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Abstract—The current trend in designing Advanced Driving
Assistance System (ADAS) is to enhance their computing power
by using modern multi/many core accelerators. For many critical
applications such as pedestrian detection, line following, and
path planning the Graphic Processing Unit (GPU) is the most
popular choice for obtaining orders of magnitude increases in
performance at modest power consumption. This is made possible
by exploiting the general purpose nature of today’s GPUs, as such
devices are known to express unprecedented performance per
watt on generic embarrassingly parallel workloads (as opposed
of just graphical rendering, as GPUs where only designed to
sustain in previous generations). In this work, we explore novel
challenges that system engineers have to face in terms of real-
time constraints and functional safety when the GPU is the
chosen accelerator. More specifically, we investigate how much
of the adopted safety standards currently applied for traditional
platforms can be translated to a GPU accelerated platform used
in critical scenarios.

I. INTRODUCTION

The recent trend in the automotive industry is the radical
shift in how new vehicles are designed. New passenger ve-
hicles require a technological transition to satisfy the compu-
tational demand of new-generation automotive software; this
leads to novel research opportunities. All the big players in
the automotive domain are spending a considerable amount of
resources in ADAS (Advance Driver-Assistance System) de-
velopment. Major OEMs (Original Equipment Manufacturer)
like BMW, Volvo, Tesla, or General Motors and Tier-1s such
as Bosch or Continental, are already building the necessary
know-how and technological background to design the next
generation of autonomous vehicles. This technological trend
leads towards the integration of multiple applications with
different criticality levels onto the same computing platform,
thus considerably reducing production costs and power con-
sumption requirements. This is accomplished by exploiting
modern multi/many-core accelerators for the integration of
applications featuring mixed-criticality real-time constraints.
The intrinsic complexity of such architectures and the in-
creasing complexity of the computing algorithms they have
to sustain, poses significant and unprecedented challenges
for both the real-time community and for functional safety
engineers. As far as safety is concerned, standards have been
published to guide the system engineers to overcome such
challenges. In the automotive domain the development of new
generation hardware and software components is growing very

fast, however, it is unclear whether OEMs and Tier-1 players
are creating prototypes meeting the constraints required by the
standards, potentially creating unsafe products. Probably the
best-known case so far is the Toyota unintended acceleration
problem 1. Traditionally, many of the mechanisms and safety
measures used to mitigate potential risks have been developed
and certified for single-core processors. Consequently, the de-
signer of critical applications for multi/many-core systems has
to be aware of unprecedented issues such as shared resource
management and fault propagation. Moreover, while the real-
time literature on single processing core is abundant, important
issues such as response time analysis and achieving pre-
dictability when using modern compute accelerators represents
a novel field of research that is getting more and more attention
from system engineers and integrators. In this context, we
decided to focus on the GPU, as it represents a very popular
choice for achieving a high performance per watt ratio for
complex embarrassingly parallel workloads that are typical of
ADAS applications. The novelty of this presented paper is
twofold: we first provide an exhaustive literature review on
the current pitfalls for predictability and threats to real-time
guarantees of GPU accelerated platforms. Then we discuss
how the currently adopted traditional approaches to functional
safety might be transposed in GPU accelerated safety critical
platforms. These are issues that are impossible to ignore, as
traditional safety-critical platforms cannot sustain the required
compute power needed for safely function as expected, hence
the need of accelerators that are most commonly not designed
with real-time and safety issues as primary design goals. This
paper is organized as follows:
In section II we provide a brief description on both hardware
and software perspective on how modern GPUs are imple-
mented. Section III summarizes the current efforts on issues
related to both real-time and functional safety and in the
subsequent Section IV, we provide insights on current and
plausible future efforts to be done in order to implement such
effort on GPU accelerated platforms. Section V concludes the
paper with final remarks.

1NHTSA Report on Toyota Unintended Acceleration Investigation available
at https://one.nhtsa.gov/About-NHTSA/Press-Releases/ci.NHTSA%E2%80%
93NASA-Study-of-Unintended-Acceleration-in-Toyota-Vehicles.print%7D%
7D

https://one.nhtsa.gov/About-NHTSA/Press-Releases/ci.NHTSA%E2%80%93NASA-Study-of-Unintended-Acceleration-in-Toyota-Vehicles.print%7D%7D
https://one.nhtsa.gov/About-NHTSA/Press-Releases/ci.NHTSA%E2%80%93NASA-Study-of-Unintended-Acceleration-in-Toyota-Vehicles.print%7D%7D
https://one.nhtsa.gov/About-NHTSA/Press-Releases/ci.NHTSA%E2%80%93NASA-Study-of-Unintended-Acceleration-in-Toyota-Vehicles.print%7D%7D


II. THE GRAPHIC PROCESSING UNIT

In this section, we describe the most common architectural
followed for GPUs software and hardware design. This allows
us to identify the areas in which real-time and functional safety
aspects are involved.

A. Hardware Perspective

From the point of view of the hardware, a GPU is a hybrid
between a SIMT (Single Instruction Multiple Threads) and
SIMD (Single Instruction Multiple Data) heterogeneous chip
multi-processor. Even if at the time of writing multiple GPU
vendors are present, a high-level abstraction on the most
fundamental function blocks of a GPU can be summarized
as seen in Figure 1.

Work distributor / Grid manager

Processing Core

Global Memory Interface

LOCAL MEM

Rest of the system

Processing Core

LOCAL MEM

Figure 1. A high level block diagram for a generic GPU hardware architecture

In Figure 1 a GPU is shown as a collection of processing
cores. Work offloaded to the GPU is therefore distributed
among processing cores in order to exploit parallelism and, at
the same time, to leverage efficient work balancing strategies.
Within each processing core, lower level schedulers dispatch
groups of threads in a single instruction multiple data fashion.
Threads belonging to the same core can rely on local, low-
latencies caches (for both instruction and data) as well as
registers and scratchpads. These latter ones are often used
for communication and synchronization procedures involving
threads operating within the same processing core. Processing
cores are able to communicate with each other via a global
memory interface, which is also the interconnection fabric
that connects the GPU to the rest of the system. Trivially,
different vendors provide different implementations of all
the blocks in Figure 1: more specifically, cache hierarchy,
implementation details of the HW scheduling mechanisms,
instruction decoding, branch prediction and ALU (Arithmetic
Logic Units) pipelines might present significant differences.
With respect to terminology, the processing cores in NVIDIA
architectures are named Streaming Multiprocessors (SMs)2,

2NVIDIA GV100 White Paper http://images.nvidia.com/content/
volta-architecture/pdf/volta-architecture-whitepaper.pdf

whereas for recent ARM3 designed integrated GPUs, as well as
Intel integrated graphics devices, the term Execution Unit (EU)
is used[1]; AMD uses the term (Next-Generation) Compute
Unit (CU/NCU)4. Depending on how a GPU is connected to
the rest of the system, a GPU can be implemented as an
integrated device with respect to the CPU (iGPU) or as a
discrete peripheral (dGPU). iGPUs are commonly found in
embedded SoCs (System on Chips) and in these solutions,
global memory is typically shared with the CPU complex.
Conversely, dGPUs are separate devices, connected through
PCI-ex links; dGPUs, therefore, feature their own memory
banks (VRAM) physically separated from the system RAM.
The standard type of VRAM for discrete devices are usually
GDDR RAM or HBM, as opposed to LPDDR for iGPUs.

B. Software Perspective

On a Software perspective, managing a GPU application
forces the programmer to deal with a heterogeneous system,
in which data is usually generated CPU-side and offloaded
alongside a so called description of work to the GPU for its
execution. As an aid to the programmer, APIs (Application
Programming Interfaces) have been proposed by both device
vendors and consortia (e.g. The Khronos Group): well known
APIs for GPU programming are OpenGL, mostly for graphical
rendering workloads, and CUDA or OpenCL for compute
workloads. For the latter, the description of work to be
executed on the GPU is called kernel, and data buffers visible
within the GPU space are called device buffers. A GPU appli-
cation, therefore, is usually composed by a buffer allocation
management phase, data movements from the CPU-side to
the GPU-side (and vice-versa) and kernels’ invocations. The
programmer influences how the GPU HW Work distributor
acts by specifying kernel launch configurations: APIs like
CUDA and OpenCL allow the user to define a compute grid
in which parallel threads are logically grouped into blocks.
Therefore, given a specific time instant, a single block of
threads is in execution on one processing core.

III. REAL-TIME ISSUES FOR GPU ACCELERATORS

Designing a Real-Time system means designing a pre-
dictable platform. In other words, the combination of both
software and hardware components must be designed so to
have critical applications running with known and bounded
timing requirements. These aspects are evaluated using timing
analysis, i.e. each critical task is modeled as a periodic
workload, characterized by a Worst Case Execution Time
(WCET), a deadline and a period. Generally, the specification
of the timing requirements at the software level is derived
using exact schedulability analysis. Studying the Real-Time
behavior of a modern GPU, therefore, implies understanding
what are the possible threats for estimating WCETs and how
to control GPU application scheduling.

3ARM MALI G72https://developer.arm.com/products/
graphics-and-multimedia/mali-gpus/mali-g72-gpu

4AMD VEGA White paper https://radeon.com/ downloads/
vega-whitepaper-11.6.17.pdf
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A. WCET Estimation

Threats to WCET estimation on GPU-accelerated platforms
are represented by three factors: (1) estimation of time to
completion for the execution paths and branches in GPU
kernels, (2) CPU interactions with the driver stack and (3)
memory contention.

As far as (1) is concerned, estimating the WCET out
of a program to be executed on a traditional uniprocessor
system is a well-understood problem [2]. However, traditional
techniques for static and dynamic code analyses do not have
a straightforward application to the GPU due to the SIMD-
lockstep scheduling mechanisms within GPU threads. More
specifically, the minimal schedulable entity within a GPU
processing core is a plurality of threads (usually a multiple of
16), grouped in a warp or wavefront in CUDA and OpenCL
nomenclature respectively. Instructions are therefore fed to a
warp/wavefront and execution within parallel threads happens
in lockstep. In this scenario, branch divergence inside a
warp/wavefront has a significant performance hit and there
is no direct correspondence of this in a multicore CPU. In
literature such issues have been addressed with novel method-
ologies such as hybrid analysis [3] and extreme value theory
characterization [4]. Compute kernels are meant to solve
problems that are intrinsically embarrassingly parallel, hence
significant branch divergence or multiple nested conditions are
difficult to find in a program to be executed on a GPU. Due to
the dramatic impact on performance [5], the system engineer
that faces the implementation of highly irregular kernels would
likely opt for an alternative CPU execution.

CPU interactions (2) with the GPU subsystem play a signifi-
cant role in predictability. Most common APIs such as CUDA
and OpenCL rely on a constant interaction between a CPU
process and the GPU. CPU applications communicate with the
device driver in order to translate API function calls into GPU
commands. These commands are then streamed to the GPU
processing cores. GPU commands are usually classified into
synchronous and asynchronous with respect to the CPU host.
Synchronous commands imply having a CPU thread waiting
until the completion of such commands before operating
other tasks. This wait can be an active spinning on a shared
synchronization construct or managed via interrupt requests
(IRQs). Active polling on a shared resource is considered
wasteful for both CPU utilization and power consumption,
although it minimizes latencies, whereas IRQs management
allows the CPU core to perform other work but this approach
introduces further scheduling issues. For instance, Elliot et al.
in [6] realized that standard Linux interrupt handling involves
heuristics that can potentially lead to long latencies and even
priority inversion phenomena. In order to mitigate this, Elliot
et al. presented a flexible real-time interrupt handling tech-
niques for multiprocessor platforms that are applicable to any
JLSP-scheduler (Job-Level Static-Priority), hence allowing for
implementing scheduling mechanisms for IRQ routines able
to support both fixed-priority and deadline based approaches.
The dramatic variability in WCETs introduced by CPU driver

interactions was also noticed in other research work, most
notably in [7] and [8].

Memory interference (3) represents the most concerning
aspect in achieving predictability in GPU-accelerated SoCs.
Memory contention affects the most common embedded de-
signs in which the GPU and the multicore host shares system
RAM (and sometimes even Last Level Caches). When both
these clients access memory, contention at the level of the
memory controller and within DRAM banks can cause a sig-
nificant performance degradation to the observed applications,
as concurrent access to memory devices is most commonly
arbitrated with no real-time compliant mechanisms. In [9]
a complete evaluation of the extent of memory contention
is presented: Cavicchioli et al. show that a GPU applica-
tion can experience performance degradation up to 100% in
case of intensive memory use from a CPU application and,
specularly, performance degradation of a CPU application
with an interfering GPU memory bounded activity can cause
latencies increase of almost 6x. Tests were conducted in
multiple commercial SoCs that features an integrated GPU,
such as NVIDIA development boards (TX1 and TK1) and
an Intel i7 processor. Several approaches have been proposed
to deal with memory interference in heterogeneous platforms.
These solutions are most often designed for providing means
for memory centric scheduling, i.e. tasks are assumed to be
compliant with a predictable execution model (PREM) [10]
that separates memory phases from computation phases. In
such an execution model, the memory phase involve accessing
shared memory for loading/unloading data into caches and/or
scratch pad memories that are local and for exclusive use of
a CPU core. Compute phases, are then allowed to compute
on those previously fetched data. By keeping a separation be-
tween memory and compute phase of a task, ad-hoc scheduling
algorithms for shared memory concurrency can be applied to
different memory phases of different applications. SiΓ [11] is
an example of a server based arbitration mechanism between
CPU and GPU able to intercept CUDA function calls and
CPU requests for memory phases and privileges CPU memory
bounded applications. More recently, Ali and Yun in [12]
presented a complementary mechanism that is able to protect
GPU applications in case of CPU memory bounded inter-
fering processes. In this latter contribution, CUDA function
calls are intercepted and a CPU memory access throttling
mechanism based on MEMGUARD [13] is applied. While
it is trivial to understand how a CPU application can be
coded in a PREM-compliant fashion, challenges arise when
coding PREM compliant GPU kernels. Forsberg et al. in [8]
address this problem with CUDA warp specialization: the
traditional way to write a CUDA kernel is to have both
memory and compute instructions mixed within the same
warp, whereas in the warp specialization approach, we define
memory and compute warps. A memory warp fetches memory
from the shared DRAM and stores it into the local scratch
pad memory within each SM; trivially, a memory warp can
also flush data stored in the local scratch pads to central
memory. Compute warps are mostly allowed to compute on



data previously fetched when memory warps were scheduled.
At the boundary of each memory warp, a scheduling entity
(usually implemented at hypervisor or operating system level)
is contacted and thus software throttling mechanisms (for both
the CPU and GPU) are applied. In all the cited proposed
solutions, software mechanisms are put in place in order to
apply the desired level of memory access throttling. In contrast
and in order to solve the same problem of arbitrating memory
accesses triggered by both CPU and GPU, Houdek et al. [14]
exploit hardware throttling for memory clients that acts at the
level of memory controller.

B. Real Time GPU Scheduling

At the time of writing, the problem with GPU scheduling is
that GPU hardware vendors tend to favor closed source driver
implementations and avoid providing details on how a system
designer can interact on scheduling aspects. To face this
problem alternative open source GPU driver implementation
have been exploited to provide a predictable scheduling policy
on GPUs. Kato et al., for instance, presented TimeGraph [15],
a non-preemptive fixed-priority scheduler for graphic GPU
tasks. Schnitzer et al. [16] proposed a Reservation-based
scheduling mechanism able to schedule graphics tasks of an
automotive application to meet frame-rate constraints, such
as the law mandatory speedometer rendering when only a
virtual cockpit is available in a vehicle. As far as compute
workloads are concerned, a fruitful line of research in GPU
scheduling is represented by Persistent Threads programming
paradigm [17], [18], [19], [20]. This model allows the im-
plement the scheduling policy of choice by batching many
kernel calls into a single invocation to then apply arbitrary
scheduling decisions to blocks of GPU threads within one
or more persistently executing GPU threads. Synchronization
among scheduled blocks of threads is made possible with
the implementation of fast barriers [21]. No matter which
scheduling approach we elect to use, the biggest obstacle in
implementing efficient scheduling algorithms is given by the
assumption of absent or limited preemption capabilities for
the GPU engines. Recently, starting from the NVIDIA Pascal
GPU architecture5, instruction level preemption granularity
is possible and this will most likely lead to more efficient
and predictable scheduling algorithms for the GPU. As of
now, in all the previously cited contributions with respect
to GPU scheduling, preemptive scheduling is applied with a
preemption granularity that corresponds to a block of threads,
i.e. CTA level preemption (Cooperative Thread Array, in
CUDA) and workgroups (in OpenCL terminology).

IV. FUNCTIONAL SAFETY FOR GPUS

While for discussing real-time issues we can only rely on
published research experience, functional safety is a topic
that is regulated and described by well known and accepted
regulation standards. According to IEC61508 [22], functional
safety is defined as follows: “Freedom from unacceptable risk

5NVIDIA GP100 White Paper: https://images.nvidia.com/content/pdf/tesla/
whitepaper/pascal-architecture-whitepaper.pdf

of physical injury or of damage to the health of people, either
directly, or indirectly as a result of damage to property or
to the environment”. Many software standards in automotive
define guidelines to evaluate and support systems executing
applications with different criticality levels. Although these
standards describe how to develop applications complying
with software safety assessments, some of the safety recom-
mendations in terms of software implementation are left to the
interpretation of the system engineer. A clear example of this
is the requirement to achieve complete spatial and temporal
isolation of resources within partitions of a mixed-criticality
system: standards demand to achieve this, without specifying
the implementation details of such effort.

ISO-26262 is the main functional safety standard for the
development of electronic systems in passenger vehicles.
The standard works as a guidance to avoid risks due to
hazards caused by malfunctioning behavior of the vehicle.
This standard defines the entire life-cycle of a functional
safety automotive component, spanning from management and
development to production, decommissioning and relation with
suppliers. Given the space constraint of our contribution, in
this section we will not cover the entire production cycle
and design methodologies; instead, we will focus on runtime
mechanisms put in place in order to guarantee safety on a
GPU accelerated platform. More specifically, among all the
requirements recommended by ISO-26262, we will put our
attention on GPU-side hardware and software approaches to
achieve redundancy and Freedom from Interference (FFI).

A. FFI on GPUs

The integration of multiple applications in the same plat-
form calls for the need to implement safety-related and non-
safety-related applications in the same multicore System on
Chip (MPSoC). If the analyzed platform features a GPU as
compute accelerator, the problem of managing applications
belonging to different criticality level calls for further discus-
sion.

In order to comply with technical safety requirements,
Freedom from Interference (FFI) plays a key role. According
to the annex D of ISO-26262, “FFI is the absence of cascading
failures between two or more elements that could lead to the
violation of a safety requirement”. In this context, software
components cannot be physically separated, as all the applica-
tions execute in the same MPSoC, therefore FFI represents a
design criticality. Generally, achieving FFI between partitions
allows deploying software components with different ASIL
(Automotive Safety Integrity Level) grades. In this way, lowest
ASIL components involved in the certification process do not
inherit the safety level of highest ASIL software components
(ASIL lift-up), reducing design and production costs. At
implementation level, software components might belong to
different criticality domains and if they are allowed to share
resources (such as CPU, GPU time, but also memory devices)
with no ad-hoc safety mechanisms in place, interference can
threaten performance, predictability (as already pointed out
in the previous section) and security. We will focus on the
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requirements of spatial and temporal isolation as they are
defined in the standard.

It is important to notice that virtualization technologies (e.g:
type 1 hypervisors), are a perfect candidate for meeting the
isolation requirements recommended by the ISO-26262: “Vir-
tualization technologies can support the argument to guarantee
freedom from interference between software elements running
on a multi-core platform.”

Temporal isolation mandates the necessity to ensure that one
application does not interfere with another application in terms
of execution time: for instance, consuming its CPU cycles
or blocking a shared resource used by another application
as this might lead to deadlocks or livelocks. According to
the standard, the strategies that can be considered to avoid
temporal interference are: cyclic execution scheduling, fixed
priority based scheduling, time triggered scheduling, monitor-
ing of processor execution time, program sequence monitoring
and arrival rate monitoring. Analyzing a single core of a
CPU, applications within the same Virtual Machine (VM)
are arbitrated by means of an operating system scheduler,
whereas among different VMs temporal isolation is achieved
by pinning VMs to virtual CPUs binded to a single physical
core. Virtual CPUs within a physical core are commonly arbi-
trated with scheduling algorithms dictated by the hypervisor.
Hence, hierarchical scheduling is applied. Trivially, if VMs
are pinned to different CPU cores, temporal isolation from
different CPUs is granted, however interference arise in case
of shared memory subsystem (i.e. shared caches and shared
system RAM). Inter-core interference in CPU shared caches is
a well known problem and it has been abundantly addressed
before in literature. For instance in [23], [24], authors of
such contributions proposed memory page coloring and cache
lockdown mechanisms to enforce a deterministic cache hit rate
on the most frequently accessed memory pages.

Temporal isolation for the GPU is strictly related to GPU
scheduling and this topic has been treated in Section III-B. The
issue to discuss is how virtualization solutions are applied to
a GPU [25]. On this purpose, a fairly complete and recent
survey on GPU virtualization can be found in [26]. According
to [26], there are three different methodologies for enabling
GPU virtualization: if the virtualization engineer has no access
to the GPU driver stack, GPU API calls might be intercepted
and rerouted to a virtualized privileged domain (or even a
remote host), which in turn, can arbitrate GPU access requests
coming from different VMs (API remoting). Para and Full-
virtualization imply modifying the GPU driver installed in
the VMs so to allow them to be able to access the GPU
HW only for non-critical operations, whereas for allocations
and scheduling commands a virtualized privileged domain
act as an arbiter. Finally, specific HW extension might be
implemented within the SoC/GPU so to provide hardware
assisted virtualization. For small-footprint hypervisors, that are
typical of the embedded world, para-virtualization is the most
promising solution, whereas the other two approaches are now
widely adopted in the High Performance Computing (HPC)
world. A fairly known example of GPU para-virtualization

is represented by XenGT [27]. Spatial isolation within a GPU
becomes a topic to discuss as we realize the massively parallel
nature of such an accelerator. As we highlighted in section II,
a GPU is internally subdivided into different processing cores
and a user might want to allocate or reserve a subset of
those processing cores to different applications belonging to
different criticality levels. This approach is convenient only for
the HPC-oriented devices, as the number of their processing
cores can scale to a very large number (e.g. an NVIDIA Tesla
P100 features 60 SMs). For embedded platforms, however,
as a completely different power consumption and die size
is needed for automotive scenarios, the GPU is sufficiently
small to be considered as a single computing resource, in
which we consider one GPU task at a time, hence taking
advantage of thread-level parallelism within the application,
but not among different tasks. The performance benefits of
allowing multiple applications to run in parallel in multiple
GPU processing cores would be threatened by the isolation
problems caused by GPU self-interference [28].However, the
future possibility of having SoC featuring sufficiently large
iGPUs to allow partitioning of GPU processing core calls for
preliminary safety-related studies: in this case, GPU schedul-
ing for providing temporal isolation will have to take inspi-
ration from Multi-Processor scheduling and at the same time,
interference on GPU shared caches will become a problem.
Preliminary investigations (based on simulators) on applying
cache reservation mechanisms on the GPU have been recently
proposed in [29]. In this latter contribution, authors argue that
GPU L2 cache locking improves predictability at a negligible
performance hit. In the embedded automotive context, these
findings represent a promising direction for implementing
established methodologies for GPU resource partitioning that
are now common in HPC-oriented scenarios. A documented
example of this is the NVIDIA CUDA MultiProcess Service
(MPS)6, that allows for simultaneous execution of multiple
CUDA contexts within the same GPU. In Figure 2 (a), we
can see how GPU time might be contended between different
applications in a scenario in which we allow the execution
of one context at a time. In this case, there is a context
switch between two applications, hence the last level-cache
(LLC) is not sensible to inter-application interference. Time
predictability, however, is sensible to the length of this context
switch. In Figure 2 (b) shows the opposite situation: the
GPU is divided into two partitions based on the number N
of processing cores. In this scenario, parallel execution of
contexts residing in different domains will compete for access
in GPU LLC, threatening both performance and predictability
when no cache locking or coloring mechanism is in place.

Critical memory regions are protected from unauthorized
accesses with standard methodologies for memory protection
(e.g. Memory Management Units) as they are implemented at
SoC level and at GPU level [30], [31].

6CUDA MPS Documentation https://docs.nvidia.com/deploy/pdf/CUDA
Multi Process Service Overview.pdf
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Figure 2. Timeline of temporal (a) and spatial (b) interference within a GPU. K1 and K2 are compute kernels invoked by applications App0 and App1
respectively.

B. Redundancy on GPUs

The need of redundancy on automotive grade platforms is
how the ISO-26262 diversity requirement is most commonly
interpreted. More specifically, ISO-26262 defines diversity as
the system capability to provide “different solutions satisfying
the same requirement with the aim of independence”. In other
words, computing devices should be able to sustain both
random and systematic failures by using multiple solutions for
the same problem. If we interpret the solution as the work of a
computing device and the problem as a specific functionality
(such as algorithms or even single instructions), it is then
trivial to understand that substantial HW design efforts for
computing devices must be put in place. According to [32],
there are a number of possible design blueprints for safety-
tolerant modern microprocessors. The easiest and cheapest
solution is to obtain redundancy via software mechanisms:
the same software artifact is compiled in different ways or
different implementations of the same algorithms run in the
same CPU core, then intermediate results might be compared
with a Multiple Input Shift Register (MISR). If a higher ASIL
level is desired, a plausible solution is represented by two
identical CPUs in parallel lockstep, in which a master-slave
configuration allows for instruction consistency checks. Other
solutions imply having a co-processor to be sided with the
master CPU that is not necessarily a replica of the master
core, but instead acts a highly optimized supervisor. All these
different solutions are aimed to obtain different degrees of
safety guarantees (often measured in terms of ASIL grade)
at a variable cost of production, implementation and overall
performance degradation. For transposing these approaches
to a GPU, previous research efforts were mostly aimed at
providing redundancy within a GPU in order to improve
reliability in HPC-oriented applications. From a software
perspective, Dimitrov et al. in [33], exploit existing GPU
APIs for providing application-level mechanisms for safety.
Example of such approaches are duplicating kernel invocations
in both sequential and concurrent fashion. On hardware side,
in [34], Sheaffer et al., exploit the concept of Architectural
Vulnerability Factor (AVF), which is a formula able to estimate

the likelihood that a transient fault in a particular subsection
of a GPU will result in a computational error. According to
the AVF value, the functional safety engineer will select the
appropriate granularity within a GPU to apply redundancy.
Redundancy in GPUs, therefore, implies reserving the use of
a portion of GPU computing resources to act in the same
way as a replicated CPU or supervisor co-processors. Tests
regarding fault tolerance for GPU automotive applications
generally involves testing their robustness through fault in-
jection [35]. Redundancy granularity can be set at the level
of entire processing cores, warps/wavefronts and even within
ALUs. Even if all these solutions have been evaluated in
HPC scenarios, they still represent a promising direction for
embedded ADAS reliable applications. Moreover, ECC/parity
bits for memory protection (both local and global to the GPU
processing cores) is nowadays a very common feature for both
HPC and embedded oriented GPUs. The presence of such
protection mechanisms is mandatory due to the average size of
input data of automotive applications, which are also known
to be strongly memory bounded.

V. CONCLUSION

In this work we presented and discussed how commonly
adopted methodologies to achieve real-time guarantees and
safety assurances can be transposed from traditional CPU
systems to heterogeneous systems, such as GPU accelerated
MPSoCs. As far as real-time issues are concerned, fruit-
ful research directions on both GPU kernel scheduling and
memory interference are getting more and more attention.
We provided an extensive survey on such topics so that the
most common approaches have been thoroughly described. We
argue that methodologies for GPU scheduling and memory
interference arbitration in SoCs will play a key role for the
automotive industry players: these are not only important from
a real-time perspective, but it is also a necessity dictated
by the requirements of both temporal and spatial isolation
as recommended by ISO-26262. We also highlighted how
methodologies for error detection and redundancy for GPUs
are still inspired by what has been presented in CPU-related
literature: moreover, we argue that even if such mechanisms



are well established for HPC oriented devices, these very
same approaches can also be extremely useful in embedded
automotive scenarios [36].
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