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ABSTRACT 

Using time-resolved ultrafast pump-probe spectroscopy we investigated the 

electron-lattice energy transfer in small copper nanospheres with diameters ranging 

from 3.2 to 23 nm, either embedded in a glass or dispersed in a solvent. Electron-

lattice scattering rate is shown to increase with size reduction, in agreement with 

our previous results obtained on gold and silver nanoparticles in the low excitation 

regimes. We attribute this effect to the reduction of the screening efficiency of 

electron-phonon interactions close to the nanoparticle surface. To understand the 

discrepancy between the results on the electron-lattice scattering in different 

metals reported in the literature (reduction, no dependence or increase with 

nanoparticle size), we discuss the experimental conditions required for the accurate 

determination of electron-lattice energy transfer time from time-resolved 

investigations in the weak and strong excitation regimes and present power-

dependent experiments on gold nanospheres in solution. Our findings are derived 

from a theoretical analysis based on the two-temperature model predictions and on 
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a complete modeling of the nanoparticle transient extinction cross-section through 

the resolution of Boltzmann equation in the presence of hot electrons. 

 

 

I. INTRODUCTION 

The reduction in size of metals down to the nanometric scale and the 

concomitant appearance of original physical and chemical properties have motivated 

many experimental and theoretical investigations. The size of metal nanoparticles 

being intermediate between the one of a macroscopic metal (described by 

continuous electron energy bands) and an atomic system (discrete energy levels), 

their physical (e.g. optical, electronic, thermal) response may manifest a transition 

from a bulk to a molecular behavior. In particular, size reduction can change their 

ultrafast electron dynamics [1,2], as electron-electron and electron-lattice 

interactions depend on the wave-functions of conduction and bound electrons, which 

are modified, as compared to the ones in the bulk, close to the nanoparticle surface. 

Ultrafast electron dynamics has been largely explored by time-resolved experiments 

both in monometallic (Ag [2–4], Au [1,2,5–8], Cu [9–11], Pt [5], Sn [12], Ga [13], Na 

[14]) and bimetallic nanoparticles (AuPt [15], AuAg [16–18], NiAg [18]). In the case 

of noble metals, silver and gold have been the most investigated, while very few 

results have been reported on copper nanoparticles, as the higher reactivity of Cu 

makes it more difficult to synthesize at the nanometric scale and subject to oxidation 

[19]. Nonetheless, study of its electron dynamics can provide important information 

on the physical effects which rule electron-electron and electron-lattice interactions 

(e.g. Coulomb screening mechanisms and their modifications with confinement) in 

solids and deserve detailed investigations. Previous studies on the internal electron-

lattice thermalization in nanometric Cu were made on nanoparticles with diameters 

from 10 to 30 nm [9–11] and reported either an electron-lattice energy transfer time 

compatible with the one of bulk copper (about 0.7 ps) [20,21], or an acceleration, 

attributed to electron coupling to surface vibrational modes [11]. Such an 

acceleration of electron-lattice energy transfer, inducing a faster electron energy 

relaxation [2,4], has also been reported in smaller noble metal nanoparticles while 

other experiments indicated no dependence [7,8,16] or even a decrease of coupling 
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with size reduction [5]. However, different experimental conditions (as the choice 

of wavelengths and powers) were used in these optical experiments [22,23]. 

In this paper, we will first theoretically discuss, in Section II, the choice of 

these experimental conditions, required for the accurate determination of the 

electron-lattice energy transfer time through ultrafast time-resolved optical 

spectroscopy. We will build our analysis both on the simplified two-temperature 

model (TTM) and on a complete description of the transient nanoparticle extinction 

cross-section upon ultrafast excitation, and we will support our conclusions with 

novel experimental investigations on gold nanoparticles in solution. We will then 

provide, in Section III, results on electron-lattice thermalization in copper 

nanoparticles. 

Ultrafast time-resolved optical spectroscopy is the approach commonly used 

for investigating the electron energy dynamics of a metal system after an impulsive 

out-of-equilibrium excitation, giving access to the measurement of its electron-

lattice energy transfer rate. This technique consists in measuring the transient 

changes of the system optical extinction induced by the instantaneous absorption of 

a femtosecond pump pulse [23–25]. After excitation, hot electrons redistribute their 

energy by electron-electron interactions (typical timescale of a few hundred 

femtoseconds in noble metals), leading to internal thermalization of the quasi-free 

conduction electron gas [24,26]. The energy in excess is transferred to the lattice 

via electron-lattice energy interactions (picosecond timescale for noble metals), 

which is the main focus of this work. This, in turn, can be followed by heating-

induced nanoparticles mechanical vibrations on a longer timescale [23,27,28], the 

energy being eventually thermally released to the environment through the particles 

surface [29–32]. From the optical point of view, the initial electron excitation 

translates into a fast amplitude modification of the sample extinction (i.e. of the 

extinction cross-section of the metal nanoparticles), whose decay reflects electron 

energy loss by electron-lattice energy transfer, with a time constant dependent on 

the electron-phonon coupling [2,33]. According to the TTM, which is generally used 

to reproduce the time dependence of electron and lattice temperatures [33,34], 

electron energy decay time by electron-lattice energy transfer is minimum for a 

weak excitation and linearly increases with initial electron pump-induced 

temperature rise, as a consequence of the dependence of the electronic heat 
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capacity on the temperature. Measurement of electron-lattice thermalization by 

time-resolved spectroscopy is thus generally made following two different strategies, 

their comparison and analysis of their validity being the main focus of Section II. The 

electron energy decay time can be directly measured in the weak excitation regime 

(initial electron temperature increase of a few hundred degrees). This approach is 

experimentally challenging as weak excitations translate into small transient optical 

signals, requiring setups with a high sensitivity. Alternatively, the pump energy-

dependent decay time can be measured for different pump pulse energies in 

experiments with stronger excitations, and the low excitation value subsequently 

extrapolated. So far, measurements of the electron energy decay time performed in 

the weak excitation regime have generally shown a decrease of the electron energy 

loss time constant with size reduction [2,4,12,13], corresponding to a stronger 

electron-lattice coupling in smaller particles, while experiments in the strong 

excitation regime reported no dependence [7,8,16,35] or a reduction of coupling [5]. 

Additionally, while in the weak perturbation regime electron cooling is independent 

of nanoparticle environment, the latter influences the measured dynamics for a 

stronger excitation [4,36]. To understand the apparent inconsistency between the 

results originating from experiments in the weak excitation regime and the ones 

performed with higher pump power, we will thus include in Section II a detailed study 

of the TTM predictions and of the more general modeling of transient extinction 

cross-sections.  

Once the main parameters allowing a proper determination of electron-lattice 

energy transfer rate are elucidated, we will present in Section III a systematic study 

of the size-dependence of electron-lattice interactions in copper nanospheres in an 

extended size range (diameters from 3.2 to 23 nm), through ultrafast time-resolved 

optical spectroscopy, both in the weak and strong excitation regimes. Cu 

nanoparticles have been synthesized following both physical and chemical methods. 

This guarantees a variable environments around the nanoparticles and allows to 

intrinsically attribute the observed size effects to the particles size variations. 
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II. INVESTIGATING THE ELECTRON-PHONON THERMALIZATION DYNAMICS 

A. Optical excitation and two-temperature model (TTM) 

Investigating electron-lattice energy exchanges in a material using time-

resolved pump-probe spectroscopy requires to properly describe these exchanges 

and to connect their kinetics to the measured time-dependent optical signals. 

Assuming the conduction electrons and the lattice vibrations of a metal are 

independently thermalized, after internal electronic thermalization (see section 

II.B), at temperature eT  and LT  respectively, TTM predicts that their energy 

exchanges can simply be modeled by the following rate equations system [33,34,37–

40]: 

where ( ) eee aTTc =  is the temperature-dependent heat capacity per unit volume of 

the conduction electrons [41], Lc  the lattice heat capacity per unit volume and g 

the electron-phonon coupling constant describing electron-lattice energy exchanges 

[38,40]. The metallic system is assumed here to be isolated, i.e., the timescale of 

electron-lattice thermalization is assumed to be much faster than energy transfer to 

the external environment [42]. The above rate equations are valid for lattice 

temperatures larger than the Debye temperature and electronic temperature small 

enough so that only the electrons in the conduction band are perturbed ( eT  typically 

smaller than e maxT− = 3000 K in Au and Cu and 5000 K in Ag [43]). For larger 

temperatures, thermal excitation of d-band electrons may lead to modification of 

the density of electronic states involved in electron-lattice interactions and thus ce 

and g [43]. 

The above system can be solved analytically [20,33], given initial conditions 

( ) exce TTtT ∆+== 00  and ( ) 00 TTL = , 0T  being the initial temperature of the system 

and excT∆  the electron temperature increase due to ultrafast electron excitation. In 

the weak excitation regime ( 0TTexc <∆ ), the temperature dependence of ce can be 
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neglected leading to an exponential decay of the electron excess temperature 

( ) ( ) 0TtTtT ee −=∆  with time constant gaTphe 0≈−τ  [33,40]. In this approximation, the 

electron excess energy per unit volume ( ) ( )( ) ( )2 2

0 0 02e e eu t a T T t T aT T t ∆ = + ∆ − ≈ ∆  
 

is proportional to eT∆  and thus exhibits the same kinetics as eT∆ . 

In contrast, for stronger excitations ( 0TTexc >∆ ), the eT  electron temperature 

decrease is characterized by a longer decay time and a deviation from a purely 

exponential profile, as a consequence of the linear increase of electron heat capacity 

with temperature. Solution of TTM shows that, in this strong excitation regime, the 

times 
u

e/1τ  and 
T

e/1τ  required for the electron excess energy per unit volume, )(tue∆

, and temperature, )(tTe∆ , respectively, to decrease to the e/1  fraction of their 

initial value, are different (solid and dashed lines in Figures 1a and b). Importantly, 

both 
u

e/1τ  and 
T

e/1τ  linearly increase with initial excitation excT∆  (Figure 1b), while 

their dependence on the initial electron excess energy per unit volume, defined as 

( )2 2

0 02exc excu a T T T ∆ = +∆ −
   and proportional to pump pulse energy pumpE , deviates 

from linearity (Figure 1a). Comparison of Figures 1a and b directly summarizes the 

central point of this analysis: experimental extraction of the intrinsic electron-

phonon energy transfer time phe−τ , as the low excitation intercept value of a linear 

fit of data obtained with stronger perturbations, requires to plot the experimental 

ex

1/eτ  decay times as a function of excT∆ , which is to a first approximation proportional 

to 
pumpE , for 0excT T∆ ≫ , instead of pumpE . 

 

B. Optical detection and transient extinction cross-section modeling 

The relative transmission variation ),(/ tTrTr λ∆  of a probe pulse, with 

wavelength λ, transmitted through a sample (liquid or glass) containing ensembles 

of nanoparticles, after an initial ( 0t = ) excitation  by a pump pulse, can be linked to 

the change of the metal nanoparticles extinction cross-section, ( , )ext tσ λ , by 

( )/ , ( , )extTr Tr t nL tλ σ λ∆ = − ∆ , where n is the nanoparticles density and L the sample 



 7 

thickness. The time-dependent variation of ( , )ext tσ λ  is linked to the metal and 

environment dynamics through the corresponding dielectric functions ( 1 2iε ε ε= +  

and mε , respectively) changes [24]. Its time-dependent modification can be 

computed either analytically, for simple geometries [24], or numerically for a 

generic nanoparticle size and shape, e.g. using finite-element modeling [32]. For 

weak transmission changes and neglecting the environment heating, ( , )ext tσ λ∆  

simply writes as a function of the wavelength- and time-dependent changes ),(1 tλε∆  

and ),(2 tλε∆ , using a first order development 

1 1 2 2( , ) ( ) ( , ) ( ) ( , )ext t a t a tσ λ λ ε λ λ ε λ∆ = ∆ + ∆ , where 1,2 1,2( ) ( )exta λ σ ε λ=∂ ∂  are the 

spectral derivatives of the extinction cross-section. These are strongly spectrally-

dispersed around the metal nanoparticle localized Surface Plasmon Resonance (SPR) 

[24,25,44,45].  

As an example, the transient response of 17 nm diameter Au nanoparticles in 

water is modeled in Figure 2. The sample linear extinction spectrum (inset of Figure 

2b, black solid line) and its derivatives 1,2( )a λ  (red dashed and dotted lines) were 

computed using the multipolar Mie theory. Upon ultrafast excitation by a 50 fs pump 

pulse ( pumpλ  = 800 nm and excT∆ = 1 K), the electron occupation number dynamics 

was obtained by numerical solution of Boltzmann equation, assuming phe−τ  = 1 ps 

[26,40,46]. A band structure model was subsequently used [47] for calculating the 

interband transient optical variations dominating the short-time kinetics of the gold 

dielectric functions ( )t,2,1 λε∆  [24]. Extinction changes ( ),ext tσ λ∆  were thus 

obtained by multiplication of ( )t,2,1 λε∆  and spectral derivatives 1,2( )a λ  (Figure 2a-b) 

(temporal and spectral convolution with the 50 fs pulse duration and 15 nm FWHM 

of the probe pulse were taken into account, see reference [24] for details of all the 

computations). 

In the low perturbation regime, when probing with photon energies lower than 

all interband transition thresholds ( >λ  700 nm for Au [24]) and far from SPR, which 

lies around SPRλ = 520 nm for Au nanospheres in water [44,45], ( ),ext tσ λ∆ is 
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dominated by the term 1 1( ) ( , )a tλ ε λ∆ , which is proportional to the electron excess 

energy per unit volume, )(tue∆  [33,40]. ( ),ext tσ λ∆  is thus theoretically expected to 

decay with a characteristic time, 1/ 1/

th u

e eτ τ≈ , which varies linearly with excT∆  (Figure 

1) and is independent of λ . This is shown in Figure 2d, where decay times 1/

th

eτ , 

obtained from the theoretically computed ( ),ext tσ λ∆  (Figure 2b), are plotted as a 

function of the λ  probe wavelength (squares). Note that, in the strong excitation 

regime, an additional contribution due to 2 2( ) ( , )a tλ ε λ∆  can modify the total kinetics 

of ( ),ext tσ λ∆ , which will be no longer simply related to the electron excess energy, 

but decays with a time constant that remains linear on excT∆ . 

Conversely, for shorter probe wavelengths ( λ < 700 nm for Au nanospheres), 

the presence of interband transitions and SPR complicates the analysis of the time-

evolution of transient optical signals. At resonance with interband transitions, the 

transient variations of the extinction cross-section are affected, during electron 

internal thermalization (a few 100 fs), by the occupation change dynamics of 

electronic states close to the Fermi level, resulting, at short timescales, in a 

( ),ext tσ λ∆  signal not proportional to )(tue∆  any longer. In addition, the strong 

dispersion of ( )1,2a λ  spectral derivatives around the SPR translates into a ( ),ext tσ λ∆  

sign change for λ in the vicinity of the SPR [24] (Figure 2a). This is at the origin of 

( ),ext tσ λ∆  complex time-dependences, even for weak perturbations, with decay 

times smaller than the ones of )(tue∆  and )(tTe∆ . As shown in Figure 2c, computed 

1/

th

eτ  values are scattered when probing around the SPR, potentially leading, for 

particular probe wavelengths in the 520-535 nm range (hatched area in Figure 2c), 

to deviations with respect to the phe−τ  = 1 ps electron-lattice energy transfer time. 

These deviations are concomitant with sign changes of ( ),ext tσ λ∆  as a function of 

λ , occurring around 530 nm, as shown in Figure 2c for two different delays ( t  = 1 

and 3 ps, dashed et dotted lines respectively). For probe wavelengths λ  distant 

from the sign change and optimizing ( ),ext tσ λ∆  amplitude (e.g. 515 and 540 nm, 
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Figure 2c), 1/

th

eτ  is close to phe−τ . This is also the case for an infrared probe wavelength 

(Figure 2d), which is the best choice for obtaining reliable and very weakly scattered 

1/

th

eτ  values, directly providing the electron-lattice energy transfer time. 

 

C. Thermalization of gold nanoparticles investigated in different excitation and 
probe conditions 

To experimentally investigate the dependence of the relaxation time, 
ex

1/eτ , of 

the relative transmission variation ),(/ tTrTr λ∆  on the experimental conditions and 

validate extraction of phe−τ , we measured a series of ultrafast time-resolved pump-

probe transmission changes on 17 nm diameter gold nanoparticles in water, both in 

the weak and strong excitation regimes. For experiments with low excitation, a high 

repetition rate (80 MHz) home-made infrared Ti:Sa laser oscillator delivering 50 fs 

pulses with an average power of 1 W was used. Part of the laser output was 

frequency-doubled by a BBO crystal to generate the blue pump, while the infrared 

probe power was detected by a photodiode after transmission through the sample. 

Pump and probe were focused into a 1-mm thick cell containing the nanoparticle 

solution. Synchronous detection with mechanically chopping at 100 kHz allowed to 

achieve a noise level TrTr /∆  of the order of 7
10

− . For experiments with higher pump 

fluence, the source was replaced by a commercial Ti:Sa amplified system, delivering 

800 nm pulses with a 250 kHz repetition rate, 120 fs duration and average power of 

1.2 W. An optical parametric amplified (OPA) crystal allowed generation of probe 

pulses ranging from 480 to 720 nm. 

The extinction spectrum of water-immersed gold nanospheres displays a SPR 

centered aroune 520 nm partially overlapping the interband transitions absorption 

(Figure 3a) [48,49]. Time-resolved signals were first acquired using the amplified 

system with pump excitation at 400 nm and probe wavelength at λ  = 700, 550 and 

525 nm (respectively out of resonance, on one side of the resonance and close to the 

SPR peak, Figures 3b-d). For each configuration, pump pulse energy pumpE  was varied 

from 0.5 to 20 nJ, corresponding to different electron excitation temperatures. 

As discussed in the previous section, the fast transmission change at time 

0=t  for probe wavelength λ  = 700 nm and pumpE  = 0.5 nJ (Figure 3b, black solid 
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line) corresponds to the pump-induced initial electron excitation [24,46]. Electron 

energy loss by transfer to the lattice through electron-phonon interactions induces a 

decay of the time-resolved signal in a few picoseconds. The remaining non-vanishing 

background is due to thermal excess energy in the nanoparticle, which is transferred 

to the surrounding environment on a timescale longer than the range investigated 

here (typically 10 to 100 ps) [29–32]. As expected, exciting with higher power slows 

down the electron-to-lattice energy transfer (red dashed and blue dotted lines in 

Figure 3b) [3,7,22,33]. The 
ex

1/eτ  decay can be deduced from the transient optical 

signal, taking also into account the residual thermal background (Figure 3b, green 

solid lines). 

To plot the measured 
ex

1/eτ  as a function of initial electron temperature increase 

(Figure 4b), the experimental pump energy pumpE  must first be converted into the 

corresponding 2

0 02exc excT T u a T∆ = + ∆ − , where the initial electron excess energy 

per unit volume is )( 2 pLRAEu eqpumpexc π=∆  (A being the sample linear absorption at 

the pump wavelength, Req the pump beam equivalent radius, p the metal volume 

fraction in the solution and L the thickness of the cell). In the limit of a Gaussian 

pump beam with waist pumpw  (radius at 
21 e ) much larger than the probe beam, 

2pumpeq wR = . 

As expected from the TTM (Figure 1b), the experimental 
ex

1/eτ  dependence is 

linear on excT∆  (Figure 4b), the intercept value ps  0.05)   (0.98 ±=−pheτ  deduced by a 

linear fit being consistent with the value measured in the weak perturbation regime 

ps  0.10)  (0.97±=−pheτ  (solid square, Ti:Sa oscillator with =pumpλ 435 nm, λ = 870 nm 

and =pumpE 0.06 nJ, equivalent to excT∆ =120 K). This electron-phonon energy transfer 

time is slightly smaller than the one in bulk gold (∼ 1.15 ps) and is consistent with 

values expected for 17 nm gold nanoparticles, confirming an acceleration of 

electron-lattice thermalization in gold nanoparticles with size reduction [2]. It 

should be emphasized that experimental errors in the pumpE  to excT∆  conversion (e.g. 

uncertainties in the determination of Req or metal volume fraction p) will not prevent 
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from recovering a linear 
ex

1/eτ  dependence on excT∆   and will thus have a minor impact 

on the extrapolated phe−τ  value. Furthermore, considering that excT∆  is proportional 

to exc
u∆ for large enough excitations, and 

e x c
u∆  is proportional to pumpE , 1/

ex

eτ  

depends linearly on 
pumpE . Thus, to a first approximation, plotting 

ex

1/eτ  as a function 

of 
pumpE  will guarantee a correct linear extrapolation of e phτ − . 

As expected theoretically (Figure 1a), 
ex

1/eτ  has a nonlinear dependence on 

pumpE  (Figure 4a). In this case, a linear extrapolation can lead to an overestimation 

of the phe−τ  value, depending on the range of pumpE  values used for the linear fit. 

Including 
ex

1/eτ  values corresponding to higher excitation ( 0 exc e maxT T T −+∆ > ) can lead to 

values approximately linear on pumpE  (inset of Figure 4a), extraction of phe−τ  by a 

linear fit of 
ex

1/eτ  values against pumpE  remaining nonetheless unjustified.  

On the spectral sideband of the Au nanospheres SPR ( λ =  550 nm, Figure 3c), 

time-resolved signals are characterized by a positive transient peak followed by a 

negative contribution whose relative amplitudes depend on excitation energy 

(Figure 2c). Strong oscillations due to the mechanical nanoparticle breathing 

[23,27,28] add-up to the signal, further complicating the determination of the 

electron energy loss dynamics. All these effects impede extraction of the phe−τ  

electron-phonon scattering dynamics when probing in this spectral region. 

Although, in the case of probe pulses close to the peak of the SPR ( λ =  525 

nm, Figure 3d), time-resolved signals display a monotonic decay with a dynamics 

apparently similar to the one with the infrared probe ( λ =  700 nm, Figure 3b), an 

exponential function fails to reproduce precisely their decrease, even for low 

excitation (e.g. green dash-dotted line in Figure 3d, corresponding to a decay time 

of 0.9 ps, 30% shorter than 
ex

1/eτ =1.2 ps, deduced with λ =  700 nm for an equivalent 

pumpE , Figure 4a). This behavior is in agreement with numerical computations (Figure 

2a and 2c). As described in the previous section, a choice of probe wavelength too 

close to the ),(/ tTrTr λ∆  sign change may prevent from extracting reliable electron-

lattice energy transfer time constants. 
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In conclusion to this section, we detailed the experimental conditions required 

for a measurement of the electron-lattice energy transfer time phe−τ . We supported 

our considerations, based on theoretical models, with experiments performed on Au 

17 nm diameter nanoparticles in both weak and strong excitation regimes. The phe−τ  

value deduced by a linear fit in experiments with a variable pump energy is reliable 

and consistent with the value obtained by a direct measurement with pump energy 

in the weak excitation regime and probe wavelength far from the SPR, provided that 

(i) linear extrapolation is made on the 
ex

1/eτ  signal plotted against excT∆  (not pumpE ), 

(ii) probe wavelength is tuned on specific spectral regions (either far from SPR, or 

around the SPR detuned with respect the ( )/ ,Tr Tr tλ∆  sign change wavelength), (iii) 

investigations are limited to 0 exc e maxT T T −+∆ <  (3000 K in gold). 

 

III. ELECTRON-LATTICE INTERACTIONS IN COPPER  

A. Samples 

The electron-phonon energy transfer time has been subsequently determined 

on Cu nanoparticles with diameters ranging from 23 down to 3.2 nm. To prevent 

copper oxidation, all the synthesis techniques have in common protection of 

nanoparticles by embedment in a transparent matrix or immersion in a solvent. To 

provide different external environments and cover this extended size range, distinct 

physical and chemical synthesis methods were used. 

Cu nanoparticles with diameters 3.2 ± 1.3 (FWHM) nm, 3.8 ± 1.5 nm, 4.8 ± 1.9 

nm in an alumina matrix are obtained by Low Energy Cluster Beam Deposition 

(LECBD) [18,19,50,51]. In this technique, particles are produced by laser 

vaporization of a copper rod by a pulsed YAG laser, generating atomic plasma in the 

presence of a continuous flow of helium gas, which is rapidly cooled down by 

collisions with the inert gas. This induces nucleation and growth of small metal 

clusters (between 2 and 6 nm in diameter). The cluster/gas mixture expands through 

a nozzle in a supersonic beam into a high vacuum chamber. The clusters are then 

codeposited with the transparent matrix on a suprasil glass substrate. Mean 

nanoparticles size is selected by controlling the inert gas pressure, and size 

distribution is characterized by transmission electron microscopy (TEM). Metal 
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density is kept very low to avoid coalescence of the particles after deposition. The 

glass sample is held at 400 °C [19] during the synthesis to prevent oxidation. To 

prevent passivation due to ambient exposure, samples are stored under secondary 

vacuum, their linear absorption spectrum being systematically measured before and 

after time-resolved experiments to prove no modification. The presence of a SPR 

peak around 580 nm partially superimposed to interband transitions in the linear 

extinction spectrum of the 3.2 nm diameter Cu sample (inset in Figure 5a) and x-ray 

photoelectron spectroscopy (XPS) analysis attests the absence of oxidation [19]. 

Although nanocrystallinity of these samples has not been determined, its impact on 

the electron-lattice energy transfer time is expected to be negligible [52]. 

A 5.0 ± 0.8 nm diameter MgO-embedded copper sample is obtained by a similar 

technique, using a magnetron-based gas aggregation nanoparticle source [53]. 

Copper atoms are first evaporated by sputtering with Ar+ ions, then they condensate 

in clusters inside an aggregation region by cooling after collision with Ar atoms. An 

electric quadrupole filter selects their mass before co-deposition with magnesium in 

oxygen atmosphere, resulting in an assembly of the Cu nanoparticles embedded in a 

MgO matrix [54]. Note that this mass selection stage guarantees a better size 

selection compared to previous samples, leading to a much smaller size dispersion. 

A sample containing 8.0 ± 2.5 nm diameter Cu nanoparticles in a silica glass 

was obtained from the sol-gel dip-coating technique [55] operating with a constant 

withdrawal velocity of 8 cm.min-1. The sol was composed of a mixture of 

Si(OC2H5)(TEOS), CuNO3, H2O, HNO3, n-propanol (C3
nH7OH) and i-butanol (C4

iH9OH). 

During the dipping procedure, the chamber was maintained under a nitrogen 

atmosphere so as to lower the humidity ratio below 15%. In order to remove the 

solvents from the gel, the samples were first dried in air at 100°C for 15 min. After 

drying, the densification stage was performed by a heat treatment at 500 °C for 15 

min in a constant flow of pure and dry oxygen. A layer of copper oxide nanoparticles 

embedded in silica is thus obtained. Finally the sample is submitted to a reduction 

treatment carried out at 800 °C for 1 h, using a mixture of 95% N2 and 5% H2. This 

allows obtaining metallic copper nanoparticles embedded in silica, which remain 

stable in time when making a six layer step dip-coating (no further aging). 

Two samples of (17.0 ± 2.5) nm and (23.0 ± 3.5) nm diameter Cu nanoparticles 

dispersed in water are chemically obtained by gamma rays radiolysis of an initial 
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solution containing copper sulfates and polymers, following a procedure previously 

developed for non-noble metals [56]. The irradiated solution presents neutrally 

charged nanoparticles whose size is tuned by varying the irradiation fluence. An 

aqueous solution of copper sulfate was irradiated by an ionizing radiation source (1.8 

kGy.h-1). The irradiated solution contained the metallic precursor (CuSO4) at a 

concentration of 10-3 mol.L-1, the stabilizing agent (polyvinyl alcohol (PVA) (2.10-3 

mol.L-1) and an oxidizing radical scavenger (isopropyl alcohol) (10-3 mol.L-1)). The 

solutions were degassed and were exposed to gamma radiation to generate the 

copper nanoparticles. The irradiation was carried out 1 and 2 hours, size distribution 

being characterized by TEM imaging. The transparent redish solution remained stable 

even after storage for several months. 

 

B. Results 

Electron-lattice energy transfer times in copper nanoparticles were measured 

by optical time-resolved spectroscopy both in the weak and strong excitation regimes 

following the experimental conditions discussed in Section II. Normalized transient 

transmission changes were measured for the 3.2 nm diameter Cu sample with the 

amplified laser and pumpλ =400 nm, λ = 800 nm (probe photon energy far from SPR 

[19] and lower than all interband transitions thresholds, see the inset of Figure 5a). 

They highlight an increase of the electron energy decay time for increasing pump 

pulse energy, as shown in Figure 5a for pumpE = 0.6, 1.7 and 4.2 nJ (black solid, red 

dashed and blue dotted lines respectively), corresponding to =∆ excT  850, 1670 and 

2750 K. This indicates a slowing down of electron-lattice energy transfer with 

increasing excitation temperature, as in the case of Au nanoparticles (see Section 

II). As expected, experimental decay time constants 
ex

1/eτ  extracted from time-

resolved signals have a linear dependence on excT∆  (Figure 5b, red dots), this leading 

to determination of electron-phonon energy transfer time =−pheτ (0.29 ± 0.04) ps 

obtained as the intercept of their linear extrapolation (dashed line) at the origin. As 

in the case of Au nanoparticles, this value is consistent with the decay time =−pheτ

(0.32 ± 0.04) ps measured in the weak perturbation regime (solid square). 
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Analogously, 
ex

1/eτ  dependence on pump pulse energy pumpE  deviates from linearity 

(inset in Figure 5b), as expected from the TTM. 

Electron-phonon energy transfer times phe−τ  were measured for all the other 

copper samples in the weak perturbation regime ( pumpE ∼0.05 nJ, equivalent to 

excT∆ ≤200 K) using the high repetition rate Ti:Sa laser oscillator, with blue pump (

pumpλ ∼  420 nm) and red probe ( λ ∼  840 nm) pulses. phe−τ  dependence on 

nanoparticle diameters (Figure 6) demonstrates an acceleration of electron-phonon 

interactions for small particles, compared to the electron-phonon scattering time 

constant of bulk Cu (620 fs, horizontal dotted line) [20]. No influence of the 

nanoparticle environment is observed, data being consistent independently of the 

matrix. The measured decay is thus ascribed to energy loss inside nanoparticles due 

to intrinsic energy-lattice energy transfer. This reduction with size of electron-

lattice energy transfer time was previously measured in other noble metal 

nanoparticles (Au and Ag), as plotted in the inset of Figure 6 for comparison [2]. In 

analogy with size effects observed on the internal electron thermalization [1], we 

qualitatively attribute these effects to the decrease of the screening of the Coulomb 

electron-ion interaction close to the surface. This is a consequence of the reduction 

of the density of conduction electrons close to the surfaces (spillout of electron 

wave-functions) and of the modification of the bound electron localization in the 

nanoparticle core [2,57], these effects being more important on smaller particles 

with higher surface-to-volume ratio. While the first time-resolved optical 

experiments on copper nanoparticles have not specifically addressed the size-

dependence of electron-lattice scattering, their measured electron relaxation times 

[9,10] are in agreement with an optical excitation in the strong perturbation regime. 

The acceleration of electron-lattice interactions with size reduction previously 

reported for two samples of copper nanoparticles in colloidal solution, with 

diameters of 12 and 30 nm [11] is qualitatively consistent with the present findings. 

However, the electron-lattice energy transfer times experimentally measured (0.37 

and 0.51 ps for the 12 and 30 nm sample respectively) are approximately 25% smaller 

than the ones reported in our work, which can be explained by the additional 

presence of surface imperfections as mentioned by the authors. 
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The difference in the absolute values of electron relaxation times and their 

size-dependencies for Cu, Au and Ag (Figure 6, inset) could be ascribed to different 

electronic and dielectric properties (electron density, electron effective mass and 

static interband dielectric constant), these parameters ruling the screening 

efficiency of conduction and bound electrons [1,2,46]. However, this model, based 

on a bulk approach modified by surface effects, allows a quantitative reproduction 

of the size-dependent acceleration of internal electron thermalization by electron-

electron scattering [1], but only a qualitatively description of electron-phonon time-

evolution in Au and Ag [2,57] and Cu. A more complete and quantitative analysis of 

the electron-lattice interaction in noble metal nanoparticles, requiring quantum 

treatment of both electronic and phononic energy states and of their coupling, is 

still missing and is out of the scope of this study. 

 

IV. CONCLUSIONS 

In conclusion, we have investigated electron-phonon thermalization on noble 

metal nanoparticles by comparing experiments in the weak and strong perturbation 

regimes, and discussed experimental choices and analysis conditions required for 

carefully extracting electron-lattice energy transfer time constants. Using this 

analysis, we have performed a systematic study of electron-lattice thermalization 

on Cu nanoparticles, which proves an acceleration of electron-phonon interactions 

with reduction in size, similar to the behavior observed in Au and Ag. This effect is 

independent of nanoparticle environment (solid or liquid) and is qualitatively 

attributed to a modification of the screening of Coulomb electron-ion interactions 

close to the surface, when reducing the metal nanoparticle size. Extension of these 

measurements to electron thermalization in small clusters (< 2 nm size) is currently 

an active field of investigation, providing useful information to explain the transition 

from small-solid to molecular-like behavior in electronic interactions at the 

nanoscale. 
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Figure 1. Decay time constants, 1/

u

eτ  and 1/

T

eτ , of the electron excess energy per unit 

volume, ( )eu t∆ , and electron temperature increase, ( )eT t∆ , (solid and dashed line) 

computed in gold, after an impulsive out-of-equilibrium excitation, as a function of 

initial electron excess energy per unit volume excu∆  (a) and electron excitation 

temperature excT∆  (b), normalized to their low excitation value e phτ − . They are 

obtained from the two-temperature model (equation 1), with )K  /(mJ  65 23=a , 

6 32 49 10  J /(m  K)Lc .= ⋅  and 
16 31.7 10  J /(m  K  s)g = ⋅ ⋅  [33,58]. 
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Figure 2. (a, b) Computation of the time-evolution of extinction cross-section 

variation ( ),ext tσ λ∆  of a 17 nm diameter Au nanosphere for probe wavelengths λ 

indicated inside the graph ( excT∆ = 1 K, 50 fs pump pulse at pumpλ  = 800 nm, 50 fs 

probe pulse with 15 nm FWHM spectral width, phe−τ  = 1 ps). Inset in panel b shows 

the linear extinction cross-section of a 17 nm diameter Au nanosphere in water (black 

solid line, left axis) computed by Mie multipolar theory [59] with an effective 

environment refractive index n=1.26, Johnson and Christy dielectric functions for 

bulk gold [60] and electron surface-scattering factor g=0.8 [61,62], together with its 

1( )a λ  and 2( )a λ  derivatives (right axis, red dashed and dotted lines respectively). 

The linear spectrum is a fit of the experimental extinction spectrum of Figure 3a. (c-

d) Decay time 1/

th

eτ  as a function of the probe wavelength obtained by a 

monoexponential fit of the computed ( ),ext tσ λ∆  decay (squares, left axis). 
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( ),ext tσ λ∆  at t=1 and 3 ps after excitation are plotted in the same graph (orange 

dashed and dotted lines respectively, right axis). These delays are indicated in panel 

a-b with vertical dashed and dotted lines. The hatched area in panel c indicates the 

range of probe wavelengths inappropriate for the measurement of electron-phonon 

energy transfer time (predicted decay times 1/

th

eτ  shorter than phe−τ  = 1 ps). 
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Figure 3. (a) Extinction spectrum of 17 nm diameter gold nanospheres in water. (b-

d) Normalized transient transmission changes ),(/ tTrTr λ∆ , measured used different 

excitation energies (black solid, red dashed and blue dotted lines) with pump 

wavelength pumpλ = 400 nm and probe wavelength tuned to λ = 700 nm (b), 550 nm 

(c) and 525 nm (d). Green solid lines in (b) represent the fits of the three signals 

with an exponential decaying function and a residual backgound. Pump pulse 

energies pumpE  are indicated inside the graphs. Vertical arrows in (a) indicate the 

positions of the probe wavelengths on the linear extinction spectrum. Green dash-

dotted line in (d) represents an exponential fit of the time-resolved signal at pumpE = 

0.7 nJ (solid line). 

  



 27

 

 

Figure 4. Decay time constants 
ex

1/eτ  deduced from experiments in 17 nm diameter gold 

nanoparticles in water with pump wavelength =pumpλ  400 nm, probe wavelength 

λ =  700 nm and variable excitation energy (red dots), and =pumpλ  435 nm and 

λ =  870 nm in the weak perturbation regime (black square), plotted as a function of 

pump pulse energy pumpE  (a) and electron excitation temperature excT∆  (b). Dashed 

line in (b) is a linear fit of 
ex

1/eτ  values obtained with stronger perturbations (red 

dots). Inset in (a) shows experimental 
ex

1/eτ  on a larger pumpE  range. 
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Figure 5. (a) Normalized transient transmission changes, ),(/ tTrTr λ∆ , on 3.2 nm 

diameter Cu nanospheres embedded in alumina, measured with amplified Ti:Sa laser 

with a repetition rate of 250 kHz, =pumpλ  400 nm and probe wavelength λ =  800 nm, 

and excitation energies corresponding to =∆ excT  850 K (black solid line, 

corresponding to pump pulse energy pumpE = 0.6 nJ), 1670 K (red dashed line, pumpE =

1.7 nJ) and 2750 K (blue dotted line, pumpE =4.2 nJ). Inset shows the linear extinction 

spectrum of the sample. (b) Experimental decay time constants 
ex

1/eτ  extracted from 

time-resolved signals in the strong excitation regime (red dots) and their linear fit 

(dashed line), and for a weak pump excitation (black square, measured with

=pumpλ  420 nm and λ =  840 nm, pumpE = 0.06 nJ), plotted as a function of electron 

excitation temperature excT∆  (main graph) and pump pulse energy pumpE  (inset). 
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Figure 6. Experimental electron-lattice energy transfer time constants, phe−τ , of Cu 

nanoparticles as a function of their diameter. Samples are obtained by Low Energy 

Cluster Beam Deposition in alumina (blue dots), magnetron sputtering deposition in 

magnesia (green diamond), sol-gel dip-coating in silica (red triangle) and chemical 

radiolysis in water (orange squares). Horizontal dotted line represents phe−τ  value for 

bulk Cu. Grey dashed line is a guide for the eyes. Inset shows experimental electron-

lattice transfer rates, 1 e phτ − , normalized to the one of the bulk, as a function of the 

inverse diameter, obtained for Cu (squares, this work), Au (dots) and Ag (diamonds) 

[2], with qualitative linear fits. 

 


