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1 Introduction

Recently, a simplified version of the path integral for the quantum mechanics of particles

on maximally symmetric spaces has been constructed [1, 2]. It realizes an old proposal [3],

which suggests a peculiar use of Riemann normal coordinates to trade the nonlinear kinetic

term of the classical action of the particle with a purely quadratic kinetic term (linear sigma

model) at the expense of introducing a suitable effective scalar potential. The conjecture

was originally made for an arbitrary curved space, but the explicit proof presented in [1, 2]

works only for spaces with maximal symmetry. The more subtle question of its validity on

arbitrary geometries remains open, though a positive answer seems unlikely.

In the present paper we extend the construction to a N = 1 supersymmetric quantum

mechanics, so that the resulting path integral can be used in a first quantized description

of a Dirac fermion. In particular, we use the new path integral to compute the type-A

trace anomalies of a Dirac field, up to d = 16 dimensions, extending analogous calculations

performed in [1, 2] for the conformal scalar.

Other methods for identifying the type-A trace anomalies for the spin-1/2 field in

higher dimensions are probably more efficient. One may use the zeta function approach

as in [4, 5], or the AdS/CFT holographic paradigm as in [6], which extended to spin 1/2

the scalar case treated in [7, 8]. However, the path integral method has a clearer physical

interpretation. It is a calculation from first principles, in which the particle producing the

one-loop anomaly performs its virtual loop. This visualization makes the method more

intuitive and flexible, allowing to study many other observables, as typical in the worldline

formalism. The latter employs worldline path integral to represent and compute effective

actions and scattering amplitudes, see [9] for a review in flat space, refs. [10–17] for recent
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applications to gauge theories, refs. [18–25] for extensions to curved spaces, and refs. [26–

31] for applications to higher spin theories. Our main motivation for the present paper is to

search for simpler methods for improving the efficiency of worldline calculations in curved

spaces. The case of type-A trace anomalies is both a useful check as well as an interesting

issue to investigate.

Thus, in section 2 we present a quick review of the scalar particle, which we then

extended to the N = 1 supersymmetric version of the model. In section 3 we compute the

perturbative expansion of the path integral for periodic (antiperiodic) boundary condition

for worldline bosons (fermions), as appropriate for addressing one-loop quantities in world-

line applications, and in section 4 we present an application of the simplified path integral

to identify the type-A trace anomalies of a Dirac fermion (correcting a minor misprint for

the spinor trace anomaly in d = 12 found in the literature). We verify our results for

the anomalies with the zeta function and holographic formulas mentioned above. Even-

tually, we present our conclusions and outlook in section 5. To make the presentation

self-contained we list in appendix A the relevant formulas for various geometrical objects

of maximally symmetric spaces in Riemann normal coordinates, and in appendix B we

report a list of the Wick contractions used in the main text.

2 Construction

A nonrelativistic particle of unit mass in a curved d-dimensional space has a lagrangian

that takes the form of a nonlinear sigma model

L(x, ẋ) =
1

2
gij(x)ẋiẋj (2.1)

and corresponding hamiltonian

H(x, p) =
1

2
gij(x)pipj (2.2)

where gij(x) is the metric in an arbitrary coordinate system, ẋi = dxi

dt , and pi the momenta

conjugated to xi. Canonical quantization produces a quantum hamiltonian

Ĥξ(x̂, p̂) =
1

2
g−

1
4 (x̂)p̂ig

1
2 (x̂)gij(x̂)p̂jg

− 1
4 (x̂) +

ξ

2
R(x̂) (2.3)

where hats denote operators. Ordering ambiguities have been partially fixed by requiring

background coordinate invariance, leaving only a possible nonminimal coupling propor-

tional to the scalar curvature R and parametrized by the coupling constant ξ. For simplicity

we set the coupling ξ = 0 (minimal coupling). Other couplings, such as the conformal cou-

pling ξ = d−2
4(d−1) or the value ξ = 1

4 that allows for a N = 1 supersymmetrization (it appears

in the square of the Dirac operator), can be reintroduced by adding a scalar potential.

To obtain the simplified path integral, one starts by studying the evolution operator

in euclidean time β (the heat kernel)

K̂(β) = e−βĤ (2.4)
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where Ĥ ≡ Ĥ0 is the hamiltonian operator with minimal coupling, which satisfies the

heat equation

− ∂βK̂(β) = ĤK̂(β) , K̂(0) = 1 . (2.5)

Using position eigenstates

x̂i|x〉 = xi|x〉 , 〈x|x′〉 =
δ(d)(x− x′)√

g(x)
, (2.6)

and corresponding resolution of the identity

1 =

∫
ddx
√
g(x) |x〉〈x| , (2.7)

one constructs scalar wave functions ψ(x) = 〈x|ψ〉 for any vector |ψ〉 of the Hilbert space.

In particular, the matrix element of the evolution operator

K(x, x′;β) = 〈x|e−βĤ |x′〉 (2.8)

gives a biscalar under change of coordinates, and the heat equation takes the form

− ∂βK(x, x′;β) = −1

2
∇2
xK(x, x′;β) , K(x, x′; 0) =

δ(d)(x− x′)√
g(x)

, (2.9)

where∇2
x is the scalar laplacian∇2 = 1√

g∂i
√
ggij∂j acting on the x coordinates. Its solution

has a well-defined path integral representation in terms of the nonlinear sigma model, see

for example [32]. However, one can manipulate the heat equation to obtain a simplified

equation admitting a path integral representation in terms of a linear sigma model. This

is done as follows. One first transforms the transition amplitude into a bidensity

K(x, x′, β) = g
1
4 (x)K(x, x′, β)g

1
4 (x′) , (2.10)

for which the heat equation takes the form

−∂βK(x, x′;β) = −1

2
g

1
4 (x)∇2

x

(
g−

1
4 (x)K(x, x′;β)

)
, K(x, x′; 0) = δ(d)(x−x′) . (2.11)

Then, one evaluates the differential operator appearing on the right hand side of this

equation to obtain the identity

− 1

2
g

1
4∇2 g−

1
4 = −1

2
∂ig

ij∂j + V0 , (2.12)

with derivatives that act through, except in the effective scalar potential V0 given by

V0 = −1

2
g−

1
4∂i
√
ggij∂jg

− 1
4 , (2.13)

where all derivatives stop after acting on the last function. Thus the heat equation reads

− ∂βK(x, x′;β) =
(
− 1

2
∂ig

ij(x)∂j + V0(x)
)
K(x, x′;β) . (2.14)
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At this stage one restricts to maximally symmetric spaces, uses Riemann normal coordi-

nates centered at the initial point x′, and realizes that the metric gij(x), appearing in the

term ∂ig
ij(x)∂j , may be replaced by the constant metric δij . This chain of steps brings

one to consider the equivalent heat equation

− ∂βK(x, x′;β) =

(
− 1

2
δij∂i∂j + V0(x)

)
K(x, x′;β) , (2.15)

where the simplified hamiltonian operator H = −1
2δ
ij∂i∂j+V0(x) is interpreted as that of a

particle on a flat space (in cartesian coordinates), interacting with an effective potential V0

of quantum origin (it is proportional to ~2 in arbitrary units). Evidently, this last equation

admits a path integral representation in terms of a linear sigma model.

The replacement of gij(x) with δij is valid since by the hypothesis of maximal symme-

try, and using Riemann normal coordinates with origin at x′ (which then has a vanishing

value of its coordinates, namely x′i = 0), one deduces that K(x, 0;β) can only depend on

the radial coordinate

r =
√
δijxixj (2.16)

since there is no other possible tensor that may be used to contract the indices of the coor-

dinates xi to form a scalar.1 Then, using the explicit form of the metric (see appendix A,

eqs. (A.4)–(A.6)), one indeed verifies that

∂i(g
ij(x)∂jK(x, 0;β)) = δij∂i∂jK(x, 0;β) (2.17)

i.e. the validity of eq. (2.15) (again, we recall that in Riemann normal coordinates centered

at x′, the coordinates of the origin are x′i = 0)—see refs. [1, 2] for more details.

Thus, one ends up with the linear sigma model

L(x, ẋ) =
1

2
δij ẋ

iẋj + V0(x) (2.18)

that can be used instead of (2.1) in a path integral to evaluate the transition amplitude

K(x, 0;β) between an initial point x′i = 0 (taken as the origin of the Riemann normal

coordinates, that must be used in this set-up) and a final point xi in euclidean time β. As

the space is maximally symmetric, it is in particular homogeneous, and the origin can be

chosen in any desired point of the manifold. This just to point out that the initial point of

the heat kernel K(x, 0;β) can be kept arbitrary.

The effective potential can be explicitly evaluated on maximally symmetric spaces, and

for a sphere of radius a and mass parameter M = 1
a one finds

V0(x) = −1

2
g−

1
4∂i
√
ggij∂jg

− 1
4

=
(d− 1)

8

[
(d− 5)

4

(
f ′(r)

1 + f(r)

)2

+
1

1 + f(r)

(
(d− 1)

r
f ′(r) + f ′′(r)

)]

=
d(1− d)

12
M2 +

(d− 1)(d− 3)

48

(
5(Mr)2 − 3 +

(
(Mr)2 + 3

)
cos(2Mr)

)
r2 sin2(Mr)

(2.19)

1Note that in Riemann normal coordinates the metric takes the form given in (A.4), so that r2 ≡
δijx

ixj = gij(x)xixj .
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where we have used the explicit metric in (A.4) together with eq. (A.6). Note also that

the potential is an even function of the radial coordinate r =
√
δijxixj . The simplified

path integral based on the linear sigma model (2.18) has been tested and used extensively

in perturbative calculation in [1, 2], verifying its superior efficiency with respect to the

equivalent path integral based on the nonlinear sigma model, used for example in [33].

Let us now turn to the supersymmetric version of the particle mechanics, identified by

the (euclidean) lagrangian

L =
1

2
gij(x)ẋiẋj +

1

2
ψa(ψ̇a + ẋiωiab(x)ψb) (2.20)

where ψa are real Grassmann variables with flat indices, and ωiab is the spin connection

built from the vielbein eai . The fermionic variables ψa are the supersymmetric partners of

the coordinates xi. Upon quantization they lead to operators that satisfy the anticommu-

tation relations {
ψ̂a, ψ̂b

}
= δab , (2.21)

a Clifford algebra which can either be represented by the usual Dirac gamma matrices

(ψ̂a = 1√
2
γa, with {γa, γb} = 2δab), or treated by a fermionic path integral — we refer

to [19] and references therein for further details on this supersymmetric model, and on its

use in worldline calculations for Dirac fermions in background gravity. Here we just recall

that the spinning particle model was originally introduced in [34–36].

In the subsequent discussion we find it more useful to start our analysis using the

gamma matrices. The conserved quantum supersymmetric charge of the model is propor-

tional to the Dirac operator, and reads

Q̂ = − i√
2
/∇(ω) = − i√

2
γaeia(x)

(
∂i +

1

4
ωiab(x)γaγb

)
(2.22)

while the related quantum hamiltonian becomes

Ĥ = Q̂2 = −1

2
/∇2

= −1

2
gij(x)∇i(ω,Γ)∇j(ω) +

1

8
R , (2.23)

where we have indicated the connections present in the various covariant derivatives. Of

course, all these operators act on a spinorial wave function (a Dirac spinor).

The heat kernel associated to this hamiltonian

K = e−βĤ (2.24)

has quantum mechanical matrix elements

Kαα′(x, 0;β) = 〈x, α|e−βĤ |0, α′〉

where α, α′ are spinorial indices. In the following we will not show the spinorial indices

explicitly, and just remember that K is matrix-valued. Now, using the fact that the space

under consideration is maximally symmetric, one deduces that the heat kernel K(x, 0;β)
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can only be a function of x2, γaγ
a ∼ 1 and δiax

iγa. In addition, as the gamma matrices

appear only in even combinations (they are contained quadratically in the spin connections

inside the hamiltonian (2.23)), one finds that the dependence on δiax
iγa arises only through

its square

(δiax
iγa)2 = 1x2 (2.25)

which is again proportional to the identity matrix. Thus, the full heat kernel is proportional

to the identity, and must be a function of r =
√
δijxixj only,

K(x, 0;β) = 1U(r;β) . (2.26)

Equipped with this result let us analyze the heat equation satisfied by the bidensity

K(x, 0;β) = g1/4(x)K(x, 0;β)g1/4(0) , (2.27)

(the value g(0) = 1 is actually irrelevant) which is

−∂βK(x, 0;β) = g1/4(x)Ĥg−1/4(x)K(x, 0;β) . (2.28)

By expanding out the expression of the hamiltonian given in equation (2.23), we write

g1/4Ĥg−1/4 =− 1

2
g1/4∇2g−1/4

− 1

8
(∂iω

i
ab)γ

ab − 1

4
ωiabγ

ab∂i

− 1

32
ωiab ω

i
cd γ

abγcd +
1

8
R . (2.29)

Using the explicit expression of the spin connection (A.15), which satisfies the Fock-

Schwinger gauge (A.17), it is easy to check that the terms in the second line do not

contribute when applied to K̄ (they give rise to terms proportional to xiωiab ∼ 0, be-

cause of the Fock-Schwinger gauge), whereas the terms in the third line give expressions

proportional to 1. In particular we find

− 1

32
ωiab ω

i
cd γ

abγcd =
d− 1

8
M2

(
1− cos(Mr)

sin(Mr)

)2

1 . (2.30)

Thus, recalling eq. (2.12) and the possibility of replacing gij(x) with δij in the first term

of (2.12), we find that a simplified heat equation holds

−∂βK(x, 0;β) =

(
− 1

2
δij∂i∂j + V 1

2
(x)

)
K(x, 0;β) (2.31)

with

V 1
2
(x) = V0(x) +

d(d− 1)M2

8
+
d− 1

8
M2

(
1− cos(Mr)

sin(Mr)

)2

(2.32)

where the second addendum is just 1
8R, and V0(x) is given in (2.19).
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Expressions (2.31) and (2.32) are the crucial results. They allow to find a simplified

path integral. The message they carry is that the heat kernel of a spinorial operator on

maximally symmetric spaces, when written in Riemann normal coordinates, satisfies a flat

heat equation with the information on the curvature fully encoded in an effective potential,

just as it happens for the heat kernel of a scalar particle. As such it is straightforward to

represent it as the path integral of a linear sigma model

K(x, 0;β) = 1

∫ x(β)=x

x(0)=0
Dx e−S[x] , S[x] =

∫ β

0
dt

(
1

2
δij ẋ

i(t)ẋj(t) + V 1
2
(x(t))

)
(2.33)

with the effective potential V 1
2

given explicitly as a function of r =
√
δijxixj by

V 1
2
(x) =

d(d− 1)

24
M2 +

(d− 1)(d− 3)

48

(
5(Mr)2 − 3 +

(
(Mr)2 + 3

)
cos(2Mr)

)
r2 sin2(Mr)

+
(d− 1)

8
M2

(
1− cos(Mr)

sin(Mr)

)2

. (2.34)

Of course, one could reintroduce free worldline fermions ψa to represent the identity

with a Grassmann path integral, so to have the full linear sigma model lagrangian

L =
1

2
δij ẋ

iẋj +
1

2
ψaψ̇

a + V 1
2
(x) (2.35)

which may be compared with the original nonlinear sigma model we started with in

eq. (2.20). One could then use antiperiodic boundary conditions on the ψ’s to produce

the trace on the spinor indices, periodic boundary conditions to produce the trace with an

insertion of γ5, or more generally leave open boundary conditions. However, at this stage

this is just an amusing observation, as the heat kernel remains trivial on the spinor indices,

in particular traces are trivially computed.

In the following section we test the previous simplified path integral by computing its

perturbative expansion. We then use it to obtain the type-A trace anomalies of a Dirac

field coupled to gravity in dimensions d ≤ 16.

3 Perturbative expansion

The short-time perturbative expansion of the kernel (2.33) can be formally written as a

power series in β

K(x, 0;β) = g1/4(x)
e
−x

2

2β

(2πβ)
d
2

∞∑
n=0

an(x, 0)βn , (3.1)

where an are the so-called Seeley-DeWitt coefficients. In general they are matrix-valued,

but as we have discussed they are proportional to the identity matrix on maximally sym-

metric spaces. In order to compute perturbatively the expansion with our simplified path

integral, we find it convenient to use a rescaled time τ = t/β, so that

S[x] =

∫ 1

0
dτ

(
1

2β
δij ẋ

iẋj + βV 1
2
(x(τ))

)
, (3.2)
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where the dot now indicates derivative with respect to τ . Then we Taylor expand the

potential about the origin of the Riemann coordinates

V 1
2
(x) = M2

∞∑
l=0

k2l (Mr)2l , ⇒ S[x] =

∫ 1

0
dτ

1

2β
δij ẋ

iẋj +

∞∑
l=0

S2l[x] (3.3)

and retain only the relevant “coupling constants” k2l needed to carry out the expansion at

the desired order. Explicitly,

S2l[x] = βM2+2lk2l

∫ 1

0
dτ (δijx

ixj)l . (3.4)

The perturbative expansion is obtained by considering that the propagator associated to

the free kinetic term is of order β, and reads

〈xi(τ)xj(τ ′)〉 = −βδij∆(τ, τ ′) , ∆(τ, τ ′) =
1

2
|τ − τ ′| − 1

2
(τ + τ ′) + ττ ′ , (3.5)

while each vertex adds a power of β. Therefore, in order to carry out an expansion say to

order βm, one needs to retain couplings up to k2(m−1).

Specifically, we compute the expansion up to order β8, which requires the following

coupling constants extracted from V 1
2
,2

k0 = d(d− 1)

(
− 1

12
+

1

8

)
=
d(d− 1)

24
(3.6)

k2 = (d− 1)

(
(d− 3)

1

120
+

1

32

)
=

(d− 1)(4d+ 3)

480

k4 = (d− 1)

(
(d− 3)

1

756
+

1

192

)
=

(d− 1)(16d+ 15)

12096

k6 = (d− 1)

(
(d− 3)

1

5400
+

17

23040

)
=

(d− 1)(64d+ 63)

345600

k8 = (d− 1)

(
(d− 3)

1

41580
+

31

322560

)
=

(d− 1)(256d+ 255)

10644480

k10 = (d− 1)

(
(d− 3)

691

232186500
+

691

58060800

)
=

691(d− 1)(1024d+ 1023)

237758976000

k12 = (d− 1)

(
(d− 3)

1

2806650
+

5461

3832012800

)
=

(d− 1)(4096d+ 4095)

11496038400

k14 = (d− 1)

(
(d− 3)

3617

86837751000
+

929569

5579410636800

)
=

3617(d− 1)(16384d+ 16383)

1422749712384000
.

For simplicity, we consider the diagonal part of the heat kernel only by setting x = 0,

which is relevant to obtain the trace anomalies or to compute the one-loop effective action

2The first addenda in the expressions below are the contributions from V0, the others are the contribution

from 1
8
R and ωω term.
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of a Dirac spinor. This involves the following correlators

K(0, 0;β) =
1

(2πβ)
d
2

e−S0 exp

[
− 〈S2〉︸︷︷︸
O(β2)

− 〈S4〉︸︷︷︸
O(β3)

−〈S6〉+
1

2
〈S2

2〉c︸ ︷︷ ︸
O(β4)

−〈S8〉+〈S4S2〉c︸ ︷︷ ︸
O(β5)

−〈S10〉+〈S6S2〉c+
1

2
〈S2

4〉c−
1

3!
〈S3

2〉c︸ ︷︷ ︸
O(β6)

−〈S12〉+ 〈S8S2〉c + 〈S6S4〉c −
1

2
〈S4S

2
2〉c︸ ︷︷ ︸

O(β7)

−〈S14〉+ 〈S10S2〉c + 〈S8S4〉c +
1

2
〈S2

6〉c −
1

2
〈S6S

2
2〉c −

1

2
〈S2

4S2〉c +
1

4!
〈S4

2〉c︸ ︷︷ ︸
O(β8)

+O(β9)

]
(3.7)

where the subscript “c” stands for “connected” correlation functions.

Previously, in refs. [1, 2] the same set of correlators for the scalar heat kernel was

computed. The expression for the kernel (3.7) differs from that obtained in the scalar case

only in the coupling constants, now given by (3.6). Hence, the final result for the fermion

heat kernel at coinciding points can be obtained by plugging the new coupling constants

into the expression of the scalar heat kernel, reported in appendix B for completeness.

Thus we get

K(0, 0;β) =
1

(2πβ)
d
2

exp

[
−d(d− 1)

βM2

24
+ d(d− 1)

(
−(βM2)2

6!

4d+ 3

4

− (βM2)3

9!
(d+ 2)(16d+ 15)

− (βM2)4

10!
16d3+257d2+555d+315

8

+
(βM2)5

11!

(d+2)(64d3−333d2−1341d−945)
24

+
(βM2)6

13!
207744d5+943595d4−2652226d3−18403426d2−29381262d−14365890

5040

+
(βM2)7

14!

(d+2)(16896d5+243703d4+213650d3−2640054d2−6680970d−4054050)
720

− (βM2)8

17!

(
3175680d7−132047423d6−1198310651d5−2099217371d4

1440

+ 8069209407d3+36235883583d2+49125794355d+21995248275
1440

)
+O(β9)

)]
(3.8)

which could equivalently be written in terms of the constant scalar curvature R. In this

expression the exponential must be expanded, keeping terms up to order O(β8) included.

This allows to read off the diagonal coefficients an(0, 0), with integer n up to n = 8. We

use them in the next section to identify the type-A trace anomaly of a Dirac fermion in

various dimensions.
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4 The type-A trace anomalies

The path integral calculation of the transition amplitude on a maximally symmetric space

can be employed and tested to evaluate the type-A trace anomaly of a massless Dirac

fermion coupled to gravity, in space-time dimensions d ≤ 16. These anomalies are the

ones proportional to the topological Euler density of the curved space [37], see also [38, 39]

for their cohomological characterization.

In general, the trace anomaly of a Dirac fermion can be related to the transition

amplitude of a N = 1 spinning particle in a curved space by〈
Tmm(x)

〉
QFT

= − lim
β→0

trK(x, x;β) , (4.1)

where on the left hand side Tmm(x) is the trace of the stress tensor of the Dirac spinor

in a curved background, obtained from the appropriate Dirac action SD by Tma(x) =
1
e

δSD
δema(x) where eam(x) is the vielbein of the curved spacetime. The expectation value is

performed in the corresponding quantum field theory. The right hand side can be viewed

as the anomalous contribution arising from the QFT path integral measure, regulated à la

Fujikawa [40], with the minus sign being the usual one due to the fermionic measure, and

the trace being the trace on spinor indices. The regulator corresponds to the square of the

Dirac operator, and is identified with the quantum hamiltonian Ĥ of the N = 1 spinning

particle in a curved space

Ĥ = −1

2
(/∇)2 , (4.2)

which appears in the heat kernel at coinciding points K(x, x;β). The latter can be evaluated

with a path integral [41, 42]. It is understood that the β → 0 limit in (4.1) picks up just the

β-independent term, as divergent terms are removed by the QFT renormalization. This

procedure selects the appropriate heat kernel coefficient an(x, x) sitting in the expansion

of K(x, x;β). It may be interpreted as the contribution to the anomaly of the regularized

particle making its virtual loop, see for example [43], where a Pauli-Villars regularization

gives rise to the Fujikawa regulator used above.

Expanding K(x, x;β) at the required order one can read off the trace anomalies in even

d dimensions (odd dimensions support no anomaly if the space is boundaryless)

〈
Tmm(x)

〉
QFT

= −
tr a d

2
(x, x)

(2π)
d
2

(4.3)

that is, for even d = 2n dimensions, the relevant coefficient is precisely an(x, x). Of

course, one may use Riemann normal coordinates centered at x, so that
√
g(x) = 1 and

K(x, x;β) = K(x, x;β). This formula holds on a generic space. In the present maximally

symmetric case, due to translational invariance, the choice of which point is the origin of

the Riemann coordinates becomes irrelevant. Hence, K(x, x;β) = K(0, 0;β), and the result

obtained in the previous section is directly applicable. The trace in (4.3) reduces to the

trace of the identity matrix, and counts the dimension of the spinor space, 2
d
2 for even

d dimensions.
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d 〈Tmm〉 〈Tmm〉

2 R
24π

1
12πa2

4 − 11R2

34 560π2 − 11
240π2a4

6 191R3

108 864 000π3
191

4032π3a6

8 − 2 497R4

339 880 181 760π4 − 2 497
34 560π4a8

10 14 797R5

598 615 142 400 000π5
14 797

101 376π5a10

12 − 92 427 157R6

1 330 910 037 208 675 123 200 π6 − 92 427 157
251 596 800π6a12

14 36 740 617R7

219 454 597 066 612 329 676 800 π7
36 740 617

33 177 600π7a14

16 − 61 430 943 169R8

173 836 853 795 629 301 760 000 000 000 π8 − 61 430 943 169
15 792 537 600π8a16

Table 1. Type-A trace anomaly of a Dirac spinor in terms of the curvature scalar R, and in terms

of the radius a, in various dimensions.

In table 1, we list the anomalies we obtain from the expansion (3.8), expressing the

results both in terms of the scalar curvature R and in terms of the sphere radius a = 1
M .

These anomalies were listed up to d = 12 in terms of the radius a also in ref. [4] (however

the value of the anomaly in d = 12 reported there is incorrect, their denominator differs

from ours, presumably a misprint).

The type-A trace anomaly can also be obtained using the Riemann zeta-function as-

sociated to the differential operator (4.2)〈
Tmm(x)

〉
QFT

= −
Γ
(
d+1

2

)
2π

d+1
2 ad

ζ/∇2(0) , (4.4)

as discussed in [4, 5]. More recently, an efficient way of computing such trace anomalies

within the AdS/CFT correspondence was proposed in [6]. In that reference, a simple

formula for certain coefficients c(d)
/∇2

linked to the Riemann zeta function was found

c(d)

/∇2
=

4(−1)
d
2

(8π)
d
2

(
d
2

)
!
(
d
2 − 1

)
!

∫ 1
2

0
dν

(
1
2 + ν

)
d
2

(
1
2 − ν

)
d
2(

1
2

)
d
2

, (4.5)

where (x)n = Γ(x+n)
Γ(x) = x(x + 1) . . . (x + n − 1) is the Pochhammer symbol (the raising

factorial). We have checked that these coefficients are linked explicitly to the Riemann

zeta function by

ζ/∇2(0) = (4π)
d
2

(
d

2
− 1

)
! c(d)

/∇2
. (4.6)

which, in turn, allow to identify the anomaly in (4.4). One can check that both methods

reproduce the same type-A trace anomalies, which indeed coincide with the ones computed

by the simplified path integral in d = 2, . . . , 16 and listed in table 1.
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Finally, it is convenient to summarize the type-A trace anomalies by presenting them

in the form 〈
Tmm(x)

〉
= (−1)n+1a2n

E2n

(2π)n
(4.7)

where E2n is the Euler density of the d = 2n dimensional space defined by

E2n =
(2n)!

2n
Rm1m2

[m1m2 . . . Rm2n−1m2n

m2n−1m2n ] (4.8)

(the square bracket denotes weighted antisymmetrization) with a2n the constant anomaly

coefficient. The stress tensors are normalized as usual, Tmn = 2√
g

δS
δgmn for the scalar and

Tma = 1
e

δS
δema for the spinor, where gmn and ema are the metric and vielbein, respectively.

The sign (−1)n+1 is conventionally inserted to make the coefficients a2n positive, as we will

check shortly. On spheres the Euler density evaluates to

E2n =
(2n)!

(2n(2n− 1))n
Rn (4.9)

and from the previous discussion we identify the following coefficients for a Dirac fermion

afermion2n =
2

n!(2n)!

∫ 1
2

0
dx

n−1∏
i=0

((
i+

1

2

)2

− x2

)
. (4.10)

Similarly, we also identify the coefficients for a real conformal scalar, using formulas from [7],

ascalar2n = −(2n− 1)!!

((2n)!)2

∫ 1

0
dx

n−1∏
i=0

(i2 − x2) . (4.11)

By inspection, one may notice that these coefficients are positive for every n, as the inte-

grands are products of positive functions in the given range of integration (for the scalar,

the explicit minus sign makes positive the contribution of the i = 0 term of the product).

This positivity is not evident in the worldline method, and appears only at the end of our

calculations. In general, these coefficients are expected to be positive, as they appear in

conjectured higher dimensional extensions of the a-theorem and interpreted as a measure

of the effective degrees of freedom at the fixed point. These conjectured a-theorems extend

suitably the c-theorem of two dimensions [44] and the a-theorem of four dimensions [45],

where indeed the coefficients have been proven to be positive for arbitrary unitary confor-

mal field theories.

For d = 2n = 2, 4, . . . , 16 we report the values of these coefficients, as well as their

ratio [5], in table 2.

5 Conclusions

We have considered the worldline path integral for the N = 1 supersymmetric quantum

mechanics in curved space, which is characterized by a supersymmetric non-linear sigma

model action. We have shown that, when the space has maximal symmetry, the nonlinear
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d = 2n (2n+ 1)! a(scalar) (2n+ 1)! a(fermion) a(fermion)
a(scalar)

2 1
2

1
2 1

4 1
12

11
12 11

6 5
72

191
72

191
5

8 23
240

2497
240

2497
23

10 263
1440

14797
288

73985
263

12 133787
302400

92427157
302400

92427157
133787

14 157009
120960

36740617
17280

257184319
157009

16 16215071
3628800

61430943169
3628800

61430943169
16215071

Table 2. The a coefficients of the type-A trace anomaly of a real conformal scalar and Dirac

fermion. We have multiplied them by (2n+ 1)! to make the numbers more readable.

sigma model can be traded with a purely bosonic linear sigma model and the curvature

effects are taken care of by a suitable effective scalar potential, which extends the one

studied in [1, 2]. We have tested our model by computing the type-A trace anomalies of

a Dirac fermion in space-time dimension d ≤ 16, showing that they match those obtained

with other techniques. However, further checks can be performed. Firstly, since the full

heat kernel for maximally symmetric spaces in Riemann normal coordinates is found to be

proportional to the spinorial identity, the gravitational contribution to the chiral anomaly

results proportional to tr γ5, and thus correctly vanishes. On the other hand, we can

also verify that, for d = 3, 5, the expansions of the diagonal heat kernels have vanishing

coefficients an for n ≥ 2, 3 respectively, as predicted by Camporesi in his exact calculations

of spinorial heat kernels in maximally symmetric spaces [46].

The present construction can presumably be extended also to the N = 2 supersym-

metric quantum mechanics used in the description of differential p-forms and particles of

spin 1 [20, 21, 47], as well as to the supersymmetric quantum mechanics at arbitrary N ,

which provide the degrees of freedom of the first quantized approach to higher spinning

particles [48, 49]. The latter enjoy conformal symmetry [50, 51], and can be coupled to

maximally symmetric spaces [52] (more generally, to conformally flat spaces [27]). The

path integral for the spinning particle with N supersymmetries on curved spaces needs

regularization schemes with suitable regularization-dependent counterterms [53]. A lin-

ear sigma model approach may simplify drastically the situation, at least on maximally

symmetric spaces.

Finally, a direction worth looking at is the inclusion of boundaries in the maximally

symmetric spaces, extending to curved spaces the worldline treatments of refs. [54, 55], and

study in particular the possible trace anomalies supported by the boundaries, as discussed

for example in [56–59].
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A Riemann normal coordinates in maximally symmetric spaces

Maximally symmetric spaces are spaces with a maximal number of isometries. Their cur-

vature tensors can be expressed in terms of the metric as

Rijmn = M2(gimgjn − gingjm) (A.1)

Rij = Rmi
m
j = M2(d− 1)gij (A.2)

R = Ri
i = M2(d− 1)d , (A.3)

where M2 = 1/a2 is a constant, which is positive for a sphere of radius a, vanishes for a flat

space, and is negative for a real hyperbolic space. This exhausts the list of simply connected,

maximally symmetric spaces. For simplicity we consider spheres, as real hyperbolic spaces

can be obtained by a simple analytic continuation.

In the main text we use Riemann normal coordinates (for details see [60–62] and [63–

65] for applications to nonlinear sigma models). On spheres the sectional curvature is

positive, and we can take M = 1
a > 0. One may then evaluate recursively all terms in the

expansion of the metric and sum them up [33], to obtain

gij(x) = δij + f(r)Pij = δij + f(r)Pij (A.4)

where xi denote the Riemann normal coordinates centered around a point (the origin), Pij
indicates a projector given by

Pij = δij − x̂ix̂j , x̂i =
xi

r
, r =

√
~x 2 , (A.5)

and

f(r) =
1− 2(Mr)2 − cos(2Mr)

2(Mr)2
. (A.6)

Note that the function f(r) does not have poles and it is even in r, so that it depends only

on r2 = ~x 2 = δijx
ixj . Note also that, because of the projector Pij one has the equality

r2 = gij(x)xixj . The inverse metric gij(x) and metric determinant g(x) are given by

gij(x) = δij − f(r)

1 + f(r)
P ij (A.7)

g(x) = (1 + f(r))d−1 . (A.8)

It is easy to check that the metric in (A.4) can be generated by the following choice of

vielbein

eai (x) = δai + l(r)P ai (x) (A.9)

where xa = δai x
i and3

l(r) = −1 +
√

1 + f(r) = −1 +
sin(Mr)

Mr
. (A.10)

3A priori, there are two independent solutions l±(r) = −1 ±
√

1 + f(r) of the quadratic equation that

follows from gij = ηabe
a
i e
b
j . However, only with the upper solution does the vielbein reduce to the flat

vielbein when M2 → 0.
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The inverse vielbein reads instead

eai(x) = δai +

(
−1 +

1√
1 + f(r)

)
P ai(x) . (A.11)

Thus, by using the relation

ωi
ab(x) =

1

2
eaj
(
∂ie

b
j − ∂jebi

)
− 1

2
ebj
(
∂ie

a
j − ∂jeai

)
− 1

2
ecie

ajebk
(
∂jeck − ∂kecj

)
(A.12)

one can promptly compute the associated spin connection, which is found to be

ωi
ab(x) = Ω(r)

1

2
xj
(
δaj δ

b
i − δbjδai

)
(A.13)

with

Ω(r) = −2

r

(
l′(r) +

l(r)

r

)
= 2M2 1− cos(Mr)

(Mr)2
, (A.14)

where the prime denotes the derivative with respect to the radial coordinate r. Equivalently,

we can write the spin connection in the form

ωi
ab(x) =

1

M2
Ω(r)

1

2
xjRij

ab(0) (A.15)

where the prefactor reads

1

M2
Ω(r) = 2

1− cos(Mr)

(Mr)2
=

∞∑
n=0

2(−)n

(2(n+ 1))!
(Mr)2n

= 1− (Mr)2

12
+

(Mr)4

360
− (Mr)6

20160
+ · · · (A.16)

and a power of M2 is absorbed by Rij
ab(0).

Note that the vielbein (A.9) with (A.10) and the spin connection (A.15) satisfy the

Fock-Schwinger gauge conditions

eai (x)xi = δai x
i

xiωi
ab(x) = 0 . (A.17)

B Wick contractions

We collect here the perturbative contributions up to order β8 involved in the transition

amplitude (3.7), where 〈. . .〉c indicates connected correlation functions. We use the abbre-

viation ∆(τ1, τ2) ≡ ∆12 for the propagator, and
∫

=
∫ 1

0dτ1,
∫∫

=
∫ 1

0dτ1

∫ 1
0dτ2, and so on,

for multiple integrals. We also set M = 1, as the dependence on M is easily restored.

S0 = βk0 , (B.1)

〈S2〉 = − β2k2 d

∫
∆11︸ ︷︷ ︸
− 1

6

, (B.2)
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〈S4〉 = β3k4 d(d+ 2)

∫
∆2

11︸ ︷︷ ︸
1
30

, (B.3)

〈S6〉 = − β4k6 d(d+ 2)(d+ 4)

∫
∆3

11︸ ︷︷ ︸
− 1

140

, (B.4)

1

2
〈S2

2〉c = β4k2
2 d

∫∫
∆2

12︸ ︷︷ ︸
1
90

, (B.5)

〈S8〉 = β5k8 d(d+ 2)(d+ 4)(d+ 6)

∫
∆4

11︸ ︷︷ ︸
1

630

, (B.6)

〈S4S2〉c = − β5k4k2 4d(d+ 2)

∫∫
∆2

12∆22︸ ︷︷ ︸
− 1

420

, (B.7)

〈S10〉 = − β6k10 d(d+ 2)(d+ 4)(d+ 6)(d+ 8)

∫
∆5

11︸ ︷︷ ︸
− 1

2772

, (B.8)

〈S6S2〉c = β6k6k2 6d(d+ 2)(d+ 4)

∫∫
∆2

12∆2
22︸ ︷︷ ︸

1
1890

, (B.9)

1

2
〈S2

4〉c =
β6

2
k2

4

(
8d(d+ 2)

∫∫
∆4

12︸ ︷︷ ︸
1

3150

+ 8d(d+ 2)2

∫∫
∆11∆2

12∆22︸ ︷︷ ︸
13

25200

)
, (B.10)

1

3!
〈S3

2〉c = − β6

3!
k3

2 8d

∫∫∫
∆12∆23∆31︸ ︷︷ ︸
− 1

945

, (B.11)

〈S12〉 = β7k12 d(d+ 2)(d+ 4)(d+ 6)(d+ 8)(d+ 10)

∫
∆6

11︸ ︷︷ ︸
1

12012

, (B.12)

〈S8S2〉c = − β7k8k2 8d(d+ 2)(d+ 4)(d+ 6)

∫∫
∆2

12∆3
11︸ ︷︷ ︸

− 1
8316

, (B.13)

〈S6S4〉c = − β7k6k4

(
12d(d+ 2)2(d+ 4)

∫∫
∆2

11∆2
12∆22︸ ︷︷ ︸

− 2
17325

+ 24d(d+ 2)(d+ 4)

∫∫
∆11∆4

12︸ ︷︷ ︸
− 1

13860

)
, (B.14)
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1

2
〈S4S

2
2〉c = β7k4k

2
2 4d(d+ 2)

(
2

∫∫∫
∆12∆13∆23∆33︸ ︷︷ ︸

13
56700

+

∫∫∫
∆2

13∆2
23︸ ︷︷ ︸

1
5670

)
, (B.15)

〈S14〉 = − β8k14 d(d+ 2)(d+ 4)(d+ 6)(d+ 8)(d+ 10)(d+ 12)

∫
∆7

11︸ ︷︷ ︸
− 1

51480

,

〈S10S2〉c = β8k10k2 10d(d+ 2)(d+ 4)(d+ 6)(d+ 8)

∫∫
∆4

11∆2
12︸ ︷︷ ︸

1
36036

, (B.16)

〈S8S4〉c = β8k8k4

(
16d(d+ 2)2(d+ 4)(d+ 6)

∫∫
∆3

11∆2
12∆22︸ ︷︷ ︸

19
720720

+ 48d(d+ 2)(d+ 4)(d+ 6)

∫∫
∆2

11∆4
12︸ ︷︷ ︸

1
60060

)
, (B.17)

1

2
〈S2

6〉c =
1

2
β8k2

6

(
18d(d+ 2)2(d+ 4)2

∫∫
∆2

12∆2
11∆2

22︸ ︷︷ ︸
491

18918900

+ 72d(d+ 2)(d+ 4)2

∫∫
∆4

12∆11∆22︸ ︷︷ ︸
25

1513512

+ 48d(d+ 2)(d+ 4)

∫∫
∆6

12︸ ︷︷ ︸
1

84084

)
,

(B.18)

1

2
〈S6S

2
2〉c = − 1

2
β8k6k

2
2 24d(d+ 2)(d+ 4)

(∫∫∫
∆2

11∆12∆13∆23︸ ︷︷ ︸
− 8

155925

+

∫∫∫
∆11∆2

12∆2
13︸ ︷︷ ︸

− 1
24948

)
,

(B.19)

1

2
〈S2

4S2〉c = − 1

2
β8k2

4k2

(
32d(d+ 2)2

(∫∫∫
∆2

12∆2
23∆33︸ ︷︷ ︸

− 2
51975

+

∫∫∫
∆12∆13∆23∆22∆33︸ ︷︷ ︸
− 83

1663200

)

+ 64d(d+ 2)

∫∫∫
∆12∆13∆3

23︸ ︷︷ ︸
− 1

34650

)
, (B.20)

1

4!
〈S4

2〉c =
1

4!
β8k4

2 48d

∫∫∫∫
∆12∆23∆34∆41︸ ︷︷ ︸

1
9450

. (B.21)

Inserting now the values of the coupling constants k2l one obtains the final result in (3.8).

– 17 –



J
H
E
P
0
5
(
2
0
1
8
)
0
1
0

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] F. Bastianelli, O. Corradini and E. Vassura, Quantum mechanical path integrals in curved

spaces and the type-A trace anomaly, JHEP 04 (2017) 050 [arXiv:1702.04247] [INSPIRE].

[2] F. Bastianelli and O. Corradini, On the simplified path integral on spheres, Eur. Phys. J. C

77 (2017) 731 [arXiv:1708.03557] [INSPIRE].

[3] J. Guven, Calculating the effective action for a selfinteracting scalar quantum field theory in

a curved background space-time, Phys. Rev. D 37 (1988) 2182 [INSPIRE].

[4] E.J. Copeland and D.J. Toms, The conformal anomaly in higher dimensions, Class. Quant.

Grav. 3 (1986) 431 [INSPIRE].

[5] A. Cappelli and G. D’Appollonio, On the trace anomaly as a measure of degrees of freedom,

Phys. Lett. B 487 (2000) 87 [hep-th/0005115] [INSPIRE].

[6] R. Aros and D.E. Diaz, Determinant and Weyl anomaly of Dirac operator: a holographic

derivation, J. Phys. A 45 (2012) 125401 [arXiv:1111.1463] [INSPIRE].

[7] D.E. Diaz, Polyakov formulas for GJMS operators from AdS/CFT, JHEP 07 (2008) 103

[arXiv:0803.0571] [INSPIRE].

[8] J.S. Dowker, Determinants and conformal anomalies of GJMS operators on spheres, J. Phys.

A 44 (2011) 115402 [arXiv:1010.0566] [INSPIRE].

[9] C. Schubert, Perturbative quantum field theory in the string inspired formalism, Phys. Rept.

355 (2001) 73 [hep-th/0101036] [INSPIRE].

[10] G.V. Dunne and C. Schubert, Worldline instantons and pair production in inhomogeneous

fields, Phys. Rev. D 72 (2005) 105004 [hep-th/0507174] [INSPIRE].

[11] G.V. Dunne, Q.-h. Wang, H. Gies and C. Schubert, Worldline instantons. II. The fluctuation

prefactor, Phys. Rev. D 73 (2006) 065028 [hep-th/0602176] [INSPIRE].

[12] N. Ahmadiniaz and C. Schubert, A covariant representation of the Ball-Chiu vertex, Nucl.

Phys. B 869 (2013) 417 [arXiv:1210.2331] [INSPIRE].

[13] F. Bastianelli, R. Bonezzi, O. Corradini and E. Latini, Particles with non abelian charges,

JHEP 10 (2013) 098 [arXiv:1309.1608] [INSPIRE].

[14] N. Ahmadiniaz, F. Bastianelli and O. Corradini, Dressed scalar propagator in a non-Abelian

background from the worldline formalism, Phys. Rev. D 93 (2016) 025035

[arXiv:1508.05144] [INSPIRE].

[15] N. Ahmadiniaz, A. Bashir and C. Schubert, Multiphoton amplitudes and generalized

Landau-Khalatnikov-Fradkin transformation in scalar QED, Phys. Rev. D 93 (2016) 045023

[arXiv:1511.05087] [INSPIRE].

[16] J.P. Edwards and C. Schubert, One-particle reducible contribution to the one-loop scalar

propagator in a constant field, Nucl. Phys. B 923 (2017) 339 [arXiv:1704.00482] [INSPIRE].

[17] N. Ahmadiniaz et al., One-particle reducible contribution to the one-loop spinor propagator in

a constant field, Nucl. Phys. B 924 (2017) 377 [arXiv:1704.05040] [INSPIRE].

– 18 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP04(2017)050
https://arxiv.org/abs/1702.04247
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.04247
https://doi.org/10.1140/epjc/s10052-017-5307-6
https://doi.org/10.1140/epjc/s10052-017-5307-6
https://arxiv.org/abs/1708.03557
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.03557
https://doi.org/10.1103/PhysRevD.37.2182
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D37,2182%22
https://doi.org/10.1088/0264-9381/3/3/017
https://doi.org/10.1088/0264-9381/3/3/017
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,3,431%22
https://doi.org/10.1016/S0370-2693(00)00809-1
https://arxiv.org/abs/hep-th/0005115
https://inspirehep.net/search?p=find+EPRINT+hep-th/0005115
https://doi.org/10.1088/1751-8113/45/12/125401
https://arxiv.org/abs/1111.1463
https://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1463
https://doi.org/10.1088/1126-6708/2008/07/103
https://arxiv.org/abs/0803.0571
https://inspirehep.net/search?p=find+EPRINT+arXiv:0803.0571
https://doi.org/10.1088/1751-8113/44/11/115402
https://doi.org/10.1088/1751-8113/44/11/115402
https://arxiv.org/abs/1010.0566
https://inspirehep.net/search?p=find+EPRINT+arXiv:1010.0566
https://doi.org/10.1016/S0370-1573(01)00013-8
https://doi.org/10.1016/S0370-1573(01)00013-8
https://arxiv.org/abs/hep-th/0101036
https://inspirehep.net/search?p=find+EPRINT+hep-th/0101036
https://doi.org/10.1103/PhysRevD.72.105004
https://arxiv.org/abs/hep-th/0507174
https://inspirehep.net/search?p=find+EPRINT+hep-th/0507174
https://doi.org/10.1103/PhysRevD.73.065028
https://arxiv.org/abs/hep-th/0602176
https://inspirehep.net/search?p=find+EPRINT+hep-th/0602176
https://doi.org/10.1016/j.nuclphysb.2012.12.019
https://doi.org/10.1016/j.nuclphysb.2012.12.019
https://arxiv.org/abs/1210.2331
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.2331
https://doi.org/10.1007/JHEP10(2013)098
https://arxiv.org/abs/1309.1608
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.1608
https://doi.org/10.1103/PhysRevD.93.049904
https://arxiv.org/abs/1508.05144
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.05144
https://doi.org/10.1103/PhysRevD.93.045023
https://arxiv.org/abs/1511.05087
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.05087
https://doi.org/10.1016/j.nuclphysb.2017.08.002
https://arxiv.org/abs/1704.00482
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.00482
https://doi.org/10.1016/j.nuclphysb.2017.09.012
https://arxiv.org/abs/1704.05040
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.05040


J
H
E
P
0
5
(
2
0
1
8
)
0
1
0

[18] F. Bastianelli and A. Zirotti, Worldline formalism in a gravitational background, Nucl. Phys.

B 642 (2002) 372 [hep-th/0205182] [INSPIRE].

[19] F. Bastianelli, O. Corradini and A. Zirotti, Dimensional regularization for N = 1

supersymmetric σ-models and the worldline formalism, Phys. Rev. D 67 (2003) 104009

[hep-th/0211134] [INSPIRE].

[20] F. Bastianelli, P. Benincasa and S. Giombi, Worldline approach to vector and antisymmetric

tensor fields, JHEP 04 (2005) 010 [hep-th/0503155] [INSPIRE].

[21] F. Bastianelli, P. Benincasa and S. Giombi, Worldline approach to vector and antisymmetric

tensor fields. II., JHEP 10 (2005) 114 [hep-th/0510010] [INSPIRE].

[22] F. Bastianelli and C. Schubert, One loop photon-graviton mixing in an electromagnetic field:

part 1, JHEP 02 (2005) 069 [gr-qc/0412095] [INSPIRE].

[23] T.J. Hollowood and G.M. Shore, The refractive index of curved spacetime: the fate of

causality in QED, Nucl. Phys. B 795 (2008) 138 [arXiv:0707.2303] [INSPIRE].

[24] F. Bastianelli, J.M. Davila and C. Schubert, Gravitational corrections to the

Euler-Heisenberg Lagrangian, JHEP 03 (2009) 086 [arXiv:0812.4849] [INSPIRE].

[25] F. Bastianelli and R. Bonezzi, One-loop quantum gravity from a worldline viewpoint, JHEP

07 (2013) 016 [arXiv:1304.7135] [INSPIRE].

[26] F. Bastianelli, O. Corradini and E. Latini, Higher spin fields from a worldline perspective,

JHEP 02 (2007) 072 [hep-th/0701055] [INSPIRE].

[27] F. Bastianelli, O. Corradini and E. Latini, Spinning particles and higher spin fields on (A)dS

backgrounds, JHEP 11 (2008) 054 [arXiv:0810.0188] [INSPIRE].

[28] O. Corradini, Half-integer higher spin fields in (A)ds from spinning particle models, JHEP

09 (2010) 113 [arXiv:1006.4452] [INSPIRE].

[29] F. Bastianelli, R. Bonezzi, O. Corradini and E. Latini, Effective action for higher spin fields

on (A)dS backgrounds, JHEP 12 (2012) 113 [arXiv:1210.4649] [INSPIRE].

[30] R. Bonezzi, Induced action for conformal higher spins from worldline path integrals, Universe

3 (2017) 64 [arXiv:1709.00850] [INSPIRE].

[31] L. Bonora et al., Worldline quantization of field theory, effective actions and L∞ structure,

JHEP 04 (2018) 095 [arXiv:1802.02968] [INSPIRE].

[32] F. Bastianelli and P. van Nieuwenhuizen, Path integrals and anomalies in curved space,

Cambridge University Press, Cambridge, U.K. (2006).

[33] F. Bastianelli and N.D. Hari Dass, Simplified method for trace anomaly calculations in d = 6

and d ≤ 6, Phys. Rev. D 64 (2001) 047701 [hep-th/0104234] [INSPIRE].

[34] F.A. Berezin and M.S. Marinov, Particle spin dynamics as the Grassmann variant of

classical mechanics, Annals Phys. 104 (1977) 336 [INSPIRE].

[35] A. Barducci, R. Casalbuoni and L. Lusanna, Supersymmetries and the pseudoclassical

relativistic electron, Nuovo Cim. A 35 (1976) 377 [INSPIRE].

[36] L. Brink et al., Local supersymmetry for spinning particles, Phys. Lett. B 64 (1976) 435

[Erratum ibid. B 68 (1677) 488].

[37] S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary

dimensions, Phys. Lett. B 309 (1993) 279 [hep-th/9302047] [INSPIRE].

– 19 –

https://doi.org/10.1016/S0550-3213(02)00683-1
https://doi.org/10.1016/S0550-3213(02)00683-1
https://arxiv.org/abs/hep-th/0205182
https://inspirehep.net/search?p=find+EPRINT+hep-th/0205182
https://doi.org/10.1103/PhysRevD.67.104009
https://arxiv.org/abs/hep-th/0211134
https://inspirehep.net/search?p=find+EPRINT+hep-th/0211134
https://doi.org/10.1088/1126-6708/2005/04/010
https://arxiv.org/abs/hep-th/0503155
https://inspirehep.net/search?p=find+EPRINT+hep-th/0503155
https://doi.org/10.1088/1126-6708/2005/10/114
https://arxiv.org/abs/hep-th/0510010
https://inspirehep.net/search?p=find+EPRINT+hep-th/0510010
https://doi.org/10.1088/1126-6708/2005/02/069
https://arxiv.org/abs/gr-qc/0412095
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0412095
https://doi.org/10.1016/j.nuclphysb.2007.11.034
https://arxiv.org/abs/0707.2303
https://inspirehep.net/search?p=find+EPRINT+arXiv:0707.2303
https://doi.org/10.1088/1126-6708/2009/03/086
https://arxiv.org/abs/0812.4849
https://inspirehep.net/search?p=find+EPRINT+arXiv:0812.4849
https://doi.org/10.1007/JHEP07(2013)016
https://doi.org/10.1007/JHEP07(2013)016
https://arxiv.org/abs/1304.7135
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.7135
https://doi.org/10.1088/1126-6708/2007/02/072
https://arxiv.org/abs/hep-th/0701055
https://inspirehep.net/search?p=find+EPRINT+hep-th/0701055
https://doi.org/10.1088/1126-6708/2008/11/054
https://arxiv.org/abs/0810.0188
https://inspirehep.net/search?p=find+EPRINT+arXiv:0810.0188
https://doi.org/10.1007/JHEP09(2010)113
https://doi.org/10.1007/JHEP09(2010)113
https://arxiv.org/abs/1006.4452
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.4452
https://doi.org/10.1007/JHEP12(2012)113
https://arxiv.org/abs/1210.4649
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.4649
https://doi.org/10.3390/universe3030064
https://doi.org/10.3390/universe3030064
https://arxiv.org/abs/1709.00850
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.00850
https://doi.org/10.1007/JHEP04(2018)095
https://arxiv.org/abs/1802.02968
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.02968
https://doi.org/10.1103/PhysRevD.64.047701
https://arxiv.org/abs/hep-th/0104234
https://inspirehep.net/search?p=find+EPRINT+hep-th/0104234
https://doi.org/10.1016/0003-4916(77)90335-9
https://inspirehep.net/search?p=find+J+%22AnnalsPhys.,104,336%22
https://doi.org/10.1007/BF02730291
https://inspirehep.net/search?p=find+J+%22NuovoCim.,A35,377%22
https://doi.org/ 10.1016/0370-2693(76)90115-5
https://doi.org/10.1016/0370-2693(93)90934-A
https://arxiv.org/abs/hep-th/9302047
https://inspirehep.net/search?p=find+EPRINT+hep-th/9302047


J
H
E
P
0
5
(
2
0
1
8
)
0
1
0

[38] N. Boulanger, Algebraic classification of Weyl anomalies in arbitrary dimensions, Phys. Rev.

Lett. 98 (2007) 261302 [arXiv:0706.0340] [INSPIRE].

[39] N. Boulanger, General solutions of the Wess-Zumino consistency condition for the Weyl

anomalies, JHEP 07 (2007) 069 [arXiv:0704.2472] [INSPIRE].

[40] K. Fujikawa, Comment on chiral and conformal anomalies, Phys. Rev. Lett. 44 (1980) 1733

[INSPIRE].

[41] F. Bastianelli, The path integral for a particle in curved spaces and Weyl anomalies, Nucl.

Phys. B 376 (1992) 113 [hep-th/9112035] [INSPIRE].

[42] F. Bastianelli and P. van Nieuwenhuizen, Trace anomalies from quantum mechanics, Nucl.

Phys. B 389 (1993) 53 [hep-th/9208059] [INSPIRE].

[43] A. Diaz et al., Understanding Fujikawa regulators from Pauli-Villars regularization of ghost

loops, Int. J. Mod. Phys. A 4 (1989) 3959 [INSPIRE].

[44] A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field

theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [INSPIRE].

[45] Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions,

JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].

[46] R. Camporesi, The spinor heat kernel in maximally symmetric spaces, Commun. Math. Phys.

148 (1992) 283 [INSPIRE].

[47] P.S. Howe, S. Penati, M. Pernici and P.K. Townsend, A particle mechanics description of

antisymmetric tensor fields, Class. Quant. Grav. 6 (1989) 1125 [INSPIRE].

[48] V.D. Gershun and V.I. Tkach, Classical and quantum dynamics of particles with arbitrary

spin, JETP Lett. 29 (1979) 288 [Pisma Zh. Eksp. Teor. Fiz. 29 (1979) 320] [INSPIRE].

[49] P.S. Howe, S. Penati, M. Pernici and P.K. Townsend, Wave equations for arbitrary spin from

quantization of the extended supersymmetric spinning particle, Phys. Lett. B 215 (1988) 555

[INSPIRE].

[50] W. Siegel, Conformal invariance of extended spinning particle mechanics, Int. J. Mod. Phys.

A 3 (1988) 2713 [INSPIRE].

[51] W. Siegel, All free conformal representations in all dimensions, Int. J. Mod. Phys. A 4

(1989) 2015 [INSPIRE].

[52] S.M. Kuzenko and Z.V. Yarevskaya, Conformal invariance, N extended supersymmetry and

massless spinning particles in Anti-de Sitter space, Mod. Phys. Lett. A 11 (1996) 1653

[hep-th/9512115] [INSPIRE].

[53] F. Bastianelli, R. Bonezzi, O. Corradini and E. Latini, Extended SUSY quantum mechanics:

transition amplitudes and path integrals, JHEP 06 (2011) 023 [arXiv:1103.3993] [INSPIRE].

[54] F. Bastianelli, O. Corradini and P.A.G. Pisani, Worldline approach to quantum field theories

on flat manifolds with boundaries, JHEP 02 (2007) 059 [hep-th/0612236] [INSPIRE].

[55] F. Bastianelli, O. Corradini, P.A.G. Pisani and C. Schubert, Scalar heat kernel with boundary

in the worldline formalism, JHEP 10 (2008) 095 [arXiv:0809.0652] [INSPIRE].

[56] S.N. Solodukhin, Boundary terms of conformal anomaly, Phys. Lett. B 752 (2016) 131

[arXiv:1510.04566] [INSPIRE].

– 20 –

https://doi.org/10.1103/PhysRevLett.98.261302
https://doi.org/10.1103/PhysRevLett.98.261302
https://arxiv.org/abs/0706.0340
https://inspirehep.net/search?p=find+EPRINT+arXiv:0706.0340
https://doi.org/10.1088/1126-6708/2007/07/069
https://arxiv.org/abs/0704.2472
https://inspirehep.net/search?p=find+EPRINT+arXiv:0704.2472
https://doi.org/10.1103/PhysRevLett.44.1733
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,44,1733%22
https://doi.org/10.1016/0550-3213(92)90070-R
https://doi.org/10.1016/0550-3213(92)90070-R
https://arxiv.org/abs/hep-th/9112035
https://inspirehep.net/search?p=find+EPRINT+hep-th/9112035
https://doi.org/10.1016/0550-3213(93)90285-W
https://doi.org/10.1016/0550-3213(93)90285-W
https://arxiv.org/abs/hep-th/9208059
https://inspirehep.net/search?p=find+EPRINT+hep-th/9208059
https://doi.org/10.1142/S0217751X8900162X
https://inspirehep.net/search?p=find+J+%22Int.J.Mod.Phys.,A4,3959%22
https://inspirehep.net/search?p=find+J+%22JETPLett.,43,730%22
https://doi.org/10.1007/JHEP12(2011)099
https://arxiv.org/abs/1107.3987
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3987
https://doi.org/10.1007/BF02100862
https://doi.org/10.1007/BF02100862
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,148,283%22
https://doi.org/10.1088/0264-9381/6/8/012
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,6,1125%22
https://inspirehep.net/search?p=find+J+%22JETPLett.,29,288%22
https://doi.org/10.1016/0370-2693(88)91358-5
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B215,555%22
https://doi.org/10.1142/S0217751X88001132
https://doi.org/10.1142/S0217751X88001132
https://inspirehep.net/search?p=find+J+%22Int.J.Mod.Phys.,A3,2713%22
https://doi.org/10.1142/S0217751X89000819
https://doi.org/10.1142/S0217751X89000819
https://inspirehep.net/search?p=find+J+%22Int.J.Mod.Phys.,A4,2015%22
https://doi.org/10.1142/S0217732396001648
https://arxiv.org/abs/hep-th/9512115
https://inspirehep.net/search?p=find+EPRINT+hep-th/9512115
https://doi.org/10.1007/JHEP06(2011)023
https://arxiv.org/abs/1103.3993
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.3993
https://doi.org/10.1088/1126-6708/2007/02/059
https://arxiv.org/abs/hep-th/0612236
https://inspirehep.net/search?p=find+EPRINT+hep-th/0612236
https://doi.org/10.1088/1126-6708/2008/10/095
https://arxiv.org/abs/0809.0652
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.0652
https://doi.org/10.1016/j.physletb.2015.11.036
https://arxiv.org/abs/1510.04566
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.04566


J
H
E
P
0
5
(
2
0
1
8
)
0
1
0

[57] D.V. Fursaev and S.N. Solodukhin, Anomalies, entropy and boundaries, Phys. Rev. D 93

(2016) 084021 [arXiv:1601.06418] [INSPIRE].

[58] D. Rodriguez-Gomez and J.G. Russo, Free energy and boundary anomalies on Sa ×Hb

spaces, JHEP 10 (2017) 084 [arXiv:1708.00305] [INSPIRE].

[59] D. Rodriguez-Gomez and J.G. Russo, Boundary conformal anomalies on hyperbolic spaces

and Euclidean balls, JHEP 12 (2017) 066 [arXiv:1710.09327] [INSPIRE].

[60] L.P. Eisenhart, Riemannian geometry, Princeton University Press, Princeton U.S.A. (1965).

[61] A.Z. Petrov, Einstein spaces, Pergamon Press, Oxford U.K. (1969).

[62] U. Muller, C. Schubert and A.M.E. van de Ven, A closed formula for the Riemann normal

coordinate expansion, Gen. Rel. Grav. 31 (1999) 1759 [gr-qc/9712092] [INSPIRE].
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