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Abstract

This paper starts from the results reported in the article “FIR Filters for On-

line Trajectory Planning with Time- and Frequency-Domain Specifications”,

where the use of a cascade of FIR (Finite Impulse Response) filters for plan-

ning minimum-time multi-segment polynomial trajectories, i.e. trajectories

composed of several polynomial segments, under constraints of velocity, ac-

celeration, etc. is proposed. In particular, in that paper the relationship

between the limits acting on the trajectory derivatives (i.e. velocity, acceler-

ation, jerk, etc.), and the parameters of the filters is deduced, along with a set

of constraints among these parameters that guarantees the time-optimality

of the trajectory in the rest-to-rest case, that is with null boundary condi-

tions on the trajectory derivatives. However, the choice of the parameters,

when these conditions are not satisfied, was still an open problem, at least
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for high order trajectories. In this paper, we show that in case the conditions

are not met by the filters parameters, the optimality of the trajectory under

the given kinematic bounds can be assured in any case. An algorithm for

the selection of the optimal parameters for a generic n-th order trajectory

planner subject to n kinematic limits is provided. Additionally, the optimal

combination of kinematic and frequency constraints is considered. In fact,

the compliance with these two types of constraints may lead to a planner

composed by a redundant number of filters and, therefore, a procedure for

the selection of the minimum number of FIR filters is devised. The effective-

ness of the time-optimal trajectory planner is proved by means of numerical

simulations and experimental tests.

Keywords: Trajectory planning, Multi-segment trajectories, Smoothers,

Shaping filters, Minimum-time trajectories, Residual vibrations suppression

1. Introduction

Motion control systems used in industry are required to be more and more

responsive when unforseen events occur or manufacturing demands change.

For this reason, there is a growing need for trajectory planning algorithms

that provide, possibly online, smooth motion profiles. The reference tra-

jectories must guarantee high tracking accuracy and avoid exciting natural

vibration modes of the mechanical structure. Moreover, they must be compli-

ant with the kinematic limits, i.e. torque, acceleration and jerk, imposed by

the actuators. The minimum-duration is another basic requirement. In the

industrial practice and in the scientific literature, several solutions have been

proposed but each of them shows pros and cons. They are typically based
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on a combination of polynomial profiles, such as trapezoidal velocity, accel-

eration, and jerk profiles, see Erkorkmaz and Altintas (2001); Lambrechts

et al. (2005); Biagiotti and Melchiorri (2008) among many others. The most

straightforward technique consists in the formulation of the trajectory via its

analytical expression, but unfortunately its complexity grows exponentially

as the required order n, i.e. the number of bounded derivatives and accord-

ingly the number of desired kinematic constraints, increases. As a matter of

fact, these types of trajectories are a combination of a number of properly

joined segments, that may range from one up to 2n − 1, according to the

constraints and the boundary conditions. Therefore, the analytical expres-

sion of the trajectory, that should take into account all the possible cases,

is combined with a decision tree that determines the specific structure that

the motion profile must have on the basis of the given inputs (constraints

and boundary conditions). This approach has been successfully used to de-

sign online optimal trajectory planners with n = 2 [Kroger et al. (2006)] and

n = 3 [Kroger and Wahl (2010)], but the high complexity of this method

does not allow to plan higher order trajectories.

Alternative solutions are based on properly tuned dynamic systems which fil-

ter and smoothen rough commands, like step signals, that specify the target

position [see Zanasi et al. (2000); Zanasi and Morselli (2003); Zheng et al.

(2009); Biagiotti and Zanasi (2010); Bianco and Ghilardelli (2014)]. These

systems are generally designed as a chain of integrators with cascaded feed-

back control loops, that allow minimum-time tracking of the reference input

with saturated control input and saturated internal state variables. However,

also in this case the solutions proposed in the literature are limited to third
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order trajectories.

In order to cope with this limitation, some simplificative assumptions have

been introduced on the constraints, supposed e.g. symmetric, and on the

boundary conditions, by assuming for instance that initial/final velocity/ac-

celeration are null. In this way, in Lambrechts et al. (2005) a fourth order

rest-to-rest symmetric trajectory is determined analytically, by computing

the closed-form expression of the application time-instants and of the dura-

tions of the impulses composing the snap profile, which is integrated four

times to obtain the position. It is worth mentioning that the proposed solu-

tion is optimal only if the maximum velocity is actually reached. Moreover

this technique is specifically designed for trajectories with n = 4 and cannot

be generalized to higher order motions.

General solutions in terms of trajectory order are proposed in Nguyen et al.

(2008), Knierim and Sawodny (2012) and Ezair et al. (2014), where numeri-

cal procedures for the computation of the parameters of a generic n-th order

trajectory are devised. Because of their algorithmic nature, the use of the

two above mentioned methods may be critical in online applications, spe-

cially when n assumes large values. Moreover, they do not guarantee the

optimality of the resulting trajectory. For instance the approach proposed

by Ezair et al. (2014) is based on the hypothesis, not always valid, that all

the given bounds are reached by the trajectory and its derivatives.

A very promising method for time-optimal trajectory generation is based on

a cascade of FIR filters, and, in particular, of moving average filters. This

type of filters has been used in several applications for smoothen a given

reference signal, with the usual purpose of reducing vibrations in resonant
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systems, see for instance Nozawa et al. (1985); Kim et al. (1994); Chen and

Lee (1998); Jeon and Ha (2000). In fact, one of the main advantages that this

approach offers with respect to the above mentioned methods for trajectory

planning/smoothing is the possibility of shaping the frequency spectrum of

the output trajectory. This feature of FIR filters has been mixed with the

compliance to kinematic constraints, which is typical of trajectory generators.

In Biagiotti and Melchiorri (2012) the proposed online trajectory generator

is based solely on a cascade of FIR filters, while in Besset and Bearee (2017)

a FIR filter is combined with the analytical expression of a second order tra-

jectory with the aim of joining the efficiency and the low complexity of the

filter with the flexibility given by the closed-form expression of the trajectory.

In Sencer et al. (2015); Tajima et al. (2018), chains of FIR filters are used in

interpolation problems for online planning of multi-dimensional trajectories

with time and frequency specifications. In the field of multi-dimensional in-

terpolation, it is worth mentioning that also B-splines can be generated via

a chain of FIR filters, see Biagiotti and Melchiorri (2011, 2013).

Despite the wide literature on FIR filters based trajectory planners, some

open problems still remains. In particular, the results presented so far do

not guarantee the time-optimality of the trajectory for any set of kinematic

constraints even in the rest-to-rest case. This problem is highlighted in Bia-

giotti and Melchiorri (2012), where it is shown that the expressions relating

the kinematic bounds with the filters parameters (which is used by all the

above cited works in order to take into account the kinematic constraints)

is valid only under certain conditions. One of the main contributions of this

paper consists in a procedure for the computation of the parameters that
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provides the optimal solution, for rest-to-rest trajectories of any order, start-

ing from any set of constraints.

Secondly, the optimal combination of kinematic and frequency conditions in

the design of the trajectory generator has been tackled. As a matter of fact,

by simply considering an additional FIR filter for any constraint, as proposed

in the literature, the trajectory filter may be redundant, in the sense that

some filters can be unnecessary. In this paper, a procedure for the com-

putation of the minimum number of filters, that guarantees the compliance

with all the specifications, and of their parameters is proposed. By means

of some experimental tests on a resonant systems, i.e. a flexible link, the ef-

fectiveness and the advantages of the proposed technique are demonstrated.

In particular, we have proved that an integrated solution to the problems of

compliance with kinematic limits and of vibration suppression may lead to

motion profiles shorter in time with respect to the application of a filtering

action, like for instance a Zero Vibration (ZV) input shaper, to trajectories

already compatible with the required bounds but guarantees similar levels of

residual vibrations.

The above mentioned procedures for the optimization of the chain of filters,

which have been implemented in the Matlab language, have been collected in

Matlab/Simulink toolbox that computes the optimal filters parameters for a

given set of constraints and then builds the Simulink block-scheme model of

the trajectory generator (in Biagiotti (2019) the link to download this tool

is reported).

The paper is organized as follows. In Sec. 2 the problem of trajectory genera-

tion by means of a particular type of FIR filters, called rectangular smoothers,
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is briefly summarized. Then, in Sec. 3 the procedure for the computation

of the optimal filters parameters under kinematic limits is presented, and its

working mode is illustrated in Sec. 4 with some numerical examples. Then,

the optimization of the trajectory generator with the addition of frequency

constraints is presented in Sec. 5 and experimentally tested in Sec. 6. Con-

cluding remarks are provided in the last section.

2. Multi-segment trajectories generation via rectangular smoothers

In Biagiotti and Melchiorri (2012), it is shown that a multi-segment tra-

jectory qn(t) of order n, compliant with the symmetric constraints

q
(i)
min = −q(i)max, i = 1, . . . , n

can be obtained by filtering a step input with a cascade of n dynamic filters

characterized by the transfer function

Mi(s) =
1

Ti

1− e−sTi

s
(1)

where the parameter Ti (in general different for each filter composing the

chain) is a time length, see Fig. 1. Note that the expression of filters, that in

the field of the trajectory planning are called rectangular smoothers, coincides

with the transfer function of a standard moving average filter.

The resulting trajectory qn(t) is composed by several polynomial segments

defined as linear combination of the basis functions ti, i = 0, . . . , n. The

smoothness of the trajectory, that is the number of continuous derivatives,

is strictly tied to the number of filters composing the chain. If n filters

are considered, the resulting trajectory will be of class Cn−1. The generic
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Figure 1: System composed by n filters for the computation of an optimal trajectory qn(t)

of class Cn−1 and of all the derivatives q
(i)
n (t) of order i = 1, . . . , n.

j-th derivative q
(j)
n (t) is composed by polynomial functions which are linear

combination of ti, i = 0, . . . , n−j and the n-th derivative q
(n)
n (t) is necessarily

formed by constant segments. Note that, as shown in Fig. 1, the proposed

trajectory generator provides all the derivatives up to the order n together

with the trajectory qn(t).

By increasing the smoothness of the trajectory, adding filters in the chain,

its duration augments as well. As a matter of fact, the total duration of a

trajectory planned by means of n dynamic systems Mi(s) is simply given by

the sum of the lengths of the impulse response of each filter, i.e.

Ttot = T1 + T2 + . . .+ Tn.
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The parameters Ti are generally set with the purpose of imposing desired

bounds on velocity, acceleration, jerk and higher derivatives, by simply as-

suming

T1 =
h

q
(1)
max

(2)

Ti =
q
(i−1)
max

q
(i)
max

, i = 2, . . . , n

where h denotes the maximum required displacement, i.e. h = maxi |qfin,i −

qin,i| being qin,i and qfin,i the starting and the ending position of the i-th

trajectory segment composing the motion profiles.

However, conditions (2) alone do not assure the time-optimality of the

trajectory and the compliance with all the limits q
(i)
max, i = 1, . . . , n, but it is

also necessary that the time-lengths Ti found with (2) meet the conditions

T1 ≥ Tn + . . .+ T2

T2 ≥ Tn + . . .+ T3
... (3)

Tn−2 ≥ Tn + Tn−1

Tn−1 ≥ Tn ,

see Biagiotti and Melchiorri (2012) for more details. The fact that inequal-

ities (3) are not satisfied does not mean that a time-optimal multi-segment

trajectory compliant with all the constraints cannot be generated by the fil-

ters chain but that the parameters found with (2) do not lead to such a

trajectory and, therefore, it is necessary to modify their values. In the next

section a procedure for the computation of the optimal parameters Ti with

any set of limits is proposed.
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3. Parameters modification for the time-optimality of the trajec-

tory

Given a trajectory generator composed by n filters, the verification of

conditions (3) proceeds from the last relation, involving only Tn−1 and Tn,

towards the first one, in which all the constants Ti appear. Let us consider

a generic condition that can be rewritten in a compact form as

Ti ≥

n
∑

k=i+1

Tk, i = 1, . . . , n− 1. (4)

Since the parameters Ti are computed according to (2), the condition (4) can

be written as

q
(i−1)
max

q
(i)
max

≥
q
(i)
max

q
(i+1)
max

+

n
∑

k=i+2

Tk, i = 1, . . . , n− 1. (5)

where the term
∑n

k=i+2 Tk does not depend on q
(i)
max. As a consequence, if

for the i-th parameter Ti the inequality is not verified, it is possible to act

by decreasing the value of q
(i)
max in order to make (5) true. Note that the

reduction of q
(i)
max has a twofold effect: on the one hand it increases the value

of Ti =
q
(i−1)
max

q
(i)
max

on the left side, on the other hand it reduces Ti+1 =
q
(i)
max

q
(i+1)
max

in the

right side. Specifically, the new limit value q̂
(i)
max = αq

(i)
max is assumed, where

α is a positive constant strictly smaller than 1. The new values of Ti and

Ti+1 are

T̂i =
Ti
α
, T̂i+1 = αTi+1 (6)

and, accordingly, equation (5) becomes

Ti
α

≥ α Ti+1 +

n
∑

k=i+2

Tk, i = 1, . . . , n− 1. (7)
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By iteratively applying (6) it is possible to met the condition (7). However,

the modification of the parameter Ti+1, that allows to comply with (7) for a

generic index i, may cause to violate the condition for i+1. For this reason,

at each modification it is necessary to check if the previous condition still

holds true and, if not, the procedure above outlined must be repeated. For

the sake of clarity, a schematic representation of the algorithm for parameters

selection and optimization is illustrated in Fig. 2. The constant value of α

determines the velocity of convergency of the algorithm and the precision of

the solution: values closer to 1 produce more accurate solutions but require

a larger number of iterations and vice-versa. In order to improve the velocity

of the algorithm by reducing the number of iterations without worsen the

accuracy of the solution a varying value of α can be adopted. In particular,

the limit value of α, i.e. the maximum value of α that makes (7) true can be

found by solving the second-degree equation

Ti+1 α
2 +

(

n
∑

k=i+2

Tk

)

α− Ti = 0. (8)

The positive solution of (8) to be inserted in (6) is

α = −

∑n

k=i+2 Tk

2Ti+1
+

√

(
∑n

k=i+2 Tk

2Ti+1

)2

+
Ti
Ti+1

. (9)

Unfortunately, by using (9) the vector of parameters Tk may converge to a

suboptimal solution, i.e. not minimum-time, if the modification occurring on

Ti+1 and Ti is very large (that is α is rather small) and requires a variation

on Tk, k = i + 2, . . . , n. A simple and effective way to avoid this drawback

consists in limiting the minimum value of α to a value αmin close enough to

one. The Matlab code of the recursive function implementing the procedure
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based on the variable α is reported in Appendix A. Note that α is also

bounded from above. The limit value αmax is imposed to prevent infinite

recursions caused by the numerical rounding of α to one.

In order to estimate the computational efficiency of the proposed tech-

h, q
(i)
max

i = 1, . . . , n

i = 1, . . . , n

i = 1, . . . , n

T1 =
h

q
(1)
max

, Ti =
q
(i−1)
max

q
(i)
max

j = n− 1

Tj ≥
∑n

k=j+1 Tk ? j = 1?

j = j − 1

Tj =
Tj
α
, Tj+1 = αTj+1

optimal Ti

no

no yes

yes

Constraints

Parameters computation

Parameters optimization

Figure 2: Flowchart for parameters selection and optimization of a n-th order trajectory

generator.
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Order n 2 3 4 5 6

# iterations (constant α) 3715 8151 15297 25538 34506

# iterations (variable α) 69 219 436 2712 12599

Table 1: Maximum number of iterations required by the optimization procedure in 106

tests based on vectors T = [Ti], i = 1, . . . , n chosen randomly in the interval [0.01, 10] s.

niques a number (106) of random tests have been performed and the worst

case scenario, i.e. with the maximum number of iterations, has been consid-

ered. Table 1 summarizes the results for different orders n both with con-

stant parameter α = 0.999 and with α variable in the range [αmin, αmax] =

[0.95, 0.999999]. Even if the rate of growth in the latter case is higher than

in the former, the number of required iterations is drastically reduced. The

combination of the limited number of iterations and the simple calculations

required by each of them makes the procedure suitable also for online trajec-

tory planning.

4. Numerical examples of optimal multi-segment trajectories with

kinematic constraints

In order to show the effectiveness of the proposed approach, a fourth

order trajectory planner is considered, i.e. a system composed by 4 rect-

angular smoothers. A general closed-form solution of the motion trajectory

produced by this type of planner, which is called limited snap trajectory or

fifteen-segment trajectory, does not exist in the literature and the solutions

proposed e.g. in Lambrechts et al. (2005) or in Ezair et al. (2014) are based

on the assumption that the bounds on velocity and/or higher order deriva-
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Trajectory No. h q
(1)
max q

(2)
max q

(3)
max q

(4)
max

1 10 3 0.4 0.4 5

2 0.4 3 0.4 0.4 5

3 10 1.5 0.4 4 5

4 10 3 5 5 5

Table 2: Kinematic limits considered for the computation of the parameters of the filters

composing a fourth order trajectory generator.

Trajectory No. T1 T2 T3 T4 Ttot

1 3.3333 7.5 1 0.08 11.9133

2 0.1333 7.5 1 0.08 8.7133

3 6.6667 3.75 0.1 0.8 11.3167

4 3.3333 0.6 1 1 5.9333

Table 3: Parameters Ti of the forth order trajectory planner computed according to (2)

on the basis of the kinematic constraints reported in Tab. 2.

tives are all reached. Note that this hypothesis is exactly equivalent to (3).

In order to show how the proposed technique works, four different trajectory

planning problems have been considered. The kinematic constraints imposed

in each of them are reported in Tab. 2, while Tab. 3 contains the correspond-

ing values of the parameters Ti, computed according to the standard rela-

tionships (2), and the total duration Ttot of the resulting trajectories. Finally,

in Tab. 4 the new parameters Ti, obtained after the optimization procedure

described in Sec. 3, and the consequent total duration of the trajectory are

shown.
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Trajectory No. T1 T2 T3 T4 Ttot

1 5.5691 4.4891 1 0.08 11.1382

2 1.6426 0.8213 0.7413 0.08 3.2851

3 6.6667 3.75 0.2828 0.2828 10.9824

4 3.3333 1.3390 0.6694 0.6694 6.0111

Table 4: Parameters Ti obtained by applying the optimization procedure described in

Sec. 3 to the initial parameters reported in Tab. 3.

The initial parameters that define the first trajectory, denoted as trajec-

tory No. 1, do not satisfy condition (3) for i = 1. On the basis of (4), it is

clear that it is necessary to act by progressively reducing the bound q
(1)
max in

order to achieve the time-optimality of the motion. As a matter of fact, the

trajectory profiles in Fig. 3(a) shows that the motion is not minimum-time

since there is a time interval (highlighted in all the figures with a grey back-

ground) in which none of the derivatives of the motion profile reaches the

corresponding bound. In particular, in this interval the velocity q4
(1)(t) main-

tain a constant value which is strictly smaller than q
(1)
max, while all the other

derivatives are zero. The application of the proposed optimization procedure

on the parameters Ti leads to the motion profiles of Fig. 3(b), with a reduc-

tion of the total duration of the trajectory of −6.50%. In this case, even if

the maximum velocity obtained is still strictly smaller than the given bound,

a time interval where this value is kept constant no longer exists. There-

fore, the initial trajectories characterized by 2n − 1 different tracts, that is a

standard 15 segments trajectory considering n = 4, becomes a 14 segments

trajectory. Moreover, in every time-instant a derivative of the planned tra-
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Figure 3: Profiles of position, velocity, acceleration, jerk and snap of the trajectories No.

1 obtained with a cascade of four rectangular smoothers with the parameters reported in

Tab. 3 (a) and in Tab. 4 (b).

jectory equals the corresponding bound. As a consequence, the trajectory,

which is still compliant with the given kinematic constraints, cannot be fur-

ther reduced in duration without violating one of these constraints and thus

the new trajectory is optimal in time, at least by considering the typical pat-

tern of multi-segment trajectories in which the velocity is composed by three

phases (acceleration, constant velocity, deceleration), the acceleration/decel-

eration phases are in turn composed by three phases and so on, for a total

of 2n − 1 different segments. As highlighted with a red circle in Fig. 4(a),
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Figure 4: Profiles of the trajectory No. 1 obtained with a cascade of four rectangular

smoothers with the parameters reported in Tab. 4 (a), compared with the profiles of the

trajectory obtained by anticipating the deceleration phase (b). The red circle in figure (a)

is used to highlight an apparently irregular behavior of the trajectory generator (discussed

in the text) which has been removed in the trajectory of figure (b).

where for the sake of clarity the trajectory profiles of Fig. 3(b) have been

reproduced, the lack of the constant velocity phase causes a fast oscillation

of the jerk profile from its minimum value to zero and again to the minimum

value. In order to avoid this oscillation and to further reduce the duration

of the trajectory, the deceleration phase must be anticipated of a time pe-

riod which exactly equals T4. This means that T1, that alone determines

the duration of the acceleration and deceleration phases, must be reduced of
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T4. Since the maximum velocity is not reached, as a result the optimization

procedure T1 = T2+T3+T4. Therefore, the anticipation simply requires that

T ′

1 = T1−T4 = T2+T3. This can be obtained by modifying the procedure for

kinematic optimization in Appendix A, which is based on (6), taking into

account only three parameters at once, i.e.

Ti
α

≥ αTi+1 + Ti+2, i = 1, . . . , n− 1. (10)

This strategy is valid in general to avoid the above mentioned oscillation that

may occurs in any derivative profile (and not only in the jerk) and leaded

to the algorithm reported in Appendix B. By applying this method the

trajectory of Fig. 4(b), characterized by

T1 = 5.5249 s, T2 = 4.5249 s, T3 = 1 s, T4 = 0.08 s,

is obtained, for a total duration Ttot = 11.1299 s, that is −0.0743% of the

duration of the multi-segment trajectory initially optimized. Even if the

improvement is rather modest, this trajectory finally represents the rest-to-

rest motion profile of shortest duration that can be obtained with the given

set of constraints.

Similarly to trajectory No. 1, also for trajectory No. 2, the condition (3)

with the initial parameters Ti is not satisfied for i = 1, and again by analyzing

the trajectory profiles, which are reported in Fig. 5(a), it comes out that the

velocity reaches and maintains for a certain interval a constant values lower

than the given constraints. Furthermore, since min{T1, T2} < T3 + T4, also

the acceleration does not reach the given bound but only a constant value

smaller than q
(2)
max. In this case, the optimization procedure modifies T1, T2

and T3, leading to a trajectory whose first two derivatives do not reach the
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Figure 5: Profiles of position, velocity, acceleration, jerk and snap of the trajectories No.

2 obtained with a cascade of four rectangular smoothers with the parameters reported in

Tab. 3 (a) and in Tab. 4 (b). In Figure (c) the trajectory obtained with the algorithm,

reported in Appendix B, which eliminates the oscillation of the jerk is shown.

kinematic limits, which however cannot be reduced in duration since jerk or

snap are always equal to their maximum allowed value. The reduction of the

trajectory duration for the trajectory reported in Fig. 5(b) is −62.29%. Also

in this case, it is possible to further reduce the duration of the trajectory,

by eliminating the oscillation of the jerk in the middle of the trajectory with

the procedure reported in Appendix B. The final motion profile, shown in

Fig. 5(c), is characterized by the parameters

T1 = 1.5887 s, T2 = 0.8344 s, T3 = 0.7544 s, T4 = 0.08 s,

and a duration of 3.2575 s (−0.8415% with respect to the trajectory already

optimized according to the initial method).
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Figure 6: Profiles of position, velocity, acceleration, jerk and snap of the trajectories No.

3 obtained with a cascade of four rectangular smoothers with the parameters reported in

Tab. 3 (a) and in Tab. 4 (b).

For the trajectory No. 3, shown in Fig. 6, the condition (3) is violated

for i = 3, and accordingly the maximum jerk q
(3)
max is not reached. The op-

timization procedure modifies the parameters that depends on q
(3)
max, i.e. T3

and T4. In this manner the duration of the trajectory is reduced by −2.95%,

even if it is still compliant with all the constraints.

In the last example, the trajectory No. 4 is initially characterized by pa-
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Figure 7: Profiles of position, velocity, acceleration, jerk and snap of the trajectories No.

4 obtained with a cascade of four rectangular smoothers with the parameters reported in

Tab. 3 (a) and in Tab. 4 (b).

rameters Ti that do not satisfy (3) for i = 3. Moreover, min{T2, T3} < T4.

Accordingly, both the jerk and the acceleration attain and maintain for a

certain interval constant values smaller than the given bounds. Additionally,

the snap profile overcomes the corresponding limit, see Fig. 7(a). The opti-

mization procedure solves the three above mentioned problems, but in this

case, the compliance with the given constraints requires a little increase of

the trajectory duration (+1.31%). The final trajectory is shown in Fig. 7(b).

Note that all the motion profiles are now compliant with the kinematic
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bounds and that at each time instant one of them exactly equals the re-

lated limit. As a consequence the trajectory is time-optimal.

Note that in the last two examples the two algorithms for the kinematic

optimization of the trajectories, which are reported in Appendix A and

Appendix B respectively, provide exactly the same results.

5. Multi-segment polynomial trajectories with vibration suppres-

sion capabilities

Multi-segment trajectories are generally defined on the basis of a set of

kinematic constraints. However, as shown in Biagiotti and Melchiorri (2012)

the rectangular smoothers composing the proposed trajectory generator can

be designed with the purpose of suppressing residual vibrations. In this way,

it is possible to incorporate such a capability into the planned trajectory

avoiding the use of further actions on the reference trajectory, like for instance

the use of input shapers, which represent a sort of standard filtering technique

for residual vibration suppression, see Singer and Seering (1990); Singhose

et al. (1995); Singer et al. (1999).

In order to eliminate the oscillations caused by a poorly damped (δ ≈ 0)

resonant mode at frequency ωn,i, it is sufficient to add to the trajectory

generator a filter like (1) whose characteristic parameter is computed as

Tω,i =
2π

ωn,i

. (11)

In this way, the frequency response of the filter assumes the shape shown in

Fig. 8(a). In particular, its magnitude is null for ω = ωn,i and, accordingly,

the filter does not excite the resonant mode at this frequency. In the same
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Figure 8: Frequency response (a) and Percent residual vibration (b) of a rectangular

smoother M(s) compared with those of a Zero Vibration Input Shaper ZV (s) and a

double rectangular smoother M2(s), as a function of the normalized frequency ω/ω̂n.

figure, the frequency response of a Zero Vibration (ZVi(s)) input shaper is

reported, i.e. the simplest input shaper and, above all, the input shaper of

minimum duration, Tzv,i =
π

ωn,i
. At a first glance, the main difference between

the two filters is the low-pass characteristic of the rectangular smoother that

allows it to reduce also the possible vibrations due to higher frequency modes.

Note that, except for the a constant factor 100, the frequency response coin-

cides with the sensitivity function of the filter with respect to variations of

the resonant frequency of the plant, that is the Percent Residual Vibration

(PRV) caused by the filter which is used to quantify its robustness [Kozak

et al. (2006)]. From a close look of the PRV, shown in Fig. 8(b), it is evident

that the rectangular smoother is more insensitive than the ZV Input shaper

with respect to errors in the resonant frequency estimation. Moreover, the

robustness of the proposed approach can be further enhanced by considering

more than one smoother acting at the same frequency, see the PRV profile

of M2
i (s) in Fig. 8(b).
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In conclusion, to suppress the vibrations due to m resonant modes of the

plant, the chain of filters composing the trajectory generator must include

at least m filters, whose parameters Tω,i are set according to (11).

In principle, a trajectory planner, that must take into account the kinematic

constraints on the first n derivatives and the cancellation of the vibrations

due tom oscillating modes, is composed by n+m filters with a total duration

Ttot =
n
∑

k=1

Tk +
m
∑

k=1

Tω,k.

However, as a side effect the filters for vibration suppression cause limita-

tions on the derivatives of the trajectory and consequently some of the filters

initially designed to meet the kinematic constraints can become redundant.

For this reason a procedure for taking into account only the filters that are

strictly necessary to comply with all the constraints must be devised. With

this respect, it is worth noticing that the m filters characterized by the time

constant Tω,i computed with (11) are mandatory to obtain an ideal vibrations

suppression, while some of the n filters computed according to the kinematics

constraints can be omitted, with a consequent reduction of the total trajec-

tory duration. In particular, by solving (2) with respect to q
(i)
max, it is possible

to deduce the relation

q(i)max =
|h|
i
∏

k=1

Tk

, i = 1, . . . , n (12)

leading to the conclusion that, by increasing the value of a generic parameter

Ti computed according to (2), the peak values reached by the derivatives

of the trajectory obtained with a displacement h are simply reduced and,
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therefore, they are still compliant with the given limits.

A simple way for detecting which filters are unnecessary consists in checking

if for any elements Ti, i = 1, . . . , n, resulting from the kinematic constraints

there exists an element of Tω,i, i = 1, . . . , m larger in magnitude, i.e. Tp ≤

Tω,q. In this case, it is possible to substitute the parameter Tp with Tω,q

without violating the kinematic constraints. A systematic way to perform

this operation starts from the vectors T = [Ti] and T ω = [Tω,i] sorted in

descendent order. Then, the algorithm reported in the flowchart of Fig. 9

can be applied in order to determine the vector T ⋆ composed by l elements,

with l ≤ n + m. The number l represents the minimum number of filters

composing the trajectory generator that complies with the all the constraints

(2) and (11), and the elements of T ⋆ are the parameters that must be imposed

to these filters. The Matlab code of the function implementing this algorithm

is reported in Appendix C.
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Figure 9: Algorithm for the minimization of the number of filters of a trajectory generator

compliant with the constraints (2) and (11).

6. Experimental validation of the optimization procedure of tra-

jectories with kinematic and frequency constraints

6.1. Description of the experimental setup

In order to validate the proposed method and show its advantages the

experimental setup of Fig. 10 has been used. It is based on a thin stainless
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Figure 10: Experimental setup based on a flexible link.

steel flexible link directly connected to the slider of a linear motor. The

side of the link connected to the motor is instrumented with a strain gauge

that detects the local deformation of the beam. The position control of the

motor and the trajectory generation are performed by a standard PC with a

Pentium IV 3 GHz processor equipped with a Sensoray 626 data acquisition

board and running the RTAI-Linux operating system, which guarantees a

sampling time Ts = 0.0005 s. The discrete-time implementation of the filters

is reported in Biagiotti and Melchiorri (2012).

The plant can be modeled as in Fig. 11. The dynamics of the link subject to

the lateral acceleration ẍ of the motor is described by a partial differential

equation [Luo et al. (1995)]. The assumption of separability of spatial and

temporal variables allows to obtain a closed-form solution of the bending

deformation

w(y, t) =

∞
∑

i=1

ψi(y) qi(t) (13)

where ψi(y) are the mode shapes depending on the boundary conditions im-

posed by the physical system, and qi(t) are the generalized modal coordinates,
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Figure 11: Model of the uniform cantilever beam used in the experiments.

oscillatory in time according to the frequency ωi [Kane et al. (1987); Bellezza

et al. (1990)]. Even if the expression (13) takes into account infinite terms,

in practice only few modes are meaningful for the bending of the beam. In

particular, the flexible link used in the experiments is strongly affected by

two modes located at ωr1 ≈ 20.18 rad/s and ωr2 ≈ 127.5 rad/s, respectively,

while additional contributions are negligible. The dynamic modes are both

slightly damped. For instance, the fist mode is characterized by a damping

coefficient δ = 0.0043. For this reason, it is possible to design the filters,

both the smoothers and the input shapers, by assuming δ ≈ 0.

The strain gauge, sensing the deflection in a specific point of the beam,

provides a signal Vw(t) proportional to w(ȳ, t) that is therefore a linear com-

bination of the temporal modes according to the constant coefficients ψi(ȳ).

In order to quantify the level of vibrations, the output voltage Vw(t) of the

strain gauge is directly used, see Fig. 12. Finally, with regard to Fig. 12, it is

worth remarking that, within the given kinematic limits, the linear actuator,

represented as a simple saturation, is supposed to be able to “perfectly” track

the reference trajectory produced by the chain of filters, i.e. qn(t) ≈ q⋆n(t).
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Figure 12: Block-scheme representation of the experimental setup, based on a flexible link,

shown in Fig. 10.

6.2. Experiments

In the first example, the following specifications have been considered:

h = 0.03 m, q(1)max = 0.1 m/s, q(2)max = 1 m/s2. (14)

Accordingly, the parameters of the two smoothers that generate the second

order optimal trajectory compliant with the given constraints, computed ac-

cording to the technique illustrated in Sections 2 and 3, are T1 = 0.3 s,

T2 = 0.1 s (Ttot = 0.4 s). The initial motion profile is shown in Fig. 13 in

black color. Its application to the experimental setup produces in the flex-

ible link a certain level of vibrations, measured by the voltage signal Vw(t)

of the strain gauge, see Fig. 14(a). Since signal Vw(t) is affected by a high

level of noise, an analysis in the frequency domain has been performed, by

applying a Fast Fourier Transform (FFT) to the samples of Vw(t) measured

after the end of the motion. The spectrum |Vw(jω)| in the frequency range

of interest is shown in Fig. 14(b), where it is compared with the frequency

response of the chain of filters used to plan the reference trajectory. Note

that the signal exhibits a peak value at the frequency ωr1, that corresponds

to the residual vibration tied to the first resonant mode, while the contribu-

tion of the second mode is not appreciable. It is also worth noticing that the
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Figure 13: Profiles of position, velocity and acceleration of the trajectory used in the first

test on the flexible link. In all the figures, the solid black line denotes the initial trajectory.

Additional smoothers for vibration reduction are considered in (a), input shapers in (b)

and the optimization procedure proposed in Sec. 5 in (c).

frequency spectrum of the trajectory generator has a zero very close to ωr1.

In order to highlight the advantages of the proposed optimization proce-

dure, several techniques, aiming at a reduction of the residual vibration, have

been compared. In particular, the following approaches have been tested.

(a) A smoother Mω,1(s) with Tω1 = 2π
ωr1

= 0.3114 s is simply added to

the initial chain (accordingly the duration of the trajectory becomes

Ttot = T1 + T2 + Tω,1 = 0.7114 s, that is +77.85% with respect to its

initial value). The resulting trajectory is shown in Fig. 13(a) (blue

line).

(b) A second smoother Mω,2(s) with Tω2 = 2π
ωr2

= 0.0493 s is added to

the chain including Mω,1(s) (Ttot = T1 + T2 + Tω1 + Tω2 = 0.7606 s,
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Figure 14: Initial motion profile, based on kinematic constraints (14), applied to the

flexible link in the first experiment and measurement of the link deflection via the strain

gauge (a). Magnitude of the frequency spectrum of the strain gauge output signals Vw(t)

and comparison with the frequency response of the trajectory generator (b).

+90.15%). The resulting trajectory is shown in Fig. 13(a) (red line).

(c) An input shaper ZV1(s) with Tzv1 =
π
ωr1

= 0.1557 s is used in lie of the

smoother after the chain M1(s)M2(s) (Ttot = T1+T2+Tzv1 = 0.5557 s,

+38.92%). The resulting trajectory is shown in Fig. 13(b) (blue line).

(d) A second input shaper ZV2(s) with Tzv2 =
π
ωr2

= 0.0246 s is considered

(Ttot = T1 + T2 + Tzv1 + Tzv2 = 0.5803 s, +45.07%). The resulting

trajectory is shown in Fig. 13(b) (red line).

(e) The optimization procedure proposed in Sec. 5 is applied to the chain
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of smoothers composed by M1(s)M2(s) and Mω,1(s) obtaining a fil-

ter of the second order M⋆
1 (s)M

⋆
2 (s) with T ⋆

1 = Tω1 and T ⋆
2 = T2

(Ttot = 0.4114 s, +2.85%), therefore M⋆
1 (s)M

⋆
2 (s) = Mω,1(s)M2(s).

The resulting trajectory is shown in Fig. 13(c) (blue line).

(f) The optimization procedure is applied to the chain of smoothers com-

posed by M1(s)M2(s) and Mω,1(s)Mω,2(s) obtaining a third order filter

M⋆⋆
1 (s)M⋆⋆

2 (s)M⋆⋆
3 (s) with T ⋆⋆

1 = Tω1 , T
⋆⋆
2 = T2 and T ⋆⋆

3 = Tω2 (Ttot =

0.4606 s, +15.15%), i.e. M⋆⋆
1 (s)M⋆⋆

2 (s)M⋆⋆
3 (s) =Mω,1(s)M2(s)Mω,2(s).

The resulting trajectory is shown in Fig. 13(c) (red line).

The original trajectory is modified by the above methods as shown in Fig. 13.

The kinematic constraints are met in any case. The additional smoothers in-

crease the continuity level of the motion profile, see Fig. 13(a), while with

the input shapers the continuity level remains unchanged, see Fig. 13(b).

The optimization procedure leads to a trajectory generator whose order is

not smaller than the order of the initial filter only based on the kinematic

constraints. The major advantage of the optimization procedure is the little

increment of the trajectory duration, if compared with the insertion of addi-

tional elements, either smoothers or input shapers, for vibration suppression.

As regard as the effectiveness of the different methods in vibration reduction,

the results are illustrated in Fig. 15 in the time domain and in Fig. 16 in the

frequency domain. In particular, the FFT analysis shows that the vibration

levels obtained by the different methods are similar. As a matter of fact,

the magnitude of the frequency component at ωr1 is 0.0098552 (−57.00%

of the initial value) in case (a), 0.0075938 (−66.87%) in case (b), 0.010274

(−55.18%) in case (c), 0.010076 (−56.04%) in case (d), 0.010816 (−52.81%)
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in case (e), 0.010257 (−55.25%) in case (f). The first filter designed on the

basis of ωr1 leads to a reduction of the residual vibration of about 50%, while

the application of the second filter slightly influences the level of vibration at

ωr1. In general, the three different approaches are equivalent, but the very

limited increase in duration of the trajectory based on the optimized com-

bination of kinematic and frequency constraints makes this technique highly

preferable.
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Figure 15: Motions applied to the flexible link in the first test and measurement Vw(t) of

the produced vibrations. The letters denoting the different subfigures are consistent with

the list in the text.
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Figure 16: Magnitude of the frequency spectrum of the strain gauge output signals Vw(t)

reported in Fig. 15 and comparison with the frequency response of the filters generating

the reference position.
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In a second experiment, a third order trajectory filter, compliant with the

specifications

h = 0.04 m, q(1)max = 0.1 m/s, q(2)max = 0.5 m/s2, q(3)max = 12 m/s3, (15)

is initially considered. The parameters of the three smoothers composing

the trajectory generator are T1 = 0.4 s, T2 = 0.2 s and T3 = 0.0417 s

(Ttot = 0.6417 s).

The original motion profile and the measurement of the produced residual

vibrations are shown in Fig. 17 and Fig. 18, respectively. Note that, despite

the higher order of the trajectory, the level of vibrations is greater than the

level obtained in the first experiment. This effect can be explained by consid-

ering the frequency response of the trajectory filter, reported in Fig. 18(b),

whose magnitude is rather large in the range of frequencies centered around

ωr1. Moreover, the initial motion profile considered in this experiment, tends

to excite also the resonant mode at ωn2, as highlighted by the frequency anal-

ysis in Fig. 18(b).

The same tests performed in the first experiment have been repeated start-

ing from this different trajectory. Besides the different structure of the ini-

tial trajectory filter (composed by three smoothers) and the different pa-

rameters values, the main difference with respect to the first experiment

concerns the result of the optimization procedure. In case (e), the opti-

mal filter is composed by three smoothers M⋆
1 (s)M

⋆
2 (s)M

⋆
3 (s) characterized

by T ⋆
1 = T1 = 0.4 s, T ⋆

2 = Tω1 = 0.3114 s and T ⋆
3 = T3 = 0.0417 s, i.e.

M⋆
1 (s)M

⋆
2 (s)M

⋆
3 (s) = M1(s)Mω,1(s)M3(s). In case (f), the optimal filter is

again a combination of three smoothers M⋆⋆
1 (s)M⋆⋆

2 (s)M⋆⋆
3 (s), whose param-

eters are T ⋆⋆
1 = T1 = 0.4 s, T ⋆⋆

2 = Tω1 = 0.3114 s and T ⋆⋆
3 = Tω2 = 0.0493 s,

36



M1(s)M2(s)M3(s)

M1(s)M2(s)M3(s)Mω,1(s)

M1(s)M2(s)M3(s)Mω,1(s)Mω,2(s)

M1(s)M2(s)

M1(s)M2(s)M3(s)ZV1(s)

M1(s)M2(s)M3(s)ZV1(s)ZV2(s)

M1(s)M2(s)

M⋆
1 (s)M

⋆
2 (s)M

⋆
3 (s)

M⋆⋆
1 (s)M⋆⋆

2 (s)M⋆⋆
3 (s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-10

-5

0

5

10

-0.5

0

0.5

0

0.02

0.04

0.06

0.08

0.1

0

0.01

0.02

0.03

0.04

q(
t)

q(
1
) (
t)

q(
2
) (
t)

q(
3
) (
t)

t [s]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-10

-5

0

5

10

-0.5

0

0.5

0

0.02

0.04

0.06

0.08

0.1

0

0.01

0.02

0.03

0.04

q(
t)

q(
1
) (
t)

q(
2
) (
t)

q(
3
) (
t)

t [s]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-10

-5

0

5

10

-0.5

0

0.5

0

0.02

0.04

0.06

0.08

0.1

0

0.01

0.02

0.03

0.04

q(
t)

q(
1
) (
t)

q(
2
) (
t)

q(
3
) (
t)

t [s]

(a) (b) (c)

Figure 17: Profiles of position, velocity and acceleration of the trajectory used in the second

test on the flexible link. In all the figures, the solid black line denotes the initial trajectory.

Additional smoothers for vibration reduction are considered in (a), input shapers in (b)

and the optimization procedure proposed in Sec. 5 in (c).

i.e. M⋆
1 (s)M

⋆
2 (s)M

⋆
3 (s) =M1(s)Mω,1(s)Mω,2(s).

The motion profiles, achieved with the different techniques, are shown

in Fig. 17, proving that the given kinematic constraints are still met. The

residual vibrations produced in the flexible link by each motion profile are

shown in Fig. 18, and then analyzed in the frequency domain, see Fig. 20.

Table 5 summarizes the achieved results in terms of both trajectory duration

and residual vibrations reduction. In both cases the percentage variation

with respect to the original trajectory is computed.

Like in the first experiment, the different filtering techniques show simi-
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Figure 18: Initial motion profile, based on kinematic constraints (15), applied to the

flexible link in the second experiment and measurement of the link deflection via the

strain gauge (a). Magnitude of the frequency spectrum of the strain gauge output signals

Vw(t) and comparison with the frequency response of the trajectory generator (b).

lar performances in terms of vibrations reduction. Note that the first filter,

based on ωr1, also contributes to reduce the residual vibrations at ωr2, while

the second one, which is tuned by considering ωr2, slightly improves the vi-

bration suppression at ωr1.

The proposed optimization procedure based on a proper combination of rect-

angular smoothers is characterized by the shortest duration among the tested

methods, leading to the conclusion that an integrated design of the trajec-

tory planner, taking into account both the kinematic limits imposed by the

actuator/application and the resonant frequencies of the plant, provides the
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(a) (b) (c) (d) (e) (f)

Ttot [s] 0.9530 1.0023 0.7973 0.8220 0.7530 0.7606

∆Ttot% 48.52 56.20 24.25 28.10 17.35 18.53

V [mV] 22.278 13.744 21.143 14.649 18.536 15.851

∆V% -49.04 -68.56 -51.64 -66.49 -57.60 -63.74

Table 5: Duration and residual vibration level associated with the different trajectory

filters obtained by modifying the original generator based on the kinematic constraints

(15). Symbol V denotes the magnitude of the spectral component at ωr1.

best results in terms of motion duration and residual vibration reduction.
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Figure 19: Motions applied to the flexible link in the second experimental test and mea-

surement Vw(t) of the produced vibrations.
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Figure 20: Magnitude of the frequency spectrum of the strain gauge output signals Vw(t)

reported in Fig. 18 and comparison with the frequency response of the filters generating

the reference position.

41



7. Conclusions

In this paper, a complete framework for the (online) generation of opti-

mal rest-to-rest trajectories subject to kinematic and frequency constraints

is presented. The key point of the proposed approach is the use of a chain of

rectangular smoothers for the design of computationally efficient trajectory

planners of any order. Several attempts of designing generic n-th order trajec-

tories of minimum duration under kinematic constraints have been proposed

in the literature but, to the best of our knowledge, only the use of smoothers

together with the tools proposed in this paper for the calculation of their

parameters allow (for the first time) a true optimization of the trajectory,

even if limited to the rest-to-rest case.

Additionally, a second procedure allows to minimize the trajectory dura-

tion when also frequency specifications, tied to the suppression of residual vi-

brations, are considered. The experimental tests confirm that the integrated

design of the trajectory leads to a duration of the motion considerably smaller

than the simple application of filtering techniques, like input shapers, to the

initial trajectory compliant with the kinematic bounds. On the other hand,

the capability of the optimized trajectory of reducing the residual vibrations

are similar to the use of an additional filter.

Appendix A. Procedure for the verification and optimization of

parameters Ti

The following is an example implementation in the Matlab programming

language of the algorithm of Fig. 2 for the optimization of parameters Ti,
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i = 1, . . . , n defining the n-th order multi-segment trajectory of minimum

duration under kinematic constraints.

funct i on [ Tout ] = CheckConstraintsT (Tin )

amax = 0.999999 ;

amin = 0 . 95 ;

n = l ength (Tin ) ;

Tout=Tin ;

f o r i=n−1:−1:1

i f Tout ( i )< sum(Tout ( i +1:end ) )

a = −sum(Tout ( i +2:end ) ) /2/Tout ( i +1)+sq r t ( ( sum(Tout ( i +2:end ) ) /2/Tout ( i +1) )ˆ2+Tout

( i ) /Tout ( i +1) ) ;

a = min ( [max ( [ a amin ] ) , amax ] ) ;

Tout ( i ) = Tout ( i ) /a ;

Tout ( i +1) = Tout ( i +1) *a ;

Tout = CheckConstraintsT (Tout ) ;

end

end

end

The input vector Tin contains the initial guess of the parameters Ti computed

according to (2), while Tout is the vector of the optimal parameters.

Appendix B. Procedure for the optimization of parameters Ti avoid-

ing unwanted oscillations in the trajectory profiles

Matlab function for the optimization of parameters Ti, i = 1, . . . , n defining the

n-th order multi-segment trajectory of minimum duration under kinematic con-

straints that solves the problem of unwanted oscillations of trajectory derivatives

from their max/min value to zero and again to the max/min value (see example

in Fig. 4).

funct i on [ Tout ] = CheckConstraintsT1 ( Tin )

amax = 0.999999 ;

amin = 0 . 95 ;

n = l ength (Tin ) ;

Tout=Tin ;

i f ( Tout (n−1) < Tout (n) )

Tout (n) = sq r t (Tout (n−1)*Tout (n ) ) ;

Tout (n−1) = Tout (n ) ;

end

f o r i=n−2:−1:1
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i f ( Tout ( i )< Tout ( i +1) + Tout ( i +2) )

a =−Tout ( i +2)/2/Tout ( i +1)+sqr t ( ( Tout ( i +2)/2/Tout ( i +1) )ˆ2+Tout ( i ) /Tout ( i +1) ) ;

a = min ( [max ( [ a amin ] ) , amax ] ) ;

Tout ( i ) = Tout ( i ) /a ;

Tout ( i +1) = Tout ( i +1) *a ;

Tout = CheckConstraintsT1 ( Tout ) ;

end

end

end

The input vector Tin contains the initial guess of the parameters Ti computed

according to (2), while Tout is the vector of the optimal parameters.

This function has been used in the Matlab/Simulink toolbox mentioned in the in-

troduction (see Biagiotti (2019)) for the automatic design of trajectory generators

compliant with kinematic and frequency constraints.

Appendix C. Procedure for the optimization of a trajectory under

kinematic and frequency constraints

Implementation in the Matlab programming language of the algorithm of Fig. 9

for the optimization of the number of filters, and the related parameters, defin-

ing a multi-segment trajectory of minimum duration compliant with n kinematic

constraints and m frequency constraints.

funct i on [ Tstar ] = MergeConstraintsT ( T, Tw )

n = l ength (T) ;

m = l ength (Tw) ;

j = 1 ;

Tstar = [ ] ;

f o r i = 1 : n

i f ( j <= m) & (Tw( j ) >= T( i ) )

Tstar ( i ) = Tw( j ) ;

j = j + 1 ;

e l s e

Tstar ( i ) = T( i ) ;

end

end

Tstar = [ Tstar Tw( j : end ) ] ;
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The input vectors T and Tw contain the parameter Ti computed according to

the kinematic constraints and the parameters Tω,i obtained with (11). The output

vector Tstar is composed by the minimum number of parameters that allow the

trajectory to be compliant with all the initial constraints.
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