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Abstract: Colorectal cancer is the third most commonly occurring cancer in men and the second most
commonly occurring cancer in women worldwide. We have recently reported that curcuminoid
complexes labelled with gallium-68 have demonstrated preferential uptake in HT29 colorectal cancer
and K562 lymphoma cell lines compared to normal human lymphocytes. In the present study, we
report a new gallium-68-labelled curcumin derivative (68Ga-DOTA-C21) and its initial validation as
marker for early detection of colorectal cancer. The precursor and non-radioactive complexes were
synthesized and deeply characterized by analytical methods then the curcuminoid was radiolabelled
with gallium-68. The in vitro stability, cell uptake, internalization and efflux properties of the probe
were studied in HT29 cells, and the in vivo targeting ability and biodistribution were investigated in
mice bearing HT29 subcutaneous tumour model. 68Ga-DOTA-C21 exhibits decent stability (57 ± 3%
after 120 min of incubation) in physiological media and a curcumin-mediated cellular accumulation in
colorectal cancer cell line (121 ± 4 KBq of radiotracer per mg of protein within 60 min of incubation).
In HT29 tumour-bearing mice, the tumour uptake of 68Ga-DOTA-C21 is 3.57 ± 0.3% of the injected
dose per gram of tissue after 90 min post injection with a tumour to muscle ratio of 2.2 ± 0.2. High
amount of activity (12.73 ± 1.9% ID/g) is recorded in blood and significant uptake of the radiotracer
occurs in the intestine (13.56 ± 3.3% ID/g), lungs (8.42 ± 0.8% ID/g), liver (5.81 ± 0.5% ID/g) and
heart (4.70 ± 0.4% ID/g). Further studies are needed to understand the mechanism of accumulation
and clearance; however, 68Ga-DOTA-C21 provides a productive base-structure to develop further
radiotracers for imaging of colorectal cancer.
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1. Introduction

Colorectal cancer (CRC) is the third most commonly occurring cancer in men and the second
in women worldwide, with more than 1.4 million new cancer cases every year [1]. India
has a relatively low prevalence of CRC in comparison to other countries, mainly attributed
to differences in dietary patterns and lifestyles [2]. It is widely known that curcumin
(1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a phyto-polyphenol pigment isolated
from the dried rhizomes of Curcuma longa L., has been used for centuries in Asian countries as a
dietary spice and traditional drug to treat many different diseases [3]. Besides having antioxidant,
anti-inflammatory, anti-bacterial and anti-amyloid properties, curcumin has been shown also to
possess anti-cancer activities [4,5]. In particular, the ability to inhibit proliferation of a wide variety
of tumour types, including colorectal cancer, has been highlighted by recent studies in vitro and
in vivo [6–8]. Several studies suggest that curcumin changes the gene expression profiles and signalling
pathways such as those involving COX-2 enzymes as well as NF-κB, cyclin D1 and p53 proteins [9–11].
Although the mechanism of curcumin’s high accumulation and cytotoxic activity against HeLa,
MCF-7, HT29, and HCT-116 cancer cell lines are still unclear [10,11], curcumin itself is a promising
tumour-targeting moiety for the development of early diagnosis and therapeutic agents. Nuclear
medicine imaging provides information about biological processes occurring at a molecular level
in vivo; this occurs by following the fate of radiolabelled compounds. Such radiotracers can be
substrates for metabolic pathways overexploited in tumour cells or have particular affinity for receptors
overexpressed in tumours. Hence, curcumin derivatives labelled with proper β+ emitter radionuclides
or curcumin-based radio-metal complexes have the potential to be diagnostic tools for positron
emission tomography (PET). Currently, radiolabelled curcuminoids have been mostly investigated
for imaging of the central nervous system (CNS) where several curcumin-based probes labelled
with fluorine-18 have demonstrated promise in the early detection of Alzheimer’s disease [12,13].
In oncology, curcuminoids as imaging agents are underinvestigated. We have recently reported
that curcuminoid complexes labelled with gallium-68 demonstrated preferential uptake in HT29
colorectal cancer and K562 lymphoma cell lines compare to normal human lymphocytes. In that
study, the core radio-metal was directly linked to two curcuminoid molecules through the keto-enol
moiety [14,15]. The curcuminoid complexes showed good stability in PBS and human serum but were
rapidly degraded in whole human blood. These findings, in addition to the low stability and solubility
of curcumin structures in physiological media [16], limited the possibility to further study these kind of
compounds in vivo. In the present study, we report a new gallium-68-labelled curcumin derivative with
curcumin linked to an efficient gallium-68 chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic
acid (DOTA), and its initial validation as a marker for early detection of CRC. The synthetic pathway,
chemical characterization, labelling methods, stability, cell uptake, internalization and efflux studies
on HT29 cells and in vivo micro-PET imaging and biodistribution in colorectal tumour bearing mice of
this radiotracer are herein reported.

2. Results

2.1. Synthesis and Chemical Characterization

Synthesis of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic(1,7-bis(4-hydroxy-3-methoxyphenyl)
-1,6-heptadiene-3,5-dione (DOTA-C21) was carried out in two steps as shown in Figure 1. The
curcumin-based conjugate was identified and completely characterized by ESI-LC/MS (Figure S1) and
1H-,13C-NMR spectroscopy (Figures S2, S3). ESI-LC/MS spectrum exhibits two isomeric peaks (m/z =
798.3; [M + H]+) that were attributed to contemporary presence of two main isomeric forms (diketo
and keto-enol) as previously reported for curcumin and its derivatives [17,18]. Gallium complexes were
obtained by reacting a DOTA-C21 solution with a Ga(NO3)3 solution at 95 ◦C for 30 min in a 1.5:1 metal
to ligand molar ratio using a 0.4 M ammonium acetate solution as buffer. Complexes formation was
identified by ESI-LC/MS analysis thanks to the typical isotopic pattern of gallium ion (Figures S4, S5).
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Similar to the free ligand analysis, the spectrum exhibits two compounds with the same m/z (retention
times: 2.8 and 3.3 min, respectively) both corresponding to Ga-DOTA-C21 complexes (m/z = 864.2 [M69Ga
+ H]+ – 866.2 [M71Ga + H]+). To elucidate chelation mode and binding sites, 1H-NMR titration of
DOTA-C21 with Ga3 + was also performed (Figure S6) and the gallium(III)-complex was characterized by
NMR (Figure 2, Figure S7) as well as LC-MS/MS fragmentation experiments (Figure 3, Figure S8).
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solution for 30 min at 95 ◦C.
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Figure 2. Aliphatic region overlap of 1H-, 13C-HSQC-NMR spectra of DOTA-C21 (red (CH2) and purple
(CH/CH3)) and Ga-DOTA-C21 (green (CH2) and blue (CH/CH3)). All the spectra were acquired in
MeOD-d4 at 25 ◦C ([DOTA-C21] = 0.63 mM). Atom numbering refers to Figures 11 and 12.
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Figure 3. LC-MS/MS fragmentation experiments on Ga-DOTA-C21 complexes with m/z 864.5 [M + H]+.
HPLC-MS chromatogram (A). Fragmentation pathway of the m/z 864.5 [M + H]+ ion corresponding
to the peak with retention time 5.9 min (B). Fragmentation pathway of the m/z 864.5 [M + H]+ ion
corresponding to the peak with retention time 6.5 min (C).

1H- and 13C-NMR spectra displayed a strong shift of both protons and carbon with respect to the
free ligand when gallium(III) is added. In particular, methylene protons of the chelator ring, briefly r1
and r2, are no longer chemical shift equivalent since the interconversion between pseudo-axial (Ha)
and pseudo-equatorial (He) conformation is prevented by metal complexation. Geminal protons Ha(r1)
and He(r1) appear as broad triplets at 4.00 ppm and 3.38, respectively, due to similar values of geminal
(2JHH) and vicinal (3JHH) coupling constants (~14Hz). The same situation occurs for Ha(r2) and He(r2)
that fall at 3.47 ppm and 3.41 ppm, respectively. Assignments of ring protons was confirmed by
1H,13C-HSQC spectrum, Ha/He(r1) show cross-peaks with carbon at 54.65 ppm (C(r1)) and Ha/He(r2)
with a carbon at 57.11 ppm (C(r2)). The methylene groups of acetate arms are not chemical shift
equivalent in gallium complex and appear as broad singlets in proton spectrum. The following
reasonable assignments can be proposed (for atom numbering refers to Sections 4.1.1 and 4.1.2): CH2

in α to amide and nitrogen (atom numbering 15) 1H- 3.79 ppm and 13C- 60.64 ppm; CH2 in α to
carboxylic group involved in gallium coordination (atom numbering 24 and 26) 1H- 3.83 ppm and 13C-
59.41 ppm; CH2 in α to free carboxylic group (atom numbering 25) 1H- 3.74 ppm, 13C- 61.68 ppm.

Moreover, UV absorption and fluorescent emission spectra upon increasing addition of Ga3+

from free ligand were acquired (Figures S9, S10). These analyses showed that DOTA-C21 displays an
absorption maximum at 410 nm, typical of curcumin structure in the keto-enol form. Upon addition of
gallium (III) solution, an increase in absorbance is observed at 290 nm, while no changes are observed
for the absorption maximum. Fluorescence emission spectra of DOTA-C21 (λex 410 nm) do not show
any significant change after gallium(III) addition.
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2.2. Radiolabelling of the Chelator-Curcuminoid Derivatives with Gallium-68

Radiolabelling was performed using two methods. In the first, postprocessing of the generator
elution was performed by cation exchange purification [19] and kinetics of the labelling were studied
between 1 and 20 min by TLC. Kinetics were fast and the incorporation yield was 97 ± 2% after 5 min
at 95 ◦C (n = 3). Postprocessing of the generator elution minimizes the metal cation impurities allowing
a complete radiolabelling of DOTA-C21 by using only 10 nmol of the precursor. Representative
TLC analyses are shown in Figure S11. In the second method, labelling without processing of the
elution was attempted with increasing amount of precursor (20, 40, 60, 80 nmol). In this case, a
reproducible radiolabelling could only be achieved with 80 nmol of DOTA-C21 after 10 min at 95 ◦C,
with an incorporation yield ranging from 60 to 80%. The crude mixture was further purified by SPE
to eliminate unreacted gallium-68 and hydrolysed products. Radiochemical purity was assessed by
UHPLC (RCP > 95%, RCY = 55 ± 5%, n = 10). Representative UHPLC chromatograms (radiochemical
detector) of a 68Ga-DOTA-C21 preparation before and after SPE purification are shown in Figure 4.
Similarly, to the complexation reaction with natural gallium, two main radioactive species were
obtained with a retention time of 4.7 and 5.1 min, respectively. Based on the data gathered for the
non-radioactive preparation, the peaks were assigned to two 68Ga-DOTA-C21 isomeric complexes. A
further peak at 5.3 min was recorded (ca. 4% of total radioactivity) and was likely due to a gallium-68
complexes with a degraded form of the precursor at labelling conditions. In both methods, the pH was
kept constant around 4.

2.3. In Vitro Stability Studies

In vitro stability of 68Ga-DOTA-C21 complexes in PBS, human serum (HS) and whole human
blood (HB) were determined according to peak integration of analytical UHPLC (Figure 5). Stability
of 68Ga-DOTA-C21 in PBS was more than 88 ± 3% after 120 min at 37 ◦C. In HS, the radiotracer
was also stable with 85 ± 3% of intact compound after 120 min of incubation. On the contrary, in
whole blood, 68Ga-DOTA-C21 was partially degraded to more polar metabolites already after 10 min
of incubation. The amount of intact compound ranged from 74 ± 2% after 10 min to 57 ± 3% after
120 min of incubation.

2.4. Uptake, Internalization and Efflux in Colorectal Cancer Cell Line

In vitro 68Ga-DOTA-C21 uptake studies demonstrated time-dependent cellular accumulation in
HT29 colorectal cancer cell line. Total uptake increased continuously in the first 60 min of incubation
up to 121 ± 4 KBq of radiotracer per mg of protein (n = 3). At 60 min post incubation, 83% of
total radioactivity was internalized in the cells. Conversely, 68GaCl3, used as a negative control,
demonstrated significantly lower in vitro cell uptake (20 ± 4 KBq/mg of protein after 60 min of
incubation, n = 3) confirming the curcuminoid-mediated uptake by HT29 cells (Figure 6A,B). The
cellular uptake of 68Ga-DOTA-C21 is comparable to that of the compound obtained by direct labelling
of curcumin with gallium-68 (i.e., 68Ga(CUR)2 complexes [15]), however the internalized fraction
was more than doubled. To test for receptor-mediated uptake, HT29 cells were preincubated with a
200-fold excess of calcitriol, the natural ligand for vitamin D receptor (VDR), and then 68Ga-DOTA-C21
was added. The experiments were performed to assess whether 68Ga-DOTA-C21 uptake was mediated
by VDR since it has been reported that curcumin has a structure suitable to bind nuclear vitamin D
receptor. The difference between uptake with or without calcitriol was not statistically significant
(n = 3, Figure 6C) suggesting that the VDR receptor was not involved in the uptake or that the receptor
cannot be saturated in these conditions.
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Figure 6. Uptake and internalization at different time points of 68Ga-DOTA-C21 in HT-29 colorectal
cancer cell line (n = 3, mean ± SD) (A). Comparison between the uptake of 68Ga-DOTA-C21 and
68GaCl3 in HT-29 cells indicating curcumin structure dependent accumulation (n = 3, mean ± SD) (B).
Comparison between the uptake of 68Ga-DOTA-C21 and 68Ga-DOTA-C21 + calcitriol in HT-29 cells
(n = 3, mean ± SD) (C).

For efflux studies, cells were incubated with 68Ga-DOTA-C21 and the uptake was stopped after
60 min by removing the supernatant. Then, cells were washed, fresh medium was added and they
were incubated again for different periods of time. Media were collected and radioactivity released
from the cells was measured.68Ga-DOTA-C21 showed a slow externalization pattern with around 75%
(n = 3) of the radiotracer remaining within the cell after 60 min of incubation (Figure 7).
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2.5. PET Imaging and Biodistribution

HT29 tumour-bearing mice were injected i.p. with 68Ga-DOTA-C21 and PET/CT imaging was
taken 1 h and 2 h post injection (Figure 8). The following day, the same cohort of mice was injected i.v.
with 68Ga-DOTA-C21 and dynamic PET/CT imaging was registered for the first 10 min to assess initial
distribution of the tracer. The 1 h post injection time point was retaken to evaluate potential differences
in the biodistribution pathway related to the type of injection. Mice were sacrificed at 1.5 h post
injection, and ex-vivo biodistribution performed. As per PET/CT imaging analysis, upon i.v. injection,
68Ga-DOTA-C21 was taken up rapidly in the heart and liver, and began accumulating into the tumour
within the first minute of circulation. The tumour was immediately visible over background (muscle).
At 1 h post injection, tumour accumulation of the tracer was 2.27 ± 0.85% ID/cc (n = 3) with a tumour
to muscle ratio (T/M) of 1.91 ± 0.47 (n = 3). 68Ga-DOTA-C21 appeared to have both renal and hepatic
clearance. Radioactivity in the heart, which reflected the blood pool, was surprisingly high at 1 h post
injection (5.8 ± 0.7% ID/cc, n = 3). Similar biodistribution was observed when the tracer was delivered
i.p. At 1 h post injection, the tumour had an uptake of 1.89 ± 0.45% ID/cc (n = 5) and a T/M of 3.59 ±
2.76 (n = 5). At 2 h post injection, tumour uptake increased to 2.60 ± 0.27% ID/cc (n = 5) which was
reflected by an increase in the T/M to 5.41 ± 3.62 (n = 5) (Figure 9 and Figure S12A–C). It is worth
noting that, when analysing tumour uptake in each single animal, there was no appreciable variation
between 1 h and 2 h post injection in animals with an initial low tumour uptake. On the contrary,
animals with a tumour uptake greater than 4% ID/cc after one hour, tended to accumulate more
radiotracer (Figure S12D). No correlation was found between T/M ratio and tumour size (Figure S12E).
Ex-vivo biodistribution confirmed the described accumulation (Figure 9). Tumour uptake was 3.08 ±
0.53% ID/cc (n = 5) with a T/M of 2.29 ± 0.62 (n = 5). As already observed by PET, clearance occurred
via both renal and hepatobiliary excretion, bone uptake was barely detectable over background and
no significant radioactivity was seen in the intracranial region, suggesting that 68Ga-DOTA-C21 is
unlikely to cross an intact blood–brain barrier. Blood radioactivity was high, suggesting that a high
amount of the radiotracer was in circulation or bound to blood constituents such as serum albumin.
Further studies evaluating the clearance mechanism of 68Ga-DOTA-C21 are underway to understand
the high blood circulation, however one explanation may be that 68Ga-DOTA-C21 pharmacokinetics
follow a two-compartment model [20,21].
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Figure 9. Biodistribution in multiple organs of 68Ga-DOTA-C21 in HT-29 colorectal cancer bearing
nude mice (n = 5, mean ± SD) at 90 min post i.v. injection. (A). Ratios of the tumour uptake to major
organs (n = 5, mean ± SD) for 68Ga-DOTA-C21 at 90 min post i.v. injection (B).
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2.6. Metabolism

Mouse blood was drawn 1.25–1.5 h post injection, processed and analysed by radio-HPLC. Out of
the two isomers present in the parent compound, one disappears in the blood and only the more polar
one (Rt = 7.7 min) persists in all the analysed mice (n = 5) (Figure S13). It is likely that physiological
media influence the keto-enol tautomerism of 68Ga-DOTA-C21, stabilizing the diketo form [18].

3. Discussion

The use of curcumin and its derivatives as potential therapeutics in many medical applications
has been largely attested by a long list of scientific literature [22–24]. We previously demonstrated
that 68Ga-labelled curcumin complexes had preferential accumulation in HT29 colorectal cancer cells
compared to other cancer cell lines and lymphocyte cultures [15]. However, the stability of these
complexes in blood was low as the curcuminoid backbone was directly linked to the radio-metal
through the keto-enol moiety, resulting in positively charged 2:1 ligand to metal ratio complexes. The
present study is focused on evaluating whether a suitable curcumin derivative that is more stably
labeled with gallium-68 provides a radiotracer that preferentially accumulates in CRC lesions, and
could be a useful early detection agent which enables nuclear medicine imaging techniques. CRC is
globally the third most common type of cancer and is usually diagnosed by invasive techniques like
sigmoidoscopy or colonoscopy, during which a colon specimen is collected. These procedures are then
followed by medical imaging (usually CT scan) to determine if the disease has spread. While small
polyps may be removed during colonoscopy, the cancerous state of large polyps may be assessed by a
biopsy [25]. The introduction of a PET radiotracer that specifically accumulates in CRC might be useful
for verifying the nature of these lesions without resort to invasive methods. Moreover, treatments
used for colorectal cancer may include some combination of surgery, radiation therapy, chemotherapy
and targeted therapy and nuclear medicine imaging may be a suitable technique to stage and assess
follow-up of the patients.

In the present study, the structure of the first generation of gallium-68 curcumin complexes
has been improved by adding DOTA, a strong gallium-68 chelator. DOTA was linked through an
(amino)ethyl spacer to one of the phenol groups of the curcumin backbone. With the addition of DOTA,
the new bio-conjugate (namely DOTA-C21) has an enhanced water solubility and a higher stability of
the complex with gallium-68 is achieved in physiological conditions. Despite its solubility in water,
1H-NMR spectrum of DOTA-C21 in D2O (Figure S2A) exhibited extremely broad signals in the aromatic
region, suggesting that the hydrophobic backbone of curcumin interacted strongly by intramolecular
π−π stacking. The signals could be sharpened by reducing the solvent polarity, for example, switching
to methanol-d4, which reduced aggregation. The 1H-NMR spectrum in methanol-d4 (Figure S2B)
provided signals in the aromatic region attributable to the asymmetric curcumin moiety of DOTA-C21,
while methylene signals of the ethyl spacer and DOTA were found in the aliphatic region (3–4.5 ppm).
The structure of curcumin in DOTA-C21 is asymmetric due to the alkylation of one phenol group
with the (amino)ethyl spacer, as clearly shown by two slightly shifted spin systems with equivalent
spectral pattern (Figures S2, S3). Complete assignment and chemical structure with atom numbering is
reported in Section 4.1.1.

As shown in the ESI-LC-MS analysis (Figure S1), DOTA-C21 was present in two isomeric forms
that could be assigned to the keto-enol and di-keto tautomer, respectively [17,18]. As the equilibrium
was influenced by solvent polarity and pH, the ratio between the two forms could vary over the
different analysis conditions. Due to the rapid interconversion between the two isomeric forms also in
physiological conditions, it was not expected that the two isomers exhibited different in vivo properties
but this assumption should be verified with further studies.

When Ga-DOTA-C21 complexes were synthesized mimicking the radiolabelling experimental
conditions (95 ◦C, 30 min, L:M 1.5:1, 0.4 M NH4Ac), complex formation was confirmed by mass
spectrometry and two compounds with the same m/z, corresponding to gallium-DOTA-C21 complexes
at 1:1 metal to ligand molar ratio, were identified by ESI-LC/MS (Figure S4). The isotopic pattern
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(dashed square, Figures S4C and S5) highlighted the presence of gallium with its characteristic isotopic
distribution in both compounds. Further LC/MS fragmentation experiments were carried out in order
to exclude the involvement of the keto-enol moiety in the coordination sphere. As reported in Figure 3,
the fragmentation pattern of the two isobaric peaks (panels B and C) were completely equivalent and
could be attributed to cleavage of the curcumin structure, while gallium was always strongly bound
by DOTA (Figure 10). This finding supported the hypothesis that the two isobaric peaks were due to
the keto-enol and di-keto tautomers and not to different coordination modes.
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To elucidate chelation mode and binding sites in depth, 1H-NMR titration of DOTA-C21 with
Ga3+ was performed in methanol-d4 at 25 ◦C (Figure S6). The signals at 3.2 ppm (methylene groups
of tetraazacyclododecane) and at 3.87 ppm (methylene groups in α to carboxylic groups) in the free
ligand broadened and shifted at the first Ga3 + addition, suggesting the involvement of the chelator in
gallium coordination. A complete overview of 1:1 metal to ligand molar ratio complex formation for
both proton and carbon resonances was shown by the overlap of 1H-,13C-HSQC-NMR spectra of the
free ligand (DOTA-C21) and its gallium complex (Ga-DOTA-C21) (Figure 2). The metal coordination
induces a de-shielding effect on all methylene groups of the chelator ring resulting in an increase
of both proton and carbon chemical shifts. Particularly, metal complexation removes chemical shift
equivalence of ring methylene protons, as clearly showed by 1H-,1H-COSY and 1H-,13C-HSQC-NMR
spectra (Figure S7 and Figure 4). Methylene group r1 shifts from 1H/13C δ (ppm) 3.35/49.77 to
4.00/54.65 and 3.38/54.65, respectively. A lower shift is observed for methylene group r2 from
1H/13C δ (ppm) 3.26/49.64 to 3.47/57.11 and 3.41/57.11, respectively. These outcomes suggest the
assignment of type r1 to those methylene groups in α position to carboxylic moiety directly involved
in metal coordination (atom numbering 17, 18, 21 and 22). All atom numbering herein reported refers
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to Figures 11 and 12), while r2 type can be attributed to those methylene groups in α position to
non-coordinating carboxylic (amidic) moiety (atom numbering 16, 19, 20 and 23). Methylene groups of
the carboxylic arms in α to both nitrogen and carboxylic (amidic) moiety undergo the effect of metal
coordination in a different way if the carboxylic group is involved in coordination or not. As shown in
Figure 4, methylenes of the carboxylic arms shift from 1H/13C δ (ppm) 3.75–3.87/54.20 to 3.83/59.41,
3.79/60.64 and 3.74/61.68, respectively. Conversely, the chemical shifts of the ethyl spacer (H12 and
H13) are unaffected by metal coordination.Molecules 2019, 24, x 14 of 21 
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Curcumin and curcuminoids act as fluorophores in the visible spectrum with strong solvent
dependence, and consequently may be employed as fluorescent probes for distribution studies in
cells and tissues. The typical main absorbance, due to the keto-enol group, was around 420 nm
and the emission was around 500 nm, when excited at 420 nm wavelength [14]. In particular, the
absorption of DOTA-C21 showed a maximum at 410 nm in water solution. When a titration with Ga3 +

was performed, no variations were observed at λmax suggesting that the keto-enol moiety was not
involved in gallium complexation. On the other hand, an increase in absorbance around 300 nm upon
metal addition was detected, supporting that DOTA was the main moiety involved in metal chelation
(Figure S9). The free ligand showed weak fluorescence emission upon excitation at λmax (410 nm)
with a maximum at 525 nm (Figure S10). These results differ from previously reported curcumin
studies. In fact, while fluorescence quenching occurred due to gallium chelation by the keto-enol
moiety [14], herein, emission spectra of DOTA-C21 were only slightly affected by gallium addition.
This opposite behaviour furthermore confirmed the involvement of DOTA in gallium chelation rather
than the keto-enol group, confirming what was seen by MS and NMR analyses.
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Initially, DOTA-C21 was labelled with gallium-68 by preprocessing the generator elution by cation
exchange purification [26]. This resulted in efficient labelling with high RCY and RCP after 5 min
of incubation of just 10 nmol of precursor. In order to simplify the procedure, labelling was also
attempted without preprocessing of the generator elutions. In these conditions, labelling was less
effective, further purification of the final product was necessary due to the presence of high amounts
of hydrolysed products, and 80 nmol of precursor was needed to drive the reaction to completion.
This behavior could be ascribed to the presence of high levels of metal impurities that come from the
generator and potentially compete with gallium-68 in the coordination with DOTA [19]. It is worth
noting, that DOTA is known to have slow kinetics of complexation and requires harsh conditions for
labelling. For these reasons, use of DOTA as a chelator for gallium-68 may enhance hydrolysis of the
product and decomposition of the precursor. Use of chelators with smaller cavities such as NOTA and
derivatives, or some acyclic chelators recently reported in literature such as HBED-CC or THP, would
likely resolve these problems [27].

Similar to other gallium-68 labelled curcuminoid derivatives reported in literature [15] but
differently from 68GaCl3, 68Ga-DOTA-C21 exhibited a time-dependent uptake in HT29 cells suggesting
a relationship between the curcumin-like structure and the ability of the cells to bind and internalize the
radiotracers. In particular, the addition of a specific chelator connected to a phenolic moiety appears
to be advantageous for the internalization of the compound when compared to the our previously
reported tracers where the keto-enol group was exploited to form gallium-68 complexes [15]. Once
internalized or bound to the cell membrane, 68Ga-DOTA-C21 showed a slow efflux rate and 75% of
the compound was still retained by the cells after 60 min of incubation. The mechanism by which
curcumin or its derivatives are taken up in colorectal tumours has not been elucidated so far. It has
been reported that curcumin has a structure suitable to bind nuclear vitamin D receptor and plays a role
in colon cancer chemoprevention thanks to this property [28,29] but no specific experiments have been
performed by the authors to confirm this finding. To test the hypothesis of VDR-mediated curcumin
uptake, we analysed the VDR expression in HT29 cells and we found that this expression was higher
than in other tumour cell lines and human lymphocytes. Then, to assess VDR-specificity, calcitriol, the
hormonally active metabolite of vitamin D and VDR natural ligand, was used as a blocking agent. This
would clarify the potential involvement of these receptors in 68Ga-DOTA-C21 uptake. Unfortunately,
uptake of 68Ga-DOTA-C21 was not influenced by the presence of the excess of calcitriol (Figure 6C)
therefore providing evidence that curcumin and calcitrol are not competitive substrates for the same
binding site on VDR. In conclusion, seeing as this is a topic of great interest, further studies are
necessary to evaluate the cellular uptake mechanism of curcumin and its radiolabelled derivatives.
When the mechanism of accumulation will be elucidated, considerations about the structure-affinity of
68Ga-DOTA-C21 in comparison to other compounds will be possible.

The stability tests in whole blood (Figure 7) attested to a certain lability of the curcumin backbone
that was probably partially metabolized into more polar products, which then underwent renal
excretion in physiological conditions, as proved during the biodistribution study (kidney uptake 11.86
± 1.1% ID/g at 1.5 h post injection). However, it was shown that 57± 3% of 68Ga-DOTA-C21 complexes
remained intact after 120 min of incubation in human blood, comparing favourably with our other
previously reported gallium-68 complexes [14], where the metal, coordinated by the keto-enol moiety,
was rapidly released. Stability of 68Ga-DOTA-C21 in mouse blood appears comparable, if not superior,
to previously reported F-18 labelled curcumin derivatives where the amount of unchanged radiotracer
in rat plasma after 10 min post injection comprised only 45% of the total injected radioactivity [30].
68Ga-DOTA-C21 exhibited a slow absorption rate into the main organs and a high amount of activity
(12.73 ± 1.9% ID/g) was recorded in blood after 1.5 h post injection suggesting a strong binding
interaction with serum albumin as reported for curcumin and their derivatives in general [30,31].
Significant uptake of 68Ga-DOTA-C21 occurred in the intestine (13.56 ± 3.3% ID/g), lungs (8.42
± 0.8% ID/g), liver (5.81 ± 0.5% ID/g) and heart (4.70 ± 0.4% ID/g). 68Ga-DOTA-C21 rapidly
accumulated in colorectal xenograft tumours with an uptake of 3.57 ± 0.3% ID/g after 1.5 h post
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injection. Compared to previously reported 18F-labelled curcumin derivatives, which exhibit fast
clearance from the blood to the liver and fast hepatobiliary excretion to the intestine, 68Ga-DOTA-C21
blood clearance was slow and it showed both renal and hepatobiliary excretion. Generally, higher
kidney and lower intestine uptake with respect to the fluorinated compounds were found. However,
the amount of radiotracer accumulated in the intestine might still be a concern since it could mask the
colorectal cancer uptake in a potential human examination. Liver uptake was comparable, indicating
that 68Ga-DOTA-C21 remained partially metabolised, likely via hexahydrocurcumin-glucuroniside
conjugation route. Similar to 18F-radiolabelled compounds, brain uptake was almost negligible [30,32].

4. Materials and Methods

4.1. General Procedures and Chemicals

All chemicals were reagent grade and used without further purification unless otherwise specified.
Complete information related to general laboratory procedures and instrumental analyses are

reported in the Supplementary Information file.

4.1.1. Synthesis of 1,4,7,10-tetraazacyclododecane -1,4,7,10-tetraacetic
(1,7-bis(4-hydroxy-3-methoxyphenyl)- 1,6-heptadiene-3,5-dione (DOTA-C21)

An anhydrous DMF (4 mL) solution of curcumin (100 mg, 0.27 mmol) and potassium carbonate
(45 mg, 0.33 mmol) was added to 2-(Boc-amino)ethyl bromide (61 mg, 0.27 mmol). The mixture was
stirred for 48 h at room temperature and then concentrated under reduced pressure. The residue was
purified by flash silica-gel column chromatography (2% methanol/dichloromethane) to obtain compound
1 (16 mg, 12%) as a red-solid. 1H-NMR (600 MHz, CDCl3) δ 1.45 (s, 9H), 3.54–3.62 (m, 2H), 3.90 (s, 3H),
3.95 (s, 3H), 4.08–4.12 (m, 2H), 5.16–5.18 (m, 1H), 5.79 (s, 1H), 5.85 (s, 1H), 6.49 (dd, 2H, J = 6.0, 16.00 Hz),
6.92 (dd, 2H, J = 8.0, 15.6 Hz), 7.10 (ddd, 4H, J = 2.0, 5.6, 22.4 Hz), 7. 60 (d, 2H, J = 16.0 Hz).

An anhydrous dichloromethane (2.4 mL) solution of 1 (10.6 mg, 0.02 mmol) was added to TFA
(0.6 mL). The mixture was sonicated for 20 min and then concentrated under reduced pressure. The
residue was dissolved in DMF (3 mL) and diisopropylethylamine (21 µL, 0.12 mmol) and DOTA-NHS
ester (19 mg, 0.025 mmol) were added. The mixture was stirred overnight at room temperature,
and then concentrated under reduced pressure. The residue was purified by flash silica-gel column
chromatography (20–40% acetonitrile/water containing 0.1% TFA) and freeze-dried to obtain 2 (10 mg,
38.5%) as a yellow-red colour solid. MS (ESI) m/z 798.4 [M + H]+.

1H-NMR (600 MHz, MeOD-d4) δ: 3.2–3.3 (H16→H23, m broad, 16H), 3.87 (H15/H24/H25/H26,
m broad, 8H), 3.65 (H13, t, 2H), 3.93 (H11′, s, 3H), 3.94 (H11, s, 3H), 4.17 (H12, t, 2H), 6.00 (H1, s, 1H),
6.66 (H4′, d, 1H), 6.70 (H4, d, 1H), 6.85 (H9′, d, 1H), 7.05 (H9, d, 1H), 7.14 (H10′, dd, 1H), 7.22 (H10,
dd, 1H), 7.24 (H6′, d, 1H), 7.29 (H6, d, 1H), 7.61 (H3′, d, 1H), 7.62 (H3, d, 1H). 13C-NMR (150.9 MHz,
MeOD-d4) δ: 184.0 (C2′), 182.7 (C2), 150.1 (C8), 149.6 (C7), 149.2 (C8′), 148.0 (C7′), 141.1 (C3), 140.0
(C3′), 128.8 (C5), 127.1 (C5′), 122.8 (C10′), 122.5 (C10), 122.0 (C4), 120.8 (C4′), 115.2 (C9′), 113.0 (C9),
110.4 (C6/C6′), 100.7 (C1), 67.0 (C12), 55.2 (C11′), 55.1 (C11), 54.4 (C15), 54.1 (C24/C25/C26), 50.0
(C16→C23), 38.6 (C13). Atom numbering refers to Figure 11.

4.1.2. Preparation of natGa-DOTA-C21 Complexes

Compound 2 was dissolved in 0.4 M ammonium acetate (450 µg of ligand in 600 µL of buffer,
pH 4.5) and stirred at 95 ◦C for 5 min. Then, 85 µL of 10 mM Ga(NO3)3·9H2O solution were
added to the mixture in order to have a 1.5:1 metal to ligand molar ratio. The advancement of
the complexation reaction was monitored by ESI-LC-MS. Reaction was completed after 30 min of
heating (m/z 864.2–866.2). Complete data on chemical characterization of DOTA-C21 and its gallium
complexes are reported in the supplementary material (Figures S1–S10).
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4.2. Radiolabelling of DOTA-C21 with Gallium-68

Postprocessing based labelling protocol: 68Ge/68Ga generator (EZAG, Berlin, Germany) was
eluted with 5 mL 0.1 M HCl and gallium-68 was passed and fixed on a AG50W-X4, 200-400mesh
hydrogen form, cartridge (Bio-Rad, Milan, Italy). Gallium-68 was eluted with 0.4 mL of a 97.56%
acetone, 0.05 M HCl solution and an aliquot (80 MBq) was added to a vial containing 10 nmol of
DOTA-C21 in a 0.2 M ammonium acetate solution (pH 4). The mixtures were incubated at 95 ◦C and
kinetic studies were performed at 1, 3, 5, 10 and 20 min by TLC analysis.

Direct labelling protocol: 68Ge/68Ga generators were manually eluted with 4 mL of HCl solution
(0.1 N or 0.05 N depending whether EZAG or ITG generator was used, respectively). 700 µL of eluates,
containing around 200 MBq of gallium-68, were collected in a disposable vial containing 80 nmol of
precursors and 65 µL of a 1.5 M sodium acetate in order to maintain the pH of the reaction around 4.
The mixture was heated at 95 ◦C up to 10 min and consequently passed through a light C18 cartridge
(Waters, Milan, Italy) to eliminate unlabelled gallium-68 and polar by-products. The cartridge was
washed with 3 mL of saline and 1 mL of 10% ethanol solution and then eluted with 1 mL of 95%
ethanol solution followed by 2 mL water. Aliquots of the crude mixture and of the final product after
purification were collected to assess the radiochemical purity of the product (RCP) by UHPLC analysis.
Every preparation was performed at least in triplicate and all the incorporation yields were computed
by considering the radiochemical purity (RCP) obtained from the UHPLC or TLC analyses.

4.3. In Vitro Stability Studies

For assessing the stability, aliquots of 68Ga-DOTA-C21 solution (1 mL, approx. 5 nmol, 37 MBq)
were incubated with 1 mL of i) PBS (0.2M pH = 7.2), ii) human serum (HS), iii) human whole blood (HB)
at 37 ◦C for different time points (10, 40, 70, 120 min). Samples incubated with HB were centrifuged at
3000 rpm for 10 min to precipitate the blood cells and a solution (200 µL) of ACN/H2O/TFA 50/45/5
v/v/v was added to 400 µL of the supernatant. Samples incubated with HS were treated only with
ACN/H2O/TFA 50/45/5 v/v/v solution. After another centrifugation under the same conditions, the
supernatant was injected into an UPLC for assessing the stability of the preparation.

4.4. Cell Culture and Animal Models

HT29 (colorectal adenocarcinoma) cells were kindly provided by Dr Alessandro Zerbini from the
Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma (Parma, Italy).
The cells were grown in DMEM + 10% FBS supplemented with penicillin and streptomycin at 37 ◦C in
a 5% CO2 incubator. To determine protein yield, cells were lysed with a radio immune-precipitation
assay (RIPA) buffer (Santa Cruz Biotechnology) and protein concentration was determined with the
detergent compatible (DC) protein assay (Bio-Rad) following the manufacturer’s instructions using
bovine serum albumin as protein standard.

All animal experiments were performed in compliance with the guidelines for the care and use of
research animals established by The University of Texas MD Anderson Cancer Center (ethic approval
number 1179). Mice were maintained in sterile conditions and could eat and drink ad libitum. Mice
were housed in a 12 h light-dark cycle. Adult female mice (athymic nude, Taconic Biosciences, 7–8
weeks old) were injected subcutaneously with 9 × 106 HT29 cells in 50% matrigel on the right flank.

4.5. In Vitro Uptake, Internalization and Efflux in Colorectal Cancer Cell Line

Cellular uptake, internalization, blocking and efflux of 68Ga-DOTA-C21 were studied in HT29
colon carcinoma cells. All experiments were performed in triplicate (unless otherwise stated). For
uptake studies, HT29 cells were incubated at 37 ◦C with 20 µL (ca. 2 MBq, 0.2 nmol, 0.1 µM final
concentration) of 68Ga-DOTA-C21 and 68GaCl3 as a negative control. For blocking experiments HT29
cells were preincubated for 1 h at 37 ◦C with 100 µL of 1 mg/mL calcitriol solution and then with
20 µL (ca. 2 MBq, 0.2 nmol, 0.1 µM final concentration) of 68Ga-DOTA-C21. Uptake was stopped after
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5, 10, 30 and 60 min by removing the medium and the cells were washed twice with ice-cold PBS
or 0.1 M (pH 2.9) ice-cold glycine solution for discriminating between the total bound activity and
the internalized activity, respectively. Finally, the cells were detached with 2 mL of trypsin/EDTA
0.25% solution at 37 ◦C and centrifuged in order to separate the supernatant from the cells pellet. The
radioactivity associated to the pellets was measured in the dose calibrator and normalized for the
protein contents. For efflux studies, cells were incubated with 20 µL (ca. 2 MBq, 0.2 nmol, 0.1 µM
final concentration) of 68Ga-DOTA-C21 for 1 h at 37 ◦C. The uptake was stopped by removing the
supernatant and cells were washed twice with ice-cold PBS. Then 1 mL of fresh prewarmed (37 ◦C)
medium was added and cells were newly incubated at 37 ◦C for 5, 10, 30, 60 min. After these time
points, the media were collected and the radioactivity released from the cells was measured in the
dose calibrator.

4.6. Biodistribution of 68Ga-DOTA-C21

68Ga-DOTA-C21 biodistribution was determined in mice bearing HT29 subcutaneous tumour
model (n = 5) at 1.5 h post tail vein injection of 3.7 MBq (1 mL, 0.2 µM solution) of radiotracer. Blood
samples were drawn from the right leg using a femoral vein puncture as well as an intra-cardiac
puncture to draw blood from the heart to assess the in vivo stability of the radiotracer. The animals
were euthanized using 2% isoflurane and exsanguinated, and the thoracic cavity opened. Organs
were excised, washed with saline, dried with absorbent tissue paper, counted on a gamma-counter
(Packard BioScience Cobra II Auto-Gamma, Meriden, USA) and weighed. Organs of interest included:
tumour, heart, spleen, lungs, liver, kidneys, stomach, small intestine, large intestine, muscle, bone and
brain. The uptake in each organ was calculated as a percentage of the injected dose per gram of tissue
(% ID/g). Blood samples were immediately centrifuged to precipitate the blood cells and a solution
(200 µL) of ACN/H2O/TFA 50/45/5 v/v/v was added to 400 µL of the supernatant. After a further
centrifugation, the extracted solution was injected into an HPLC.

4.7. PET Imaging of Tumour Bearing Mice and Analysis

Mice were briefly anaesthetized (<5 min) using 1% to 2% isoflurane with O2 as a carrier. Mice
were injected i.v. or i.p. with 68Ga-DOTA-C21 in sterile phosphate-buffered saline (PBS) (10% EtOH
or 50% EtOH respectively) with a target of 3.7 MBq (1 mL, 0.2 µM solution) per mouse. Actual
injected dose was calculated based on measuring the pre and postinjection activity in the syringe
with a dose calibrator (Capintec, Florham Park, NJ, USA). Mice were then returned to their cages,
quickly became ambulatory and could move freely, eat and drink ad libitum for ~45 min. Mice were
then anaesthetized using 1% and 3% isoflurane, transferred to a preclinical PET/SPECT/CT system
(Albira PET/SPECT/CT, Bruker, Ettlingen, Germany) and maintained at 0.5% to 2% isoflurane with
continuous monitoring of respiration during the acquisition. PET images were acquired for 10 min
using a 15 cm FOV centred on the tumour; CT images were acquired for fusion using a 7 cm FOV
also centred on the tumour. The same procedure was repeated for the 1h and 2 h PET/CT scan. The
10 min PET/CT dynamic scan was recorded immediately after injection of the tracer, and then mice
were allowed to awake and freely move around their cages until the 1 h time point. Images were
reconstructed using MLEM and FBP for PET and CT, respectively, and automatically fused by the
software. Image data were decay corrected to injection time (Albira, Bruker, Ettlingen, Germany) and
expressed as % ID/cc (PMOD, PMOD Technologies). Tumour-to-muscle ratios (T/M) were calculated
by dividing the activity present in the tumour by the activity present in the muscle.

4.8. Statistical Analysis

Student’s t-test was used to determine whether there were any statistically significant differences
between the means of two independent (unrelated) groups. The threshold for statistical significance
was set at p < 0.05.
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5. Conclusions

The new DOTA derivative of curcumin (DOTA-C21) displayed coordinating property typical of
DOTA structure, with the involvement of nitrogen atoms of the rings and two carboxylic arms, as
demonstrated by NMR and MS analysis. Gallium-68 labelling conditions are harsh (95 ◦C, 5′), however
they provide good RCY and RCP in spite of the methods used for the reaction (prepurification of the
eluate or direct labelling and postpurification). Despite high instability of curcumin in physiological
conditions, stability of 68Ga-DOTA-C21 in mouse blood appears comparable, if not superior, to
previously reported 18F-labelled curcumin derivatives, and these data are compatible with diagnostic
applications. 68Ga-DOTA-C21 rapidly accumulated in colorectal xenograft tumours but after 1.5 h post
injection, exhibits a slow absorption rate into the main organs and a high amount of activity in blood.
Unfortunately, the high uptake in blood, liver and intestines prevents the direct use of this derivatives
as an imaging agent for colorectal cancer. However, further studies are needed to understand the
mechanism of accumulation of 68Ga-DOTA-C21 and to design strategies to increase its selectivity
for colorectal tumour since the molecular structure of this radiotracer is an interesting foundation to
develop further compounds with improved stability and pharmacokinetics.

Supplementary Materials: The following supplementary materials are available online http://www.mdpi.com/
1420-3049/24/3/644/s1: Chemical characterization of ligand and complexes, Quality controls on radioactive
preparations, Figure S1: ESI-LC-MS analysis of DOTA-C21,Figure S2: 1H-NMR spectra of DOTA-C21 in D2O and
in MeOD-d4 at 25 ◦C, Figure S3: 13C-NMR spectra of DOTA-C21 in MeOD-d4 at 25 ◦C, Figure S4: ESI-LC/MS
analysis of Ga-DOTA-C21, Figure S5: Detailed ESI-LC/MS of one Ga-DOTA-C21 isomer, Figure S6: 1H-NMR
titration of DOTA-C21 with Ga3+, Figure S7: Aliphatic region of 1H-,1H-COSY-NMR spectrum of Ga-DOTA-C21
in MeOD-d4 at 25 ◦C ([DOTA-C21] = 0.63 mM), Figure S8: LC/MS fragmentation experiments on curcumin, Figure
S9: UV–vis absorption spectra of the system Ga3+/DOTA-C21, Figure S10: Fluorescence emission spectra of the
system Ga3 + /DOTA-C21,Figure S11: TLC analyses of 68Ga-DOTA-C21 prepared by using the post processing
method, Figure S12: Average biodistribution of 68Ga-DOTA-C21 extracted from micro-PET data at various time
points post i.p. and i.v. injection. Correlation between T/M ratio and tumour size, Figure S13: In vivo stability of
68Ga-DOTA-C21 in murine blood samples.
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Abbreviations

PBS phosphate buffer saline
i.p. intra-peritoneal injection
i.v. intra-venous injection
DOTA-NHS tetraazacyclododecane-1,4,7,10-tetraacetic acid mono-N-hydroxysuccinimide ester
ESI-LC/MS liquid chromatography/mass spectrometry electrospray ionisation
NH4Ac ammonium acetate
NMR nuclear magnetic resonance
HBED-CC: N,N’-Bis(2-hydroxy-5-(ethylene-beta-carboxy)benzyl)ethylenediamine N,N’-diacetic acid
THP tris(hydroxypyridinone)
TLC thin layer chromatography; SPE: solid phase extraction
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UHPLC ultra-high performance liquid chromatography
RCP radiochemical purity
RCY radiochemical yield
DMF: N,N-dimethylformamide
ACN Acetonitrile
TFA trifluoroacetic acid
DMEM Dulbecco modified eagle medium
FBS fetal bovine serum
EDTA ethylenediaminetetraacetic acid

PET/SPECT/CT
positron emission tomography/single photon emission computed tomography/computed
tomography

FOV field of view; MLEM: maximum likelihood expectation maximization
FBP filtered back projection
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