
02/05/2024 00:49

Enhanced arc-flow formulations to minimize weighted completion time on identical parallel machines / DE
LUCENA KRAMER, ARTHUR HARRY FREDERICO; Dell'Amico, Mauro; Iori, Manuel. - In: EUROPEAN JOURNAL
OF OPERATIONAL RESEARCH. - ISSN 0377-2217. - 275:1(2019), pp. 67-79. [10.1016/j.ejor.2018.11.039]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is a pre print version of the following article:



Enhanced arc-flow formulations to minimize weighted completion

time on identical parallel machines

Arthur Kramer, Mauro Dell’Amico, Manuel Iori
Dipartimento di Scienze e Metodi dell’Ingegneria

Università degli Studi di Modena e Reggio Emilia, Italy
arthur.kramer@unimore.it, mauro.dellamico@unimore.it, manuel.iori@unimore.it

Abstract

We consider the problem of scheduling a set of jobs on a set of identical parallel machines, with
the aim of minimizing the total weighted completion time. The problem has been solved in the
literature with a number of mathematical formulations, some of which require the implementation
of tailored branch-and-price methods. In our work, we solve the problem instead by means of new
arc-flow formulations, by first representing it on a capacitated network and then invoking a mixed
integer linear model with a pseudo-polynomial number of variables and constraints. According to
our computational tests, existing formulations from the literature can solve to proven optimality
benchmark instances with up to 100 jobs, whereas our most performing arc-flow formulation solves
all instances with up to 400 jobs and provides very low gap for larger instances with up to 1000 jobs.

1 Introduction

We are given a set J = {1, 2, . . . , n} of jobs to be scheduled on a set M = {1, 2, . . . ,m} of

identical parallel machines. Each job j ∈ J has a processing time pj and a penalty weight

wj. A schedule is feasible if each job is assigned to a unique machine and processed

without preemption, and each machine processes at most one job at a time. Let Cj

define the completion time of job j, our goal is to find a feasible schedule for which the

total weighted completion time,
∑n

j=1wjCj, is a minimum. The problem is denoted as

P ||
∑
wjCj as in the three-field classification of Graham et al. (1979). In the following,

we suppose that processing times and penalty weights take integer values.

The P ||
∑
wjCj was proven to be NP-hard by Bruno et al. (1974). Despite being a

classical production scheduling problem, with real-world applications, it has not received

much attention in the literature and cannot be considered a well solved problem. To

the best of our knowledge, state-of-the-art exact methods for the P ||
∑
wjCj are the

branch-and-bound algorithms developed by Azizoglu and Kirca (1999), Chen and Powell

(1999) and Van den Akker et al. (1999), the last two of which make use of column gener-

ation techniques to solve the relaxed problem at each node. Aside from these works, the

P ||
∑
wjCj can be solved by adapting mathematical formulations originally developed for

similar one machine or unrelated parallel machines problems. Among these formulations,

we mention the time indexed (TI) mixed integer linear programming (MILP) model by

Sousa and Wolsey (1992), the convex integer quadratic programming model by Skutella

1

ar
X

iv
:1

80
8.

10
66

1v
1 

 [
cs

.D
S]

  3
1 

A
ug

 2
01

8



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

(2001) and the preemptive TI model by Bülbül and Şen (2017). According to our tests,

these methods fail in solving some P ||
∑
wjCj benchmark instances involving just 100

jobs.

In this paper, we solve exactly large-size instances of the P ||
∑
wjCj by focusing on

the development of arc-flow (AF) formulations. AF formulations represent the problem

as a capacitated network with side constraints, and consist of a MILP model with a

pseudo-polynomial number of variables and constraints. AF formulations have been used

to model many combinatorial optimization problems (see, e.g., Wolsey 1977 and Valério

de Carvalho 1999), and have recently obtained successful results on important areas such

as bin packing and cutting stock problems (see, e.g., the recent survey by Delorme et al.

2016). For the area of scheduling, we are only aware of a very recent publication by

Mrad and Souayah (2018) that presents an AF formulation for the problem of minimizing

makespan on identical parallel machines. In our work, we first propose a straight AF

formulation, and then enhance it through a set of techniques that aim at reducing the

number of variables and constraints by combining established reduction procedures from

the literature with some specific features of the P ||
∑
wjCj. This results in a powerful

method that solves to proven optimality large instances and provide low optimality gaps

for very large instances.

The remainder of this paper is organized as follows. In the next Section 2, we review

the main literature, whereas in Section 3 we adapt to the P ||
∑
wjCj some mathematical

formulations from the literature. In Section 4, we present the straight and enhanced AF

formulations. In Section 5, we provide the outcome of extensive computational experi-

ments and finally, in Section 6, we present some concluding remarks.

2 Literature review

The P ||
∑
wjCj is a generalization of 1||

∑
Cj, 1||

∑
wjCj and P ||

∑
Cj, which are all

solvable in polynomial time using the well known shortest processing time (SPT) rule, or

the weighted shortest processing time (WSPT) rule of Smith (1956). The WSPT rule sorts

jobs according to non-increasing wj/pj. The P ||
∑
wjCj, on the contrary, is a difficult

problem, and was proven to be NP-hard even with just two machines (P2||
∑
wjCj, see

Bruno et al. 1974).

The literature on the P ||
∑
wjCj focused on the development of early heuristic meth-

ods and exact branch-and-bound (B&B) algorithms. Eastman et al. (1964) proposed a

heuristic that uses a variant of the WSPT rule. Kawaguchi and Kyan (1986) showed that

such heuristic guarantees a solution whose total weighted completion time is not worse

than (
√

2 + 1)/2 times the optimal solution value. Elmaghraby and Park (1974) proposed

a B&B based on the use of lower bounds and properties of optimal solutions. Sarin et al.

(1988) improved the work by Elmaghraby and Park (1974), by proposing a new branching

scheme that substantially reduces the number of schedules to be evaluated in the B&B

2



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

tree. They solved instances with up to 30 jobs and 5 machines. Belouadah and Potts

(1994) incorporated Lagrangian relaxation in a B&B based on a TI formulation, solving

instances with up to 30 jobs and 8 machines. Another B&B was designed by Azizoglu and

Kirca (1999), who used the same branching scheme of Sarin et al. (1988), but enriched

it with the lower bound of Webster (1995), solving instances with up to 35 jobs and 5

machines.

Chen and Powell (1999) tackled the P ||
∑
wjCj, the Q||

∑
wjCj and the R||

∑
wjCj

by means of a set covering (SC) formulation where each column corresponds to a single

machine schedule. To deal with the large number of feasible schedules, they developed

a branch-and-price (B&P) method in which at each node of an enumeration tree a valid

lower bound was obtained by column generation. In the same year, Van den Akker et al.

(1999) independently developed a similar B&P. They focused only on the P ||
∑
wjCj, and

obtained slightly better results than Chen and Powell (1999) by branching on completion

times instead of branching on variables that indicate whether a certain job is processed

immediately after another job. Their B&P solved P ||
∑
wjCj instances with up to 100

jobs and 10 machines. Very recently, Kowalczyk and Leus (2018) extended the method of

Van den Akker et al. (1999) by investigating the use of stabilization techniques, a generic

branching rule (see Ryan and Foster 1981), and a zero-suppressed binary decision diagram

approach (see Minato 1993) for solving the pricing subproblem.

Sousa and Wolsey (1992) proposed a TI formulation to solve single machine scheduling

problems with general objective function. Their formulation originates from early works

on scheduling (see, e.g., Bowman 1959 and Pritsker et al. 1969) and is easily adaptable

to multiple machine problems.

Recent literature focused on the related R||
∑
wjCj, which considers unrelated paral-

lel machines. Skutella (2001) proposed a convex integer quadratic programming (CIQP)

relaxation as the basis for an approximation algorithm. In his approach, the problem

is formulated as an integer quadratic programming model with n × m assignment vari-

ables. Then, integrality is relaxed and the objective function is convexified to obtain a

CIQP relaxation that can be solved in polynomial time. Finally, the relaxed solution

is transformed in a feasible solution by applying a randomized rounding method. Later

on, Plateau and Rios-Solis (2010) embedded the CIQP relaxation by Skutella (2001) in

a branch-and-bound algorithm to obtain an exact approach. Bülbül and Şen (2017) pro-

posed a Benders decomposition method based on a TI formulation. Their formulation

accepts preemptive solutions, but is proven to yield non-preemptive optimal solutions be-

cause of the use of tailored coefficients in the objective function. Their method obtained

better results than those produced by the CIQP formulation. We also highlight the recent

works by Rodriguez et al. (2012, 2013), who developed metaheuristic algorithms based

on GRASP and iterated greedy paradigms, and tested them on instances having either

unrelated or uniform machines. Note that we cannot compare with the literature on these

instances, as our methods are specifically tailored for the case of identical machines.

3



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

We conclude this section by referring the interested reader to the review by Li and Yang

(2009) on models, relaxations and algorithms for minimizing weighted completion times

on parallel machines. Another review of models for parallel machines scheduling problems,

which includes a computational evaluation of MILP models, was proposed by Unlu and

Mason (2010). They classified the formulations into four different types according to the

characteristics of their variables (TI variables, network variables, assignment variables,

and positional date variables), and concluded that TI formulations tend to perform better

than the others. A very recent review on preemptive models for scheduling problems

with controllable processing times has been presented by Shioura et al. (2018), who also

included a section on methods based on flow computations.

3 Existing mathematical formulations

In this section, we provide an overview of mathematical formulations for the P ||
∑
wjCj

that we obtained by adapting models originally presented for related problems.

3.1 Sousa and Wolsey’s time indexed formulation

The TI formulation by Sousa and Wolsey (1992) was originally designed to deal with the

problem of sequencing jobs over the time on a single machine subject to resource con-

straints. As previously highlighted, this formulation can be modified to consider parallel

machines and weighted completion time as follows:

(TI) min
∑
j∈J

T−pj∑
t=0

wjtxjt +
∑
j∈J

wjpj (1)

st.

T−pj∑
t=0

xjt = 1 j ∈ J (2)

∑
j∈J

min{t,T+1−pj}∑
s=max{0,t+1−pj}

xis ≤ m t = 0, . . . , T − 1 (3)

xjt ∈ {0, 1} j ∈ J, t = 0, . . . , T − pj (4)

where xjt is a binary decision variable taking value 1 if job j starts its processing at time

t, 0 otherwise. The time horizon is defined by T and should be sufficiently large to ensure

optimality and as short as possible to avoid the creation of unnecessary variables. The

objective function (1) seeks the minimization of the total weighted completion time. Note

that we expressed the completion time of a job as the sum of starting time and processing

time, formally using Cj =
∑

t txjt + pj. The term
∑

j wjpj is a constant and is thus

irrelevant for the formulation. Constraints (2) ensure that each job is processed exactly

once. Constraints (3) forbid overlapping among the jobs by imposing that at most m jobs

are executed in parallel at any time. Constraints (4) define the variables’ domain. Model

4



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

(1)–(4) contains a pseudo-polynomial number of variables, a common characteristic of TI

formulations, which amounts to O(nT ).

3.2 Skutella’s convex integer quadratic programming formulation

The idea behind the method of Skutella (2001) is to formulate the R||
∑
wjCj as an

integer quadratic program and then convexify the objective function. His formulation

uses n×m integer assignment variables and can be adapted to the P ||
∑
wjCj as follows:

(CIQP) min
∑
j∈J

wjCj (5)

st.
∑
k∈M

xkj = 1 j ∈ J (6)

Cj =
∑
k∈M

xkj

(
1 + xkj

2
pj +

∑
i∈J,i≺j

xki pi

)
j ∈ J (7)

xkj ∈ {0, 1} j ∈ J, k ∈M (8)

where xkj = 1 if job j is scheduled on machine k, 0 otherwise. The notation i ≺ j in (7)

means that either (wi/pi > wj/pj) or (wi/pi = wj/pj and i < j). This is used to take into

account that the jobs are scheduled on each machine by non-increasing order of wj/pj, i.e.,

by following the WSPT rule. The relaxation obtained by dropping integrality constraints

from (8) can be solved easily. Indeed, Skutella (2001) showed that xkj = 1/m ∀j ∈ J

and k ∈ M is an optimal solution to this relaxation when the machines are identical.

The optimal integer solution of model (5)–(8) can be obtained by invoking a commercial

CIQP solver such as CPLEX or Gurobi (as done by Plateau and Rios-Solis 2010 for the

R||
∑
wjCj).

3.3 Bülbül and Şen’s preemptive time indexed formulation

Bülbül and Şen (2017) modeled the preemptive version of the R||
∑
wjCj by means of a

preemptive time indexed (PTI) formulation making use of n×m×T continuous variables

and n × m binary variables. Then, they proved that it is always possible to devise a

non-preemptive solution having the same objective value of the optimal PTI preemptive

one, concluding that the PTI model is optimal also for the (non-preemptive) R||
∑
wjCj.

Their formulation can be adapted to the P ||
∑
wjCj as follows:

(PTI) min
∑
j∈J

T∑
t=1

∑
k∈M

wj
pj

(
t+

pj − 1

2

)
xjkt (9)

s.t.
T∑
t=1

xjkt = pjyjk j ∈ J, k ∈M (10)∑
j∈J

xjkt ≤ 1 k ∈M, t = 1, . . . , T (11)

5



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

∑
k∈M

yjk = 1 j ∈ J (12)

xjkt ≥ 0 j ∈ J, k ∈M, t = 1, . . . , T (13)

yjk ∈ {0, 1} j ∈ J, k ∈M (14)

where xjkt are continuous variables representing the quantity of job j, i.e., the number of

unit-length parts of job j, which is finished at time t on machine k, and yjk takes value 1

if job j is assigned to machine k, 0 otherwise. Constraints (10) state that all unit-length

parts of job j must be processed on the same machine. Constraints (11) ensure that each

machine processes at most one job at a time. Constraints (12) guarantee that each job is

assigned to exactly one machine. Constraints (13) and (14) give the variables’ domains.

To tackle the pseudo-polynomial number of variables and constraints in the aforemen-

tioned model, the authors proposed a Benders decomposition approach. Their idea is to

start by first solving a master problem composed by variables y and constraints (12) and

(14), and obtain a solution ȳ. Then, solving a set of m subproblems, each for a machine,

that use the ȳ solution but only involve variables x and constraints (10), (11) and (13).

The subproblems either deliver an optimal P ||
∑
wjCj solution, or some optimality Ben-

ders cuts to be added to the master problem. This process is reiterated until proof of

optimality or some stopping criteria are met.

3.4 Set covering formulation

Set covering (SC) formulations are widely used to model combinatorial optimization prob-

lems as covering problems. Van den Akker et al. (1999) followed this idea and modeled

the P ||
∑
wjCj by using an SC formulation having an exponential number of variables.

Let S be a set containing all feasible schedules for a single machine, let ajs be a binary

coefficient indicating whether job j ∈ J is included or not in schedule s, and let xs be a bi-

nary variable assuming value 1 if schedule s ∈ S is selected, 0 otherwise. The P ||
∑
wjCj

can be modeled as:

(SC) min
∑
s∈S

csxs (15)

s.t.
∑
s∈S

xs = m (16)∑
s∈S

ajsxs = 1 j ∈ J (17)

xs ∈ {0, 1} s ∈ S (18)

Constraints (16) state that exactly m schedules are selected. Constraints (17) ensure

that each job is processed once, and constraints (18) impose variables to be binary. As

model (15)–(18) has an exponential number of variables, the authors solved it with a

branch-and-price algorithm. In particular, they solved each node of an enumeration tree

6



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

by means of a column generation method, which looks for negative cost schedules by

invoking a tailored dynamic programming (DP) algorithm. They performed branching

by considering the minimum completion time of a fractional job. Let x̄ be the current

solution and S̄ ⊆ S the set of schedules associated with positive x̄ values. A fractional

job is defined as a job j for which
∑

s∈S̄ Cj(s)x̄s > min{Cj(s)|x̄s > 0}, where Cj(s) is the

completion time of job j in schedule s. Note that Chen and Powell (1999) also proposed a

branch-and-price algorithm to solve model (15)–(18), but, differently from Van den Akker

et al. (1999), they performed branching directly on the x variables.

4 Arc-flow formulations

We first present a straight formulation, and then enhance it with reduction procedures.

4.1 Straight arc-flow formulation

AF formulations are an established combinatorial optimization technique that models

problems by using flows on a capacitated network (see, e.g., Wolsey 1977). When applied

to machine scheduling problems, the flow obtained by solving an AF formulation can be

easily decomposed into paths (see Ahuja et al. 1993), so that each path corresponds to

a schedule of activities on a machine. AF formulations make use of a pseudo-polynomial

number of variables and constraints, and are thus related to the TI formulations that we

previously described. The research effort behind AF is, however, to try to reduce as much

as possible the required number of variables and constraints, thus keeping the size of the

model as small as possible while preserving optimality. In our work, we follow the recent

literature on AF, that, starting from Valério de Carvalho (1999), used these techniques to

obtain good computational results on cutting and packing problems (see, e.g., Delorme

et al. 2016 for an updated survey), but we take into account issues that are typical of the

scheduling field.

Our AF formulation models the P ||
∑
wjCj as the problem of finding m independent

paths that start from a source node 0, end at a destination node T , and cover all the jobs.

For the sake of clarity, we start by presenting the very basic model, and focus later (in

Algorithm 1) on a first reduction of variables and constraints that is based on the WSPT

sorting. Our very basic AF formulation uses a direct acyclic multigraph G = (N,A).

The set of vertices N ⊆ {0, 1, . . . , T} can be initially considered as the set of normal

patterns (for which we refer to the seminal papers by Herz 1972 and Christofides and

Whitlock 1977, and to the recent discussion in Côté and Iori 2018), i.e., the set of all

the feasible combinations of jobs’ processing times whose resulting value is between 0

and T . Let J+ = J ∪ {0} include the original set of jobs plus a dummy job 0 having

p0 = 0 and w0 = 0. The set of arcs is partitioned as A = ∪j∈J+Aj. Each Aj represents

the set of jobs arcs associated with job j ∈ J , and, for the moment, let us define it as

Aj = {(q, r, j) : r − q = pj and q ∈ N}. In addition, A0 represents the set of loss arcs,

7



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

that are used to model the amount of idle time between the end of activities and T on

a machine, and is defined as A0 = {(q, T, 0) : q ∈ N}. Let us also use δ+(q) ⊆ A,

respectively δ−(q) ⊆ A, to define the subset of arcs that emanate from, respectively enter,

a given node q ∈ N . A feasible P ||
∑
wjCj solution can be represented as a set of m

paths in G, each corresponding to a machine schedule that start in 0 and make use of

jobs arcs and of possibly one last loss arc to reach T .

To formulate the P ||
∑
wjCj as an AF, we associate with each job arc (q, r, j) ∈ A a

variable xqrj that has a twofold meaning: for jobs arcs (q, r, j) ∈ Aj, xqrj takes value 1 if

job j is scheduled at start time q, 0 otherwise; for loss arcs (q, T, 0) ∈ A0, xqT0 gives the

number of paths that end with arc (q, T, 0), i.e., that contain activities that finish at time

q. The P ||
∑
wjCj can then be modeled as:

(AF) min
∑

(q,r,j)∈A

wjqxqrj +
∑
j∈J

wjpj (19)

∑
(q,r,j)∈δ+(q)

xqrj −
∑

(p,q,j)∈δ−(q)

xpqj =


m, if q = 0

−m, if q = T

0, otherwise

q ∈ N (20)

∑
(q,r,j)∈A

xqrj ≥ 1 j ∈ J (21)

xqrj ∈ {0, 1} (q, r, j) ∈ A \ A0 (22)

0 ≤ xqT0 ≤ m (q, T, 0) ∈ A0 (23)

The objective function (19) minimizes the sum of the weighted completion times. Con-

straints (20) impose both flow conservation at each node and the use of exactly m paths.

Constraints (21) impose all jobs to be scheduled, whereas constraints (22) and (23) give

the variables’ domains. Note that variables associated to loss arcs do not need to be

defined as integers.

A first, simple but very important rule can be used to decrease the number of vari-

ables and constraints in the model. As previously discussed, in any optimal solution of

the P ||
∑
wjCj the jobs are sequenced on each machine by following the WSPT rule.

Consequently, only arcs fulfilling this sorting rule can be considered (the first job in the

order can only start in 0, the second job can start in 0 or right after the first job, and so

on). The procedure that we implemented to build the underlying AF multi-graph, given

in Algorithm 1, takes this fact into consideration, producing a first reduction of the size

of sets N and A, and hence of the number of variables and constraints in the formulation.

The procedure initializes the set of nodes and arcs to the empty set. It then considers

one job j at a time, according to the WSPT rule, to create the Aj sets at steps 4–7. The

sets of nodes and of loss arcs are constructed at steps 8–9, and the overall set of arcs at

step 10.

To ease comprehension, we present a simple example with 4 jobs, 2 machines, and

8



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

Algorithm 1 Construction of the AF multi-graph

1: procedure Create Patterns and Arcs(T )
2: initialize P [0 . . . T ]← 0; . P : array of size T + 1

3: initialize N ← ∅;A[0 . . . n]← ∅; . N : set of vertices; A: set of arcs

4: P [0]← 1;
5: for j ∈ J according to the WSPT rule do
6: for t← T − pj down to 0 do
7: if P [t] = 1 then P [t+ pj ]← 1;A[j]← A[j] ∪ {(t, t+ pj , j)}; . A[j]: set of job arcs of j

8: for t← 0 to T do
9: if P [t] = 1 then N ← N ∪ {t}; A[0]← A[0] ∪ {(t, T, 0)} . A[0]: set of loss arcs

10: A← ∪j∈J+A[j]
11: return N,A

T = 8 (details on how to compute a strict value of T are given in Section 4.2 below). The

characteristics of the 4 jobs and their sorting according to the WSPT rule are given in

Figure 1a. The AF multi-graph built by Algorithm 1 is given in Figure 1b, and contains 9

vertices, 11 job arcs, and 7 loss arcs. An optimal solution is provided in Figure 1c, where

we highlight the 2 paths corresponding to the machine schedules.

We now notice a relevant property of the AF formulation.

Proposition 1. The AF formulation (19)–(23) is equivalent to the TI formulation (1)–

(4).

Proof. Our proof uses arguments similar to that adopted in Valério de Carvalho (2002)

for the proof of his Proposition 5.1 (which shows the equivalence of the AF and TI

formulations for the cutting stock problem). To simplify the reasoning, we consider a

basic AF formulation in which the vertices set N contains all nodes from 0 to T (i.e., we

do not apply the reduction due to the normal patterns) and the arc set contains all the

job and loss arcs. Moreover, we substitute the ‘≥’ sign in (21) with the ‘=’ sign, without

loosing optimal solutions because any solution selecting more than one arc for the same

job can be improved by choosing only one of these arcs.

Remind that the three indices of the x variables in AF are introduced to simplify

the writing of the model, but only two indices are necessary. Indeed, job arc (q, r, j) is

introduced only when r = q + pj, and hence xqrj is set to one, in AF, if job j starts at

time q, as xjt is set to one, in TI, when job j starts at time t. Using this observation one

can see that the objective functions (19) and (1) are equivalent.

Both constraints (21) in AF (with the ‘=’ sign) and constraints (2) in TI impose that

a single starting time for each job j is chosen.

We conclude the proof by showing that the remaining constraints in AF and TI are

equivalent, by using an unimodular transformation, similar to the one in Valério de Car-

valho (2002). To better understand this transformation we refer to the example of Figure

1, having two machines, four jobs and an upper bound T = 8 for the completion of all jobs.

In Figure 2a we report the constraint matrix of constraints (3) in TI, while in Figure 2b

we report the constraint matrix of the flow conservation constraints (20) in AF (note that

9



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

j pj wj wj/pj

1 2 4 2.00
2 5 7 1.40
3 1 1 1.00
4 4 3 0.75

(a) Input data (T = 8)

T

0 1 2 3 4 5 6 7 8

job 1
job 2
job 3
job 4

loss arcs

(b) AF formulation

T

0 1 2 3 4 5 6 7 8

job 1
job 2
job 3
job 4

loss arcs

(c) Optimal solution value = 67

Figure 1: Example of AF formulation

in the TI matrix we added an empty row corresponding to t = T , for easier comparison

with the AF matrix). In the TI matrix we have a column for each starting time of each

job. In the AF formulation the first part of the matrix refers to the job arcs, while the

last part report on the loss arcs used to model the empty space in the machines. In the

first part of the two matrices there is a column by column correspondence: variable xqrj

in AF defines a possible starting time of job j at time q, exactly as variable xjq do in TI.

Consider the AF constraint matrix and, for each t = 0, . . . , T , let us substitute the t-th

flow conservation constraint with the sum of the first t+1 constraints (20), thus obtaining

an equivalent constraint matrix. The resulting matrix is depicted in Figure 2c.

One can note that the first part of the new constraint matrix is identical to the first

part of the TI matrix. In the second part we have the same r.h.s. as in TI, but equal

sign instead of ‘≤’ sign. However, each constraint t is completed with the sum of the

first t + 1 loss arcs:
∑t

q=0 xqT0, thus giving at least one slack variable available for each

constraint. It follows that the new matrix is equivalent to the TI matrix, which conclude

the proof.

10



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

t x
1
0

x
2
0

x
3
0

x
4
0

x
1
1

x
2
1

x
3
1

x
4
1

x
1
2

x
2
2

x
3
2

x
4
2

x
1
3

x
2
3

x
3
3

x
4
3

x
1
4

x
2
4

x
3
4

x
4
4

x
1
5

x
2
5

x
3
5

x
4
5

x
1
6

x
2
6

x
3
6

x
4
6

x
1
7

x
2
7

x
3
7

x
4
7

0 1 1 1 1 ≤ 2
1 1 1 1 1 1 1 1 ≤ 2
2 1 1 1 1 1 1 1 1 1 ≤ 2
3 1 1 1 1 1 1 1 1 1 1 1 ≤ 2
4 1 1 1 1 1 1 1 1 1 1 1 ≤ 2
5 1 1 1 1 1 1 1 1 1 ≤ 2
6 1 1 1 1 1 1 1 ≤ 2
7 1 1 1 1 ≤ 2
8 ≤ 0

(a) Time-indexed formulation

q x
0
2
1

x
0
5
2

x
0
1
3

x
0
4
4

x
1
3
1

x
1
6
2

x
1
2
3

x
1
5
4

x
2
4
1

x
2
7
2

x
2
3
3

x
2
6
4

x
3
5
1

x
3
8
2

x
3
4
3

x
3
7
4

x
4
6
1

x
4
9
2

x
4
5
3

x
4
8
4

x
5
7
1

x
5
1
0
2

x
5
6
3

x
5
9
4

x
6
8
1

x
6
1
1
2

x
6
7
3

x
6
1
0
4

x
7
9
1

x
7
1
2
2

x
7
8
3

x
7
1
1
4

x
0
8
0

x
1
8
0

x
2
8
0

x
3
8
0

x
4
8
0

x
5
8
0

x
6
8
0

x
7
8
0

0 1 1 1 1 1 = 2
1 -1 1 1 1 1 1 = 0
2 -1 -1 1 1 1 1 1 = 0
3 -1 -1 1 1 1 1 1 = 0
4 -1 -1 -1 1 1 1 1 = 0
5 -1 -1 -1 -1 1 1 1 = 0
6 -1 -1 -1 -1 1 1 1 = 0
7 -1 -1 -1 -1 1 1 = 0
8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 = -2

(b) Arc-flow formulation

q x
0
2
1

x
0
5
2

x
0
1
3

x
0
4
4

x
1
3
1

x
1
6
2

x
1
2
3

x
1
5
4

x
2
4
1

x
2
7
2

x
2
3
3

x
2
6
4

x
3
5
1

x
3
8
2

x
3
4
3

x
3
7
4

x
4
6
1

x
4
9
2

x
4
5
3

x
4
8
4

x
5
7
1

x
5
1
0
2

x
5
6
3

x
5
9
4

x
6
8
1

x
6
1
1
2

x
6
7
3

x
6
1
0
4

x
7
9
1

x
7
1
2
2

x
7
8
3

x
7
1
1
4

x
0
8
0

x
1
8
0

x
2
8
0

x
3
8
0

x
4
8
0

x
5
8
0

x
6
8
0

x
7
8
0

0 1 1 1 1 1 = 2
1 1 1 1 1 1 1 1 1 1 = 2
2 1 1 1 1 1 1 1 1 1 1 1 1 = 2
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 = 2
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 = 2
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 = 2
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 = 2
7 1 1 1 1 1 1 1 1 1 1 1 1 = 2
8 = 0

(c) Arc-flow formulation after unimodular transformation

Figure 2: Illustration of the equivalence between TI and AF on the example of Figure 1

11



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

4.2 Enhanced arc-flow formulation

In this section, we show how to further reduce the number of variables and constraints

required by the AF formulation (19)–(23), improving its computational behavior while

preserving optimality.

The size of the AF formulation linearly depends from the horizon T , thus, a proper time

horizon estimation is necessary. To this aim, we notice that Van den Akker et al. (1999)

considered the properties of an optimal schedule, originally developed by Elmaghraby and

Park (1974), and remarked that there exists at least an optimal solution for which “the

last job on any machine is completed between time Hmin = 1
m

∑
j∈J pj −

(m−1)
m

pmax and

Hmax = 1
m

∑
j∈J pj + (m−1)

m
pmax”, where pmax = maxj∈J pj. On the basis of this statement,

we can use Hmax to set T as

T =

⌊
1

m

∑
j∈J

pj +
(m− 1)

m
pmax

⌋
(24)

We can then use the value of Hmin to limit the number of loss arcs. As the last job on any

machine is completed at or after Hmin, we can create only loss arcs starting from vertices

q ∈ N with q ≥ dHmine. We further increase this bound by considering Property 1 in

Azizoglu and Kirca (1999), thus obtaining

T ′ =

⌈
1

m

∑
j∈J

pj −
∑m−1

k=1 p̄k
m

⌉
(25)

where p̄ is an array containing the processing times of all jobs j ∈ J in non-increasing

order. Since
∑m−1

k=1 p̄k ≤ (m− 1)pmax holds, the value in (25) is not less than Hmin.

Our next enhancement relies on the creation of a so-called time window [aj, bj] for each

job j ∈ J . By using once more the properties of an optimal schedule in Van den Akker

et al. (1999), we derive an earliest possible start time aj and a latest possible start time

bj that guarantee the existence of an optimal solution. The values of aj and bj are based

on the property that, if wj ≥ wk and pj ≤ pk for a certain pair of jobs j and k, then

there exists an optimal solution in which j starts not later than k. The time windows

are computed as follows. For each j ∈ J , we first define Pj = {k ∈ J : k < j, wk ≥
wj, pk ≤ pj} and Lj = {k ∈ J : k > j, wk ≤ wj, pk ≥ pj}. Following the aforementioned

property, there exists an optimal schedule in which all jobs in Pj start no later than j,

so, if Pj contains at least m elements, one may conclude that at least |Pj| −m+ 1 jobs in

Pj are finished before j starts being processed. Consequently, if |Pj| < m we set aj = 0,

otherwise we set aj = dρj/me, where ρj is the sum of the |Pj|−m+ 1 smallest processing

times. In an analogous mode, one can note that there is an optimal solution in which j

starts no later than the jobs in Lj. Consequently, for each job j ∈ J a maximum starting

time can be set as bj = T −
⌈(∑

k∈Lj pk + pj

)
/m
⌉
. In addition, if Lj = ∅ then, as stated

in Belouadah and Potts (1994), one can set bj = d
(∑

k∈J pk − pj
)
/me.

The next procedure that we propose attempts to reduce the number of arcs by grouping

12



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

together identical jobs. To this aim, we merge together all jobs j ∈ J having identical

pj and wj values into job types. Let J ′ = {1, 2, . . . , n′} be the resulting set of job types,

and dj be the number of jobs contained in each job type. With respect to the original

AF formulation, this change involve creating a different set of arcs A′ and replacing the

original binary variables with integer variables, as shown next. This allows to reduce

consistently the number of symmetries in the model. The time windows for each job

type j ∈ J ′ are simply obtained by setting aj = min{ak : k ∈ J, pk = pj, wk = wj} and

bj = max{bk : k ∈ J, pk = pj, wk = wj}. We then create only arcs that start in a time

q ∈ [aj, bj], for each job type j ∈ J ′.
Our enhanced arc flow formulation (EAF) is then:

(EAF) min
∑

(q,r,j)∈A′
wjqxqrj +

∑
j∈J ′

wjpj (26)

∑
(q,r,j)∈δ′+(q)

xqrj −
∑

(p,q,j)∈δ′−(q)

xpqj =


m, if q = 0

−m, if q = T

0, otherwise

q ∈ N ′ (27)

∑
(q,r,j)∈A′

xqrj ≥ dj j ∈ J ′ (28)

xqrj ∈ {0, . . . , dj} (q, r, j) ∈ A′ \ A′0 (29)

0 ≤ xqT0 ≤ m (q, T, 0) ∈ A′0 (30)

The EAF model (26)–(30) is based on a reduced multigraph G′ = (N ′, A′), in which

both sets of nodes and arcs are obtained by applying the above reductions criteria from the

original graph G used for AF. The EAF model considers the set of job types J ′ instead of

that of jobs J in AF, and consequently adopts an integer variable xqrj giving the number

of jobs of type j that are scheduled from q to r = q + pj. Each variable of this type

might take a value at most dj, as stated in constraints (29). Constraints (27) impose flow

conservation on the m paths, and constraints (28) impose demand to be satisfied.

The way in which the EAF multi-graph G′ is built is shown in Algorithm 2, which

updates the previous Algorithm 1 used for AF. The procedure initializes the sets N ′ and

A′ of nodes and arcs, respectively, to the empty set. It then considers at steps 4–9 one

job type j at a time, according to the WSPT rule, and creates the A′j sets keeping into

account that each job type j contains dj identical jobs and should start at a q ∈ [aj, bj].

5 Computational experiments

The discussed models have been coded in C++ and solved using Gurobi Optimizer 7.0.

The experiments were performed by using a single thread on a PC equipped with an Intel

Xeon E5530 2.40 GHz quad-core processor and 20GB of RAM, running under Ubuntu

14.04.5 LTS. We first discuss the benchmark instances used for the experiments, then

13



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

Algorithm 2 Construction of the EAF multi-graph

1: procedure CreatePatterns and Arcs(T )
2: initialize P [0 . . . T ]← 0; . P : array of size T + 1

3: initialize N ′ ← ∅;A′[0 . . . n]← ∅; . N ′: set of vertices; A′: set of arcs

4: P [0]← 1;
5: for j ∈ J ′ according to the WSPT rule do
6: for t← bj down to aj do
7: if P [t] = 1 then
8: for q ← 1 to dj do
9: if t+ qpj ≤ bj then P [t+ qpj ]← 1;A′[j]← A′[j] ∪ {(t, t+ qpj , j)};

10: for t← 0 to T do
11: if P [t] = 1 then
12: N ′ ← N ′ ∪ {t};
13: if T ′ ≤ t< T then A′[0]← A′[0] ∪ {(t, T, 0)}; . A′[0]: set of loss arcs

14: A′ ← ∪j∈J+A′[j]
15: return N ′, A′

present an upper bounding procedure devised to speed up the convergence of the models,

and finally we present an extensive computational evaluation.

5.1 Benchmark instances

In our experiments, we considered two benchmark sets of instances.

The first set is derived from the one proposed by Bülbül and Şen (2017) for the

R||
∑
wjCj. Their set is made by instances with n ∈ {30, 100, 400, 1000} and m ∈

{2, 4, 6, 8, 16, 30}. Processing times pkj (i.e., processing time of job j in machine k) were

drawn according to a uniform distribution U [1, pmax], where pmax ∈ {20, 100}, and penalty

weights wj were created using a uniform distribution U [1, 20]. For each combination of

(n,m, pmax), except when n = 30 and m ∈ {16, 30}, 10 instances were created, result-

ing in a set of 440 instances which is now available at http://people.sabanciuniv.

edu/bulbul/papers/Bulbul_Sen_Rm_TWCT_data-results_JoS_2016.rar. We adapted

these instances to the P ||
∑
wjCj by imposing the processing time of each job j to be

equal to its processing time on the first unrelated machine in the R||
∑
wjCj (i.e., pj = p1

j

∀j). To better evaluate the performance of the models on large instances, we used the

procedure adopted by Bülbül and Şen (2017) to create a new additional set with n = 700,

obtaining in this way a total of 560 instances.

The second set has been proposed by Kowalczyk and Leus (2018) and consists of 2400

instances with n ∈ {20, 50, 100, 150} and m ∈ {3, 5, 8, 10, 12}. The instances are divided

into six different classes according to the distribution of processing times and weights.

For each class and each combination of (n,m), 20 instances were created.

5.2 Upper bound by iterated local search

To start the model with a valid upper bound, we developed a modified version of the

iterated local search (ILS) based metaheuristic of Kramer and Subramanian (2017). The

original method consists of a multi-start ILS for general earliness-tardiness scheduling

14



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

problems on unrelated machines, and incorporates special structures to reduce the com-

plexity for exploring the neighborhoods.

In general words, the ILS by Kramer and Subramanian (2017) is composed by con-

structive, local search and perturbation phases. We modified the construction and local

search phases to take into account that in the P ||
∑
wjCj all machine schedules follow

the WSPT rule. That resulted in a speed up of the algorithm. The initial solutions,

which are obtained either randomly or by a greedy randomized adaptive search proce-

dure (GRASP), are now sorted according to the WSPT rule on each machine. The two

main differences with respect to Kramer and Subramanian (2017) regard the GRASP

construction procedure and the local search phase. For the GRASP, we initially sort jobs

according to the WSPT rule instead of performing a random sorting. In addition, at the

end of the procedure we consider each machine in turn and sort the jobs that have been

assigned to it by using once more the WSPT rule.

Regarding the local search, Kramer and Subramanian (2017) employed a randomized

variable neighborhood descent (RVND) procedure (see Mladenović and Hansen 1997). In

our modified version, the intra-machine neighborhood structures have been replaced by

a simple WSPT sorting procedure, which is invoked at the end of each inter-machine

neighborhood search, as depicted in Algorithm 3.

The ILS was adopted to provide an initial feasible solution for all our methods below as

follows. It was not executed for small-size instances having n ≤ 100 jobs. It was instead

executed for 100 seconds for medium-size instances with 100 < n < 400 jobs, and for 300

seconds for large-size instances with n ≥ 400 jobs.

Algorithm 3 RVND

1: procedure RVND(π) . π is the input solution

2: initialize L = L0; . L0: list containing all inter-machines neighborhood structures

3: while L 6= ∅ do
4: select a neighborhood N ∈ L at random;
5: find π′ ∈ N , the best neighbor solution of π;
6: for k ← 1 to m do sort jobs in π′[k] according to WSPT;

7: if f(π′) < f(π) then . f(π) represents the cost of solution π

8: π′ ← π′;
9: reinitialize L;

10: else
11: L← L \ {N}; . remove N from L

12: return π

5.3 Computational results on benchmark set 1

In Tables 1 and 2 we compare the performance of formulations CIQP (model (5)–(8)),

PTI (model (9)–(14)), TI (model (1)–(4)), SC (model (15)–(18)), AF (model (19)–(23))

and EAF (model (26)–(30)). To solve SC, we reimplemented the B&P by Van den Akker

et al. (1999). For instances with more than 100 jobs, each method received as initial cutoff

the upper bound produced by the ILS algorithm that we developed using the time limit

15



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

detailed at the end of Section 5.2.

Table 1 summarizes the results that we obtained for the instances with pmax = 20,

whereas Table 2 focuses on the case where pmax = 100. For each group of 10 instances

defined by the couple (n,m) and for each attempted method, we report the number of

instances for which at least the root node of the model was solved, #root (not reported

for CIPQ and PTI) and the number of optimal solutions found, #opt. In columns t(s)

we report the average execution time in seconds for the 10 instances in the line. If for

some of these instances either time or memory limit has been reached, then we consider

the entire time limit in the computation of the average t(s) value. Note that we directly

write t.lim, respectively m.lim, when the time limit, respectively memory limit, has been

reached on all the 10 instances in the line. Note also that, to facilitate direct comparison

among the methods, t(s) does not contain the time required for running the ILS.

A “-” indicates that the value in the entry is not available because the model was not

run on that group of instances. For AF and EAF we also report the average gap per

million, computed as gappm=106(U − L)/U , with U and L being, respectively, the best

upper and lower bound value obtained in the run (a “-” is reported when no valid L is

obtained, i.e., when even the LP relaxation of the model was not solved due to time or

memory limits).

Table 1: Results for set 1 instances with pmax = 20 (time limit = 300 seconds, ILS time not included)

n m

Existing formulations New formulations

CIQP PTI SC TI AF EAF

#opt t(s) #opt t(s) #root #opt t(s) #root #opt t(s) #root #opt t(s) gappm #root #opt t(s) gappm

30

2 10 1.1 10 11.1 10 10 0.2 10 10 1.2 10 10 0.1 0.0 10 10 0.0 0.0
4 1 278.1 8 165.9 10 10 0.1 10 10 0.5 10 10 0.1 0.0 10 10 0.0 0.0
6 0 t.lim 3 240.1 10 10 0.0 10 10 0.2 10 10 0.0 0.0 10 10 0.0 0.0
8 0 t.lim 3 243.9 10 10 0.0 10 10 0.2 10 10 0.0 0.0 10 10 0.0 0.0

100

2 0 t.lim 0 t.lim 9 0 t.lim 10 10 199.8 10 10 1.6 0.0 10 10 0.9 0.0
4 0 t.lim 0 t.lim 10 3 276.5 10 10 65.3 10 10 2.1 0.0 10 10 0.4 0.0
6 0 t.lim 0 t.lim 10 10 101.3 10 10 29.5 10 10 0.5 0.0 10 10 0.4 0.0
8 0 t.lim 0 t.lim 10 10 15.9 10 10 19.3 10 10 0.4 0.0 10 10 0.3 0.0

16 0 t.lim 0 t.lim 10 10 2.2 10 10 3.9 10 10 0.1 0.0 10 10 0.1 0.0
30 0 t.lim 0 t.lim 10 10 0.4 10 10 1.2 10 10 0.1 0.0 10 10 0.1 0.0

400

2 0 t.lim 0 t.lim 0 0 t.lim 0 0 m.lim 10 10 15.0 0.0 10 10 4.8 0.0
4 0 t.lim 0 t.lim 0 0 t.lim 0 0 m.lim 10 10 29.3 0.0 10 10 17.0 0.0
6 0 t.lim 0 t.lim 0 0 t.lim 0 0 m.lim 10 10 32.3 0.0 10 10 13.2 0.0
8 0 t.lim 0 t.lim 0 0 t.lim 0 0 m.lim 10 10 33.7 0.0 10 10 10.6 0.0

16 0 t.lim 0 t.lim 0 0 t.lim 0 0 m.lim 10 10 16.2 0.0 10 10 3.5 0.0
30 0 t.lim 0 t.lim 10 0 t.lim 10 3 272.9 10 10 3.9 0.0 10 10 0.9 0.0

700

2 - - - - - - - - - - 10 6 191.3 0.1 10 10 66.8 0.0
4 - - - - - - - - - - 10 7 220.2 0.4 10 10 56.9 0.0
6 - - - - - - - - - - 10 4 240.6 1.7 10 10 55.4 0.0
8 - - - - - - - - - - 10 6 185.0 1.9 10 10 86.4 0.0

16 - - - - - - - - - - 10 9 202.3 0.2 10 10 20.3 0.0
30 - - - - - - - - - - 10 10 39.9 0.0 10 10 3.1 0.0

1000

2 - - - - - - - - - - 10 0 t.lim 0.3 10 10 105.9 0.0
4 - - - - - - - - - - 10 0 t.lim 1.5 10 10 89.6 0.0
6 - - - - - - - - - - 10 3 287.2 2.1 10 10 139.6 0.0
8 - - - - - - - - - - 10 3 278.7 1.8 10 10 91.6 0.0

16 - - - - - - - - - - 10 0 300.0 8.6 10 10 64.2 0.0
30 - - - - - - - - - - 10 4 264.3 8.2 10 10 24.0 0.0

total/avg 11 288.5 24 266.3 109 83 156.0 110 103 54.0 280 212 105.2 1.0 280 280 30.6 0.0

The results show that EAF clearly outperforms all other methods on the attempted

instances. It solves to proven optimality all instances with pmax = 20 and all instances

16



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

Table 2: Results for set 1 instances with pmax = 100 (time limit = 300 seconds, ILS time not included)

n m

Existing formulations New formulations

CIQP PTI SC TI AF EAF

#opt t(s) #opt t(s) #root #opt t(s) #root #opt t(s) #root #opt t(s) gappm #root #opt t(s) gappm

30

2 10 0.8 10 115.0 10 10 0.2 10 10 73.3 10 10 0.5 0.0 10 10 0.3 0.0
4 0 t.lim 0 t.lim 10 10 0.1 10 10 18.6 10 10 0.3 0.0 10 10 0.2 0.0
6 0 t.lim 0 t.lim 10 10 0.0 10 10 6.9 10 10 0.2 0.0 10 10 0.2 0.0
8 0 t.lim 0 t.lim 10 10 0.0 10 10 4.4 10 10 0.2 0.0 10 10 0.1 0.0

100

2 0 t.lim 0 t.lim 0 0 t.lim 0 0 m.lim 10 10 10.7 0.0 10 10 7.6 0.0
4 0 t.lim 0 t.lim 10 3 257.2 0 0 m.lim 10 10 36.5 0.2 10 10 25.9 0.2
6 0 t.lim 0 t.lim 10 4 224.5 0 0 m.lim 10 10 14.5 0.0 10 10 8.3 0.0
8 0 t.lim 0 t.lim 10 3 239.7 0 0 t.lim 10 10 8.1 0.0 10 10 10.3 0.0

16 0 t.lim 0 t.lim 10 8 86.9 9 6 264.0 10 10 2.5 0.0 10 10 1.5 0.0
30 0 t.lim 0 t.lim 10 10 1.7 10 10 49.3 10 10 0.6 0.0 10 10 0.5 0.0

400

2 0 t.lim 0 t.lim 0 0 t.lim 0 0 m.lim 10 0 t.lim 0.6 10 10 264.6 0.0
4 0 t.lim 0 t.lim 0 0 t.lim 0 0 m.lim 10 2 292.5 2.6 10 10 180.7 0.0
6 0 t.lim 0 t.lim 0 0 t.lim 0 0 m.lim 10 7 272.2 2.6 10 10 176.6 0.0
8 0 t.lim 0 t.lim 0 0 t.lim 0 0 m.lim 10 9 233.3 1.0 10 10 177.5 0.0

16 0 t.lim 0 t.lim 0 0 t.lim 0 0 m.lim 10 8 181.4 4.6 10 10 111.8 0.0
30 0 t.lim 0 t.lim 0 0 t.lim 0 0 m.lim 10 10 94.6 0.0 10 10 64.1 0.0

700

2 - - - - - - - - - - 0 0 t.lim - 9 0 t.lim 0.8
4 - - - - - - - - - - 6 0 t.lim 3.2 9 0 t.lim 3.3
6 - - - - - - - - - - 6 0 t.lim 5.5 10 0 t.lim 5.5
8 - - - - - - - - - - 10 0 t.lim 8.4 10 0 t.lim 8.4

16 - - - - - - - - - - 10 0 t.lim 16.0 10 0 t.lim 16.0
30 - - - - - - - - - - 10 0 t.lim 28.5 10 0 t.lim 28.4

1000

2 - - - - - - - - - - 0 0 m.lim - 0 0 m.lim -
4 - - - - - - - - - - 0 0 m.lim - 0 0 m.lim -
6 - - - - - - - - - - 0 0 m.lim - 0 0 m.lim -
8 - - - - - - - - - - 7 0 t.lim 6.4 9 0 t.lim 6.4

16 - - - - - - - - - - 10 0 t.lim 13.5 10 0 t.lim 13.5
30 - - - - - - - - - - 10 0 t.lim 23.0 10 0 t.lim 23.0

total/avg 10 289.3 10 288.4 90 68 181.9 53 53 102.4 229 136 165.9 4.8 247 160 149.2 4.2

with pmax = 100 and n ≤ 400, so 440 out of the 560 tested instances. The version without

enhancements, AF, solves all the instances with up to 400 jobs for pmax = 20 and up to

100 jobs for pmax = 100, for a total of 348 out of 560 instances. This proves that the

enhancements presented in Section 4.2 are very effective. For the unsolved instances, the

gaps are extremely small, amounting to just a few units per million on average.

The B&P implemented to solve SC fails in solving some instances with just 100 jobs,

which is coherent with the results in Van den Akker et al. (1999). The same happens

for TI, which fails in solving instances with 100 jobs when pmax = 100 and m is small.

The performance of both CIPQ and PTI is very poor, but that could be explained by

the fact that the two models were originally developed for the R||
∑
wjCj, and hence do

not exploit the symmetries induced by the identical machines. The main advantage of

CIPQ is related to its polynomial size, but it optimally solves only few instances with just

30 jobs. For what concerns PTI, it is worth mentioning that it was solved by means of

a Benders decomposition method in Bülbül and Şen (2017), as discussed in Section 3.3.

The authors provided us with the results obtained by their method on our P ||
∑
wjCj

instances. Unfortunately, these were worse on average that those obtained by the direct

solution of the PTI model by means of the Gurobi solver. This, once more, can be imputed

to the fact that their method was developed for the case of unrelated machines.

We conducted further experiments by running the models under larger time limits up

to one hour. The summary of the results that we obtained is presented in Table 3, which

17



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

Table 3: Number of optimal solutions found under different time limits

(a) pmax = 20 (280 instances)

time
limit

Formulation

CQIP PTI SC TI AF EAF

300 11 24 83 103 212 280
600 12 28 86 110 247 280
900 12 31 89 110 254 280

1200 12 32 90 110 260 280
1500 13 32 90 110 265 280
1800 14 32 90 110 268 280
2100 14 32 90 110 272 280
2400 15 32 92 110 275 280
2700 15 32 95 110 276 280
3000 15 32 98 110 276 280
3300 15 32 98 110 277 280
3600 15 32 99 110 278 280

(b) pmax = 100 (280 instances)

time
limit

Formulation

CQIP PTI SC TI AF EAF

300 10 10 68 53 136 160
600 11 10 70 60 150 169
900 12 10 73 61 168 178

1200 13 10 73 61 173 180
1500 13 10 74 62 179 192
1800 14 10 76 64 180 200
2100 15 10 77 65 183 206
2400 15 10 77 66 184 210
2700 15 10 78 68 188 213
3000 15 10 78 68 192 216
3300 15 10 79 68 194 219
3600 15 10 80 69 197 222

shows, for each model and for each time limit, the number of optimal solutions found

under the different time limits. Once more, it can be observed that AF and EAF clearly

outperform the other methods. It can also be seen that the enhancements discussed in

Section 4.2 are indeed effective, because EAF solved to proven optimality all instances

with pmax = 20 in less than 300 seconds, whereas AF did not solve two of them within 1

hour. Concerning the instances with pmax = 100, by increasing the time limit from 300 to

3600 seconds, AF was able to solve 61 instances more, including all the unsolved instances

with n = 400, whereas EAF solved 62 more, including 48 out of 60 instances with n = 700

that where not solved within 300 seconds. In total, EAF was able to optimally solve 502

out of 560 instances.

Time indexed formulations, such as PTI, TI, AF and EAF, have a pseudo-polynomial

size, and hence may require large amounts of memory when the time horizon grows. It

can be noticed indeed that all of them do not solve some instances due to memory limit.

In this sense, TI starts to run out of memory for instances with only 100 jobs, PTI is able

to deal with instances with up to 400 jobs (although cannot optimally solve them due to

time limit), whereas AF and EAF deal with instances with up to 1000 jobs.

This better behavior can be justified by the difference in the number of variables

required by models. This fact is graphically highlighted in Figure 3, which presents the

average number of variables in thousands, per group of instances having the same n.

The reduction of AF and even more EAF with respect to the plain TI model is evident.

This effect can be observed more in details in Table 4, which reports, for each group of

instances having same n and m, the number of variables in thousands, var(thousands),

and the percentage reduction of variables from one model to the next, red(%). From

Table 4, it is possible to notice that for the instances with pmax = 20 reductions of about

30% are obtained by AF over TI, and of even 80% by EAF over AF. This allows to move

from an average of about 7× 105 TI variables to just 1× 105 EAF variables. Concerning

the instances with pmax = 100, EAF formulates the problem using, on average, 50%

less variables than AF, which in turns uses 30% less variables than TI. The results also

indicates that, as the instance grows, the reductions become larger.

18



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

30 100 400 700 1000
0

400

800

1200

1600

2000

TI
AF
EAF

number of jobs

va
r(

th
ou

sa
nd

s)

(a) pmax = 20

30 100 400 700 1000
0

2000

4000

6000

8000

10000

TI
AF
EAF

number of jobs

va
r(

th
ou

sa
nd

s)

(b) pmax = 100

Figure 3: Impact of the proposed enhancements on the number of variables

Table 4: Variables (in thousands) required by the main pseudo-polynomial formulations

n m

pmax = 20 pmax = 100

var(thousands) red(%) var(thousands) red(%)

TI AF EAF AF vs TI EAF vs AF TI AF EAF AF vs TI EAF vs AF

30

2 4.8 3.0 1.8 37.5 41.0 20.8 11.8 7.6 43.2 35.5
4 2.6 1.8 1.3 29.2 29.4 11.9 7.8 5.7 34.4 27.4
6 1.8 1.3 1.0 24.8 28.6 8.4 5.8 4.5 31.3 21.2
8 1.4 1.1 0.8 22.2 24.8 6.7 4.6 3.7 32.4 19.6

100

2 51.9 31.4 17.0 39.5 46.0 253.9 150.7 89.7 40.7 40.5
4 27.6 20.1 10.8 27.0 46.5 128.0 90.5 58.3 29.2 35.6
6 17.7 13.6 7.6 23.5 44.2 90.1 69.8 44.2 22.5 36.6
8 13.7 11.1 6.7 19.3 39.9 66.4 51.9 33.7 21.9 35.0

16 7.5 6.4 4.1 13.9 36.3 36.1 29.7 21.8 17.8 26.5
30 4.4 3.8 2.7 12.1 30.4 21.7 18.7 14.1 13.8 24.4

400

2 843.2 509.4 185.7 39.6 63.5 4088.9 2409.8 1291.0 41.1 46.4
4 424.3 309.1 108.0 27.2 65.1 2017.3 1418.7 726.3 29.7 48.8
6 282.6 220.6 75.8 21.9 65.7 1360.9 1034.0 530.2 24.0 48.7
8 213.2 172.6 60.8 19.0 64.8 1040.4 827.6 429.4 20.5 48.1

16 106.9 92.6 34.4 13.4 62.9 533.0 456.4 247.8 14.4 45.7
30 60.2 54.6 22.4 9.4 59.0 290.0 256.2 151.4 11.7 40.9

700

2 2539.6 1520.0 418.7 40.1 72.5 12613.7 7437.6 3720.1 41.0 50.0
4 1282.9 930.0 240.6 27.5 74.1 6114.2 4336.5 2073.8 29.1 52.2
6 874.3 680.5 170.7 22.2 74.9 4161.0 3191.1 1464.8 23.3 54.1
8 654.0 528.4 132.2 19.2 75.0 3148.3 2514.4 1140.7 20.1 54.6

16 326.9 284.2 75.2 13.1 73.5 1582.9 1355.0 639.9 14.4 52.8
30 177.4 160.9 45.7 9.3 71.6 859.6 766.9 386.1 10.8 49.6

1000

2 5216.2 3129.4 671.1 40.0 78.6 25320.3 14942.6 7020.6 41.0 53.0
4 2626.0 1902.1 378.1 27.6 80.1 12725.0 9083.5 3980.6 28.6 56.2
6 1757.3 1369.4 267.0 22.1 80.5 8445.0 6673.8 2853.3 21.0 57.2
8 1314.7 1063.1 207.7 19.1 80.5 6327.7 5051.4 2090.2 20.2 58.6

16 664.4 579.4 115.4 12.8 80.1 3212.8 2742.8 1154.8 14.6 57.9
30 359.4 326.5 69.6 9.2 78.7 1711.3 1531.0 688.2 10.5 55.1

total/avg 709.2 497.4 119.0 29.9 76.1 3435.6 2365.3 1098.6 31.2 53.6

5.4 Computational results on benchmark set 2

Very recently, Kowalczyk and Leus (2018) improved the branch-and-price method of Van

den Akker et al. (1999) by introducing the use of stabilization techniques, generic branch-

ing, and a zero-suppressed binary decision diagram (ZDDs) for solving the pricing sub-

problem. By combining these techniques, they devised three main methods: the first,

named VHV-DP, uses the branching scheme and the DP in Van den Akker et al. (1999),

but includes stabilization; the second, VHV-ZDD, also uses the branching scheme of Van

den Akker et al. (1999) and stabilization, but solves the pricing subproblem with the the

ZDDs technique; the third, RF-ZDD, differs from the second by the fact that the branch-

ing decisions follow the generic scheme of Ryan and Foster (1981). The three methods

were computationally tested on the benchmark set 2 described in Section 5.1.

19



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

We performed experiments by running for 600 seconds our best mathematical formula-

tion, namely, EAF, on the same instances and compared our results with those obtained

by Kowalczyk and Leus (2018). As in the previous section, for instances involving more

than 100 jobs EAF used the ILS of Section 5.2 to obtain an initial solution. According

to the single thread results in https://www.cpubenchmark.net/, the processor used by

Kowalczyk and Leus (2018), an Intel Core i7-3770 3.40 GHz, is about 1.9 times faster

than our Intel Xeon E5530 2.40 GHz processor.

The results that we obtained are presented in Tables 5, 6 and 7. Columns #opt and

t(s) represent, for each method, class and group of 20 instances, the number of instances

solved to proven optimality and the average computational time, respectively. Concerning

RF-ZDD, VHV-ZDD and VHV-DP, the t(s) values report the average times in Kowalczyk

and Leus (2018) (i.e., not multiplied by 1.9), but now include in the computation of the

average the entire time limit value (3600 seconds) for those instances that were not solved

to proven optimality. The three methods by Kowalczyk and Leus (2018) obtained good

results but could not solve all instances to proven optimality. In general, VHV-DP was

able to solve more instances than RF-ZDD and VHV-ZDD, whereas RF-ZDD proved to

be less time consuming on average. We can observe from the tables that our ILS+EAF

algorithm generally outperformed the other methods. Indeed, it could solve all 2400

instances within the time limit and usually very quickly (only 10 instances required more

than 300 seconds, and the slowest case required 395 seconds). Instances with up to 100

jobs were solved in a matter of seconds. Instances with 150 jobs required longer times,

also due to the 100 seconds allowed for the ILS execution. The instances from class VI

represent the most challenging testbed for ILS+EAF, nevertheless they were all solved in

about 50 seconds on average.

Table 5: Results on set 2 instances – Classes I and II

n m

Class I Class II

RF-ZDD VHV-ZDD VHV-DP ILS+EAF RF-ZDD VHV-ZDD VHV-DP ILS+EAF

#opt t(s) #opt t(s) #opt t(s) #opt t(s) #opt t(s) #opt t(s) #opt t(s) #opt t(s)

20

3 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.1
5 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.1
8 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0

10 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0
12 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0

50

3 20 1.9 20 1.2 20 1.1 20 0.0 20 0.7 20 0.6 20 0.7 20 0.9
5 20 0.9 20 0.5 20 0.6 20 0.0 20 0.6 19 180.6 20 0.6 20 0.7
8 20 0.4 20 0.2 20 0.2 20 0.0 20 0.4 19 180.3 19 180.3 20 0.6

10 20 0.3 20 0.1 20 0.1 20 0.0 20 0.3 20 0.2 20 0.2 20 0.5
12 20 0.1 20 0.1 20 0.1 20 0.0 20 0.1 20 0.1 20 0.1 20 0.3

100

3 20 62.7 20 59.8 20 64.5 20 0.2 20 23.0 20 37.6 20 34.0 20 9.4
5 19 210.3 20 31.5 20 32.5 20 0.2 20 56.0 19 286.4 18 415.1 20 8.4
8 19 194.4 20 7.0 20 7.1 20 0.1 20 53.2 20 133.6 20 101.0 20 5.0

10 19 189.3 20 3.7 20 3.8 20 0.1 20 41.4 20 18.1 20 17.9 20 4.6
12 20 7.3 20 2.2 20 2.1 20 0.1 20 50.8 20 74.8 20 75.0 20 2.9

150

3 18 873.8 20 1162.0 20 1123.4 20 100.4 20 362.3 15 1590.9 17 1147.7 20 127.0
5 20 323.8 20 813.9 20 813.6 20 100.2 16 1438.2 16 1485.2 15 1656.8 20 137.7
8 18 475.6 20 275.9 20 261.5 20 100.2 17 1035.5 16 1641.0 16 1624.3 20 126.0

10 20 85.5 20 117.4 20 132.1 20 100.1 16 1273.3 16 1183.7 17 1168.7 20 110.0
12 20 52.8 20 53.0 20 54.8 20 100.1 18 599.4 20 348.9 20 356.4 20 105.8

total/avg 393 124.0 400 126.4 400 124.9 400 25.1 387 246.8 380 358.1 382 338.9 400 32.0

20



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

Table 6: Results on set 2 instances – Classes III and IV

n m

Class III Class IV

RF-ZDD VHV-ZDD VHV-DP ILS+EAF RF-ZDD VHV-ZDD VHV-DP ILS+EAF

#opt t(s) #opt t(s) #opt t(s) #opt t(s) #opt t(s) #opt t(s) #opt t(s) #opt t(s)

20

3 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0
5 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0
8 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0

10 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0
12 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0

50

3 20 2.1 20 4.0 20 4.2 20 0.1 20 0.7 20 0.7 20 1.0 20 0.5
5 20 1.1 20 1.9 20 2.0 20 0.1 20 1.2 20 2.1 20 2.6 20 0.2
8 20 0.6 20 0.6 20 0.6 20 0.1 20 0.4 20 0.5 20 0.6 20 0.1

10 20 0.4 20 0.4 20 0.5 20 0.1 20 0.4 20 0.5 20 0.6 20 0.1
12 20 0.2 20 0.2 20 0.2 20 0.1 20 0.1 20 0.1 20 0.2 20 0.1

100

3 20 41.5 20 158.8 20 162.3 20 1.0 20 69.7 20 186.7 20 169.1 20 17.5
5 20 22.4 20 109.5 20 103.7 20 0.8 20 33.3 20 147.8 20 159.3 20 11.6
8 20 10.7 20 40.8 20 39.3 20 0.4 20 14.8 20 44.3 20 47.1 20 1.2

10 20 7.1 20 20.5 20 20.0 20 0.3 20 9.7 20 31.5 20 34.8 20 1.0
12 20 6.1 20 12.2 20 12.4 20 0.2 19 186.9 20 18.4 20 20.4 20 0.4

150

3 20 430.2 20 1508.3 20 1517.5 20 100.6 20 973.5 16 2529.2 20 2108.4 20 108.7
5 20 166.6 20 965.5 20 1063.9 20 100.5 20 383.7 20 1281.3 20 1239.4 20 104.0
8 20 71.9 20 504.8 20 517.1 20 100.3 20 164.3 20 612.9 20 648.8 20 101.9

10 20 51.1 20 360.9 20 361.6 20 100.4 20 93.3 20 358.6 20 429.6 20 101.8
12 20 36.8 20 224.4 20 245.2 20 100.2 20 69.0 19 458.2 20 287.1 20 101.0

total/avg 400 42.4 400 195.6 400 202.5 400 25.3 399 100.1 395 283.6 400 257.4 400 27.5

Table 7: Results on set 2 instances – Classes V and VI

n m

Class V Class VI

RF-ZDD VHV-ZDD VHV-DP ILS+EAF RF-ZDD VHV-ZDD VHV-DP ILS+EAF

#opt t(s) #opt t(s) #opt t(s) #opt t(s) #opt t(s) #opt t(s) #opt t(s) #opt t(s)

20

3 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0
5 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0
8 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0

10 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0
12 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0

50

3 20 1.5 20 1.8 20 1.9 20 1.2 20 2.3 20 3.4 20 2.7 20 2.3
5 20 1.5 20 2.3 20 3.0 20 0.7 20 1.4 20 1.8 20 1.8 20 1.2
8 20 0.3 20 0.6 20 0.7 20 0.2 20 1.0 20 0.7 20 0.9 20 0.8

10 20 0.4 20 0.4 20 0.6 20 0.1 20 1.1 20 0.7 20 0.7 20 0.4
12 20 0.2 20 0.2 20 0.2 20 0.1 20 1.1 20 1.0 20 0.8 20 0.4

100

3 19 314.0 20 359.5 20 290.4 20 46.8 20 78.7 20 242.5 20 200.1 20 73.0
5 20 55.0 20 180.4 20 200.7 20 17.2 20 37.8 20 126.7 20 112.8 20 22.8
8 19 197.8 18 497.5 18 408.9 20 2.3 20 25.2 20 58.0 20 44.6 20 24.9

10 20 12.9 20 35.2 20 39.5 20 3.6 20 22.7 20 32.7 20 32.2 20 8.1
12 18 368.1 18 379.3 19 209.4 20 1.0 20 19.0 20 20.8 20 18.8 20 17.8

150

3 20 1538.0 14 3086.7 20 2508.5 20 120.9 20 800.0 18 3028.9 20 2662.2 20 233.1
5 20 584.1 20 1488.4 19 1467.4 20 107.2 20 398.4 20 1751.4 20 1434.7 20 178.5
8 19 498.7 18 1053.2 18 1022.9 20 106.4 20 257.7 20 691.6 20 633.1 20 145.3

10 20 164.4 20 422.1 20 541.1 20 103.1 20 210.4 20 439.3 20 406.3 20 151.8
12 19 272.2 20 291.8 20 402.0 20 101.7 20 192.7 20 303.6 20 265.7 20 135.1

total/avg 394 200.5 388 390.0 394 354.9 400 30.6 400 102.5 398 335.2 400 290.9 400 49.8

21



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

6 Conclusions

In this work, we have proposed pseudo-polynomial arc-flow (AF) formulations to solve

the problem of scheduling a set of jobs on a set of identical parallel machines by mini-

mizing the total weighted completion time. A first straight AF model already benefits

from the fact that schedules follow a weighted shortest processing time (WSPT) rule on

each machine. A second enhanced AF model (EAF) improves AF by embedding further

reduction techniques. EAF needs on average less than 50% of the variables required by

AF, and, in some cases, this number drops to less than 20%. Computational experiments

showed that EAF is very effective and solves instances with up to 1000 jobs and 30 ma-

chines, performing much better than direct time-indexed formulations and even advanced

branch-and-price methods. Still, troubles might arise when the processing times of the

jobs assume large values, and more research is envisaged to solve large instances of this

type, possibly involving heuristics and column generation methods.

An interesting future research direction also involves the application of the discussed

techniques to problems with release dates and/or setup times. In such cases, optimal

solutions might nor respect the WSPT sorting, and thus these problems might be very

challenging for AF models. In general, in the scheduling area much work has been done

on time-indexed formulations, but the application of AF models is new and could lead to

large computational benefits in the solution of many problems.

Acknowledgments

This research was funded by the CNPq - Conselho Nacional de Desenvolvimento Cient́ıfico

e Tecnológico, Brazil, grant No. 234814/2014-4, and by Università degli Studi di Modena

e Reggio Emilia, project FAR 2015 - Applicazioni della Teoria dei Grafi nelle Scienze,

nell’Industria e nella Società. We thank Kerem Bülbül and Halil Şen for kindly providing

us with additional computation results, and Daniel Kowalczyk and Roel Leus for shar-

ing the instances of benchmark set 2. We also thank three anonymous referees whose

comments greatly improved the quality of the paper.

References

Ahuja, R. K., Magnanti, T. L. and Orlin, J. B. Network flows: theory, algorithms, and

applications. Prentice-Hall, Upper Saddle River, 1993.

Azizoglu, M. and Kirca, O. (1999), On the minimization of total weighted flow time with

identical and uniform parallel machines. European Journal of Operational Research, v.

113, n. 1, p. 91–100.

Belouadah, H. and Potts, C. (1994), Scheduling identical parallel machines to minimize

total weighted completion time. Discrete Applied Mathematics, v. 48, n. 3, p. 201–218.

22



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

Bowman, E. H. (1959), The schedule-sequencing problem. Operations Research, v. 7, n.

5, p. 621–624.

Bruno, J., Coffman, Jr., E. G. and Sethi, R. (1974), Scheduling independent tasks to

reduce mean finishing time. Communications of the ACM, v. 17, n. 7, p. 382–387.

Bülbül, K. and Şen, H. (2017), An exact extended formulation for the unrelated parallel

machine total weighted completion time problem. Journal of Scheduling, v. 20, n. 4, p.

373–389.

Chen, Z.-L. and Powell, W. B. (1999), Solving parallel machine scheduling problems by

column generation. INFORMS Journal on Computing, v. 11, n. 1, p. 78–94.

Christofides, N. and Whitlock, C. (1977), An algorithm for two-dimensional cutting prob-

lems. Operations Research, v. 25, p. 30–44.

Côté, J.-F. and Iori, M. (2018), The meet-in-the-middle principle for cutting and packing

problems. INFORMS Journal on Computing, p. Forthcoming.

Delorme, M., Iori, M. and Martello, S. (2016), Bin packing and cutting stock problems:

Mathematical models and exact algorithms. European Journal of Operational Research,

v. 255, n. 1, p. 1–20.

Eastman, W. L., Even, S. and Isaacs, I. M. (1964), Bounds for the optimal scheduling of

n jobs on m processors. Management Science, v. 11, n. 2, p. 268–279.

Elmaghraby, S. E. and Park, S. H. (1974), Scheduling jobs on a number of identical

machines. AIIE Transactions, v. 6, n. 1, p. 1–13.

Graham, R., Lawler, E., Lenstra, J. and Kan, A. (1979), Optimization and approximation

in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics,

v. 5, p. 287–326.

Herz, J. (1972), Recursive computational procedure for two-dimensional stock cutting.

IBM Journal of Research and Development, v. 16, p. 462–469.

Kawaguchi, T. and Kyan, S. (1986), Worst case bound of an LRF schedule for the mean

weighted flow-time problem. SIAM Journal on Computing, v. 15, n. 4, p. 1119–1129.

Kowalczyk, D. and Leus, R. (2018), A branch-and-price algorithm for parallel machine

scheduling using ZDDs and generic branching. INFORMS Journal on Computing, p.

Forthcoming.

Kramer, A. and Subramanian, A. (2017), A unified heuristic and an annotated bibliogra-

phy for a large class of earliness-tardiness scheduling problems. Journal of Scheduling,

p. Forthcoming.

23



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

Li, K. and Yang, S. (2009), Non-identical parallel-machine scheduling research with min-

imizing total weighted completion times: Models, relaxations and algorithms. Applied

Mathematical Modelling, v. 33, n. 4, p. 2145–2158.

Minato, S.-i. Zero-suppressed BDDs for set manipulation in combinatorial problems.

Proceedings of the 30th International Design Automation Conference, DAC ’93, p. 272–

277, New York, NY, USA. ACM. ISBN 0-89791-577-1. doi: 10.1145/157485.164890,

1993.

Mladenović, N. and Hansen, P. (1997), Variable neighborhood search. Computers &

Operations Research, v. 24, n. 11, p. 1097 – 1100.

Mrad, M. and Souayah, N. (2018), An arc-flow model for the makespan minimization

problem on identical parallel machines. IEEE Access, v. 6, p. 5300–5307.

Plateau, M.-C. and Rios-Solis, Y. (2010), Optimal solutions for unrelated parallel ma-

chines scheduling problems using convex quadratic reformulations. European Journal

of Operational Research, v. 201, n. 3, p. 729–736.

Pritsker, A. A. B., Waiters, L. J. and Wolfe, P. M. (1969), Multiproject scheduling with

limited resources: A zero-one programming approach. Management Science, v. 16, n.

1, p. 93–108.

Rodriguez, F. J., Blum, C., Garćıa-Mart́ınez, C. and Lozano, M. (2012), GRASP with

path-relinking for the non-identical parallel machine scheduling problem with minimis-

ing total weighted completion times. Annals of Operations Research, v. 201, n. 1, p.

383–401.

Rodriguez, F. J., Lozano, M., Blum, C. and Garćıa-Mart́ınez, C. (2013), An iterated

greedy algorithm for the large-scale unrelated parallel machines scheduling problem.

Computers & Operations Research, v. 40, n. 7, p. 1829–1841.

Ryan, D. and Foster, B. An integer programming approach to scheduling. Wren, A. (Ed.),

Computer scheduling of public transport: urban passenger vehicle and crew scheduling,

p. 269–280. North-Holland, 1981.

Sarin, S. C., Ahn, S. and Bishop, A. B. (1988), An improved branching scheme for the

branch and bound procedure of scheduling n jobs on m parallel machines to minimize

total weighted flowtime. International Journal of Production Research, v. 26, n. 7, p.

1183–1191.

Shioura, A., Shakhlevich, N. and Strusevich, V. (2018), Preemptive models of scheduling

with controllable processing times and of scheduling with imprecise computation: A

review of solution approaches. European Journal of Operational Research, v. 266, n. 3,

p. 795 – 818.

24



Kramer, Dell’Amico and Iori Techinical report, DISMI, UNIMORE

Skutella, M. (2001), Convex quadratic and semidefinite programming relaxations in

scheduling. Journal of the ACM, v. 48, n. 2, p. 206–242.

Smith, W. E. (1956), Various optimizers for single-stage production. Naval Research

Logistics Quarterly, v. 3, n. 1-2, p. 59–66.

Sousa, J. P. and Wolsey, L. A. (1992), A time indexed formulation of non-preemptive single

machine scheduling problems. Mathematical Programming, v. 54, n. 1, p. 353–367.

Unlu, Y. and Mason, S. J. (2010), Evaluation of mixed integer programming formulations

for non-preemptive parallel machine scheduling problems. Computers & Industrial En-

gineering, v. 58, n. 4, p. 785–800.

Valério de Carvalho, J. (1999), Exact solution of bin-packing problems using column

generation and branch-and-bound. Annals of Operations Research, v. 86, n. 0, p.

629–659.

Valério de Carvalho, J. (2002), LP models for bin packing and cutting stock problems.

European Journal of Operational Research, v. 141, n. 2, p. 253–273.

Van den Akker, J. M., Hoogeveen, J. A. and Van de Velde, S. L. (1999), Parallel machine

scheduling by column generation. Operations Research, v. 47, n. 6, p. 862–872.

Webster, S. (1995), Weighted flow time bounds for scheduling identical processors. Euro-

pean Journal of Operational Research, v. 80, n. 1, p. 103–111.

Wolsey, L. (1977), Valid inequalities, covering problems and discrete dynamic programs.

Annals of Discrete Mathematics, v. 1, p. 527–538.

25


