchy, 

i.e., the aggregated indexes 𝐴𝑥(𝐶𝑗); each city Cj is represented by row j in the normalized matrix 

N, see Algorithm CPA for details. Thus city Cj is a point 𝑁𝑗∙ in the space of dimension p=7, and 

weights are represented by the unit vector 𝑤 = 𝛼 ‖𝛼‖2⁄ . For each city Cj we let 𝑁𝑗∙ = 𝜋𝑗𝑤 + 𝑑𝑗, 

where 𝜋𝑗 =  𝑁𝑗.
𝑇𝑤. Note that 𝜋𝑗 is the length of the projection of 𝑁𝑗∙ onto the axis defined by w, 

while dj is orthogonal to this axis, and ‖𝑑𝑗‖
2
 is the distance of 𝑁𝑗∙ from the axis. It can be easily 

checked that  

𝑆𝐼(𝐶𝑗) =
‖𝛼‖1

‖𝛼‖2
𝜋𝑗  

so we take  

𝐷𝑗 =
‖𝛼‖1

‖𝛼‖2
𝑑𝑗 

as a measure of the dispersion of the aggregated sub-indexes representing city Cj. Figure 6 

represents the city samples in [1-3] as before; each city Cj is a point of coordinates (𝑆𝐼(𝐶𝑗), 𝐷𝑗). 

 

 
 

Figure 6. Cities on the Index/Dispersion plane 

 

Observe that some of the observations made on Figure 3 apply to Figure 6 as well. This is not 

surprising, since we know that: 

 the weight vector w, that defines the horizontal axis in Figure 6, almost coincides with the 

vertical axis V in the GAIA plane; 

 the horizontal axis U captures almost half of the total dispersion measured by 𝐷𝑗 . 

In addition, Figure 6 seems to reveal that the best scores on the SDEWES Index come at the 

expenses of a greater dispersion.  
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CONCLUSIONS 

In this work we have analysed the SDEWES Index from an MCDA point of view. This led us to 

draw a few observations. 

First, the SDEWES Index as currently conceived raises a stability issue. This issue is not 

overwhelming, does not really affect the relevance of the Index, and is likely to fade away with 

time. Nevertheless, we believe that fixing the stability issue would enhance the relevance of the 

Index. Unfortunately, finding a stabilized version does not seem to be a trivial task. 

Second, visual decision support tools can be adapted (or devised) to act as a visual companion of 

the SDEWES Index. Based on the examples reported here, we believe that these tools can be 

useful, not only to reveal information somehow hidden in the collected data, but also to enhance 

the comprehension of the scoring process and of its results. Clearly, further work on this issue is 

needed. 

Finally, we pointed out that the SDEWES Index disregards data dispersion, despite the fact that 

data dispersion patterns have a relevant prescriptive value. This raises the question of how to 

consider data dispersion within an MCDA methodology. We believe that this is an interesting 

direction for research in the MCDA area. 
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