
This is the peer reviewd version of the followng article:

Synthesis, molecular structure exploration and in vitro cytotoxicity screening of five novel N, N'disubstituted thiocarbamide derivatives / Pandey, Sunil K.; Pratap, Seema; Gozzi, Gaia; Marverti, Gaetano; Butcher, R. J.. - In: PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS. - ISSN 1042-6507. -193:8(2018), pp. 507-514. [10.1080/10426507.2018.1452234]

Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

04/05/2024 03:04

Synthesis, molecular structure exploration and in vitro cytotoxicity screening of five novel N, N'- disubstituted thiocarbamide derivatives

Phosphorus, Sulfur, and Silicon and the Related Elements GPSS-2017-0382.R1 Original Article 24-Feb-2018
Original Article 24-Feb-2018
24-Feb-2018
Dandov, Sunily Banaras Hindu University, Chemistry
Pandey, Sunil; Banaras Hindu University, Chemistry pratap, seema; Banaras Hindu University Faculty of Science, Chemistry Gozzi, Gaia; University of Modena, Biomedical Sciences, Metabolic and Neurosciences Marverti, Gaetano; University of Modena, Biomedical Sciences, Metabolic and Neurosciences Butcher, Raymond; Howard University, Department of Chemistry
Thiocarbamide, X-ray crystallography, Cytotoxicity, Spectroscopic techniques, п–п stacking

SCHOLARONE[™] Manuscripts

Synthesis, molecular structure exploration and *in vitro* cytotoxicity screening of five novel N, N'- disubstituted thiocarbamide derivatives

Sunil K. Pandey^a, Seema Pratap^{a*}, Gaia Gozzi^b, Gaetano Marverti^b, R.J.Butcher^c

^a Department of Chemistry (M.M.V), Banaras Hindu University, Varanasi, India.

^bDepartment of Biomedical Sciences, Metabolic and Neurosciences, University of Modena at Reggio Emilia, Modena, Italy.

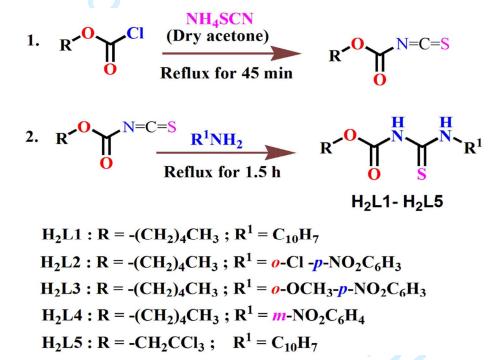
^cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA.

ABSTRACT

of five N,N'-substituted thiocarbamides, namely The synthesis N-(naphthyl)-N'-(pentoxycarbonyl) thiocarbamide (H_2L1) , N-(2-Chloro-4-nitrophenyl)-N'-(pentoxycarbonyl) thiocarbamide(H_2L2), N-(2-methoxy-4-nitrophenyl)-N'-(pentoxycarbonyl) thiocarbamide (H₂L₃), N-(3-nitrophenyl)-N'-(pentoxycarbonyl) thiocarbamide (H₂L₄) and N-(naphthyl)-N'-(2, 2, 2-trichloroethoxycarbonyl) thiocarbamide (H_2L5) was performed by the reaction of pentoxycarbonyl chloroformate with naphthyl amine, 2-chloro-4-nitroaniline, 2-methoxy-4nitroaniline, 3-nitroaniline, respectively, for the first four and by the reaction of 2, 2, 2trichloroethoxycarbonyl chloroformate with naphthyl amine for the last compound. These compounds were fully characterized by using various spectroscopic (FT-IR, ¹H and ¹³C NMR) and single crystal X-ray studies of H_2L1 and H_2L5 . In the crystal structure of both the compounds the (C=S) and (C=O) groups are trans to each other across the C-N bond. The crystal packing of H_2L1 shows that the molecules form centrosymmetric dimers connected by N2–H·····S hydrogen bonds. In H₂L5 an offset face-to-face π - π stacking is observed between two naphthalene rings of two molecules. In vitro cytotoxicity of synthesized compounds was evaluated using five human carcinoma cell lines 2008, C13* (cervical carcinoma), A2780, A2780/CP and IGROV-1 (ovarian carcinoma). The IC₅₀ values of compounds $H_2L2 - H_2L4$ demonstrated them to be very promising anticancer agents.

Keywords: Thiocarbamide; X-ray crystallography; Cytotoxicity; Spectroscopic techniques; $\pi-\pi$ stacking

^{*} Email: drseemapratap@gmail.com


Introduction

The structural studies of N,N'-disubstituted thiocarbamides have been the subject of extensive investigation on the ground of their potential medicinal, environmental¹⁻³ and analytical applications.^{4, 5} The vivid usage of these compounds may be credited to the presence of C=S and N-H groups in their structural motif. The presence of these groups facilitate the interaction of thiocarbamides with the variety of metal ions through coordinate bonds and also with many anions via the formation of intermolecular hydrogen bonds.⁶⁻¹¹In addition, the presence of intramolecular hydrogen bond (C=O·····H-N) causes monodentate coordination through thione sulfur forming trigonal planar copper (I) complexes which act as catalysts in many organic synthesis.^{12–15} The anticancer properties of substituted thiocarbamides have not been explored much though some of them have displayed excellent cytotoxic behavior against various human cancer cell lines.^{16–19} It has been reported that structural changes in these molecules, their modes of bonding to the DNA have considerable impact on their anticancer properties.²⁰⁻²² Some additional therapeutic values of substituted thiocarbamides can be reflected by their use as antimicrobial, antiviral, antimalarial, antitubercular, antiallergic, antithyroid, rodenticidal, herbicidal agents.²³⁻²⁷These compounds have also been proven valuable in liquid-liquid extraction of precious metals (Pt, Pd, Au Ag.), as anion and cation sensors ^{28, 29}, liquid crystal materials ^{30, 31}, non-linear optical materials ^{32, 33}, as catalyst in oxidation reaction of alcohols.^{34, 35} In view of the above facts and as part of our continuing work, we present here the "Synthesis, molecular structure exploration and in vitro cytotoxicity screening of five novel N, N'disubstituted thiocarbamide derivatives".¹²⁻¹⁴

Results and discussion

Synthesis and Characterization

The synthesis of compounds $H_2L1 - H_2L5$ was achieved by the reaction of n-pentoxycarbonyl/2, 2, 2-trichloroethocarbonyl isothiocyanate and suitable substituted primary amines. All the compounds were obtained in good yield. The slow evaporation at room temperature of acetone solution of compounds H_2L1 and H_2L5 (Scheme 1) afforded single crystals suitable for X-ray diffraction.

Scheme 1. Synthesis of compounds $H_2L1 - H_2L5$

FT-IR Spectra

The FT-IR spectra of the compounds displayed two N–H stretching vibrational bands in 3418–3443 and 3160–3180 cm⁻¹ regions, respectively. The high energy strong band (3418–3443 cm⁻¹) may be assigned to free N–H and the latter weak band (3160–3180 cm⁻¹) to the intramoleculally hydrogen bonded N1–H (N1–H·····O=C).^{12–14} The bands appearing at ~1670, ~1440 and ~778 cm⁻¹ region may be assigned to v(C=O), v(C–N) and v(C=S) vibrations, respectively. The appearance of v(C=O) at a lower wave number region in comparison to free v(C=O) vibrations (1710 cm⁻¹) may be attributed to the formation of intramolecular hydrogen bond between carbonyl oxygen and –N1H.³⁶

NMR Spectra

The ¹H NMR spectra of the compounds exhibited two singlets at 8.58–8.65 ppm and 11.63 – 11.35 ppm corresponding to N1H and N2H protons, respectively. The presence of intramolecular hydrogen bonding interaction between N1H and carbonyl oxygen is responsible for its high chemical shift value.^{6, 37} In all the compounds the signals for aliphatic protons appeared between 1.01–4.19 ppm and those for aromatic protons between 7.52–8.21 ppm, respectively, in their usual regions. The ¹³C NMR spectra of compounds exhibits signals due to all the carbon present in them. The resonances at 178.6–179.5 and 151.2–153.1 ppm correspond to thiocarbonyl and carbonyl carbons, respectively.^{12–14} Due to steric and electronic factors carbon in C=S is more exposed than C=O hence resonates downfield at ~179 ppm. ³⁸

Crystal structure description

The important crystallographic data refinement parameters, selected bond lengths, bond angles and hydrogen bonds for the compounds H_2L1 and H_2L5 are gathered in Tables 1, 2 and S 1 (Supplemental Materials), respectively. The crystal structure, unit cell diagram and packing pattern of H_2L1 and H_2L5 are depicted in Figures 1(a), 1(b), S1, and 2(a), 2(b), S2, respectively. The molecular structures of the compounds show them to be almost coplanar. The C=O and C=S bonds lengths are of typical double bond nature whereas all the C-N bonds indicate a partial double bond character. ^{12–13} The shortening of C–N bonds confirm the presence of resonance in this part of molecule (Table 2).^{12–15} All the bond distances and angles for these compounds exhibit conventional nature and show no significant differences from those reported earlier.³⁹ The strong intramolecular hydrogen bond between N1–H······O=C is responsible for trans orientation of the carbonyl and thiocarbonyl moieties across the C-N bond. An additional intermolecular hydrogen bond viz, N2-H.....S=C in H₂L1 joins two molecules together to be a dimer. Beside strong intramolecular hydrogen bond an offset face-face π - π stacking interaction is also observed in H₂L5 between naphthalene rings. Weak intermolecular interactions C-H·····O, C-S·····H, C-H·····N and C π -C π stabilize the crystal packing and lead to an infinite chain length along the a-axis (Figure 2b and S 2).⁴⁰

[Insert Figure 1]

[Insert Figure 2]

[Insert Table 1] [Insert Table 2]

In vitro cytotoxicity screening

The inhibition of cancer cell proliferation by compounds H_2L1-H_2L5 has been examined by using the methods describe in experimental section. Naphthyl amine and three other aromatic amines having one or two electron withdrawing groups have been chosen purposely as to see their effect on cytotoxic property of the compounds since it has been observed that electron withdrawing groups attached to the aromatic ring of the compounds enhance their cytotoxicity considerably.¹⁷⁻¹⁹ The results in the form of IC₅₀ values (the concentration which produces 50% growth inhibition of cell lines) are shown in **Table S 1 (Supplemental Materials)**. The comparative cytotoxicity of the compounds is depicted in **Figure S 3**. The results indicated that the compounds H_2L2-H_2L4 were more potent inhibitors than H_2L1 (IC₅₀ ~100 μ M) and H_2L5 (IC₅₀ ~75 μ M) against all the cell lines tested. The best result was obtained for 2008 cell line. The significant inhibitory activity for compounds H_2L2-H_2L4 can be related to the presence of electronegative group as substituents on the aromatic ring attached to N1.¹⁹ The best result is obtained for H_2L2 having two electronegative groups attached to the aromatic ring. These compounds exhibited more improved results than the compounds reported in our previous papers.^{12, 13} The most promising compound H_2L2 is worthy of further investigation.

Experimental Procedure

Chemicals, Instruments and Methods

n-pentyl chloroformate and 2, 2, 2-trichloroethyl chloroformate, primary amine derivatives and ammonium thiocyanate were purchased from Merck (Germany). Analytical grade acetone, acetonitrile, and dichloromethane were purchased from Rankem. The acetone was dried and freshly distilled prior to use. Melting points was measured on a X-4 digital melting-point apparatus and were uncorrected. Elemental analyses were performed on a CE-440 Exeter Analytical CHN analyzer. The infrared spectra of the title compounds as KBr pellets (4000–400 cm⁻¹) were recorded on a Varian 3100 FT-IR Excalibur series spectrophotometer.¹H and ¹³C NMR spectra were obtained on a JEOL FT-NMR AL 300 and 500 MHz spectrometer in CDCl₃ and DMSO-d₆, 25°C with chemical shifts relative to SiMe4. The splitting of proton resonances

in the reported ¹H NMR spectra were remarked as s = singlet, d = doublet, t = triplet, dd = doublet of doublets, dt = doublet triplet and m = multiplet; coupling constants are reported in Hz.

Crystal structure determination

Data collection was performed using CrysAlisPRO on an Oxford Diffraction Xcaliber Ruby Gemini CCD diffractometer using graphite- monochromatic CuKa (k=1.54178 Å) at 123 K. The structures were solved by direct methods and refined by full-matrix least-square on F^2 using SHELXL-97. ⁴¹ The non-hydrogen atoms were refined with anisotropic thermal parameters. All hydrogen atoms were geometrically fixed and allowed to refine using the riding model. The refinement converged to a final R1 = 0.0399, wR2 = 0.0996 for H₂L1 and R1 = 0.0524, wR2 = 0.0987 for H₂L5. Drawings were made using ORTEP-III ⁴² and MERCURY.⁴³

Synthesis of compounds

All the compounds were prepared by in two stages as shown in Scheme 1.⁴⁰ An acetone solution of n-pentyl chloroformate (1.44 mmol, 30 mL) for H_2L1-H_2L4 /2, 2, 2-trichloroethyl chloroformate (1.37 mmol, 30 mL) for H_2L5 was mixed to the ammonium thiocyanate (10 mmol, 0.76 g) solution in acetone (30 mL) and the resulting mixture was refluxed for 45 min at 75°C. After cooling to room temperature, a solution of suitable aromatic primary amine (10 mmol) in acetone (15 mL) was added slowly with stirring and the mixture was refluxed for 90 minute to complete the reaction. The precipitated ammonium chloride was filtered off and the pale yellow solution was evaporated in vacuum to dryness to get a crude product. Slow evaporation of acetone solution of the ligands H_2L1 and H_2L5 at 20–25°C yielded bright yellow single crystals suitable for X-ray diffraction.

N-(naphthyl)-N'-(pentoxycarbonyl) thiocarbamide (H₂L1)

Yellow solid; m.p 100-101°C; (Naphthylamine, 1.432g, 10 mmol) Yield: 80%; FT–IR (KBr, cm⁻¹) 3418, 3162 v(N–H),3050 v(aromatic C–H); 2955, v(aliphatic C–H); 1715, v(ester –COOR); 1598, v(C=O); 1537, v(aromatic, C=C); 1531, [Thioamide band I, v(C–N) + v(N–H)]; 1379, [Thioamide band II, v(C–N)+v(C=S)].¹H NMR(300 MHz,CDCl₃, δ , ppm): 11.63 (s,1H, –CSNH), 8.59 (s, 1H,–CONH), 7.97 (m, 1H, C₁₀H₇), 7.87 (m, 2H, C₁₀H₇), 7.69 (m, 1H, C₁₀H₇), 7.55 (m, 3H, C₁₀H₇), 4.20 (t, 2H, J = 6.5 Hz, –OCH₂), 2.49 (m, 2H,–(CH₂)–), 1.67 (m, 4H, 2x(–CH₂), 0.93 (t, 3H, –CH₃, J = 5.7 Hz, –CH₃). ¹³C NMR (75 MHz, CDCl₃, δ , ppm): 179.5

(C=S), 153.1(C=O), 134.1, 133.4, 128.7, 127.8, 125.1, 121.6 (Ar–C), 67.1 (–OCH₂), 28.3–22.1 – (CH₂)₃–; 13.8 (–CH₃). Elemental analyses for $C_{17}H_{20}N_2O_2S$ (316.31) (%) Calcd: C, 64.55; H, 6.37; N, 8.85. Found: C, 64.43; H, 6.30; N, 8.79.

N-(2-Chloro-4-nitrophenyl)-N'-(pentoxycarbonyl) thiocarbamide (H₂L2)

Yellow solid; m.p 85-86°C; (2–Chloro–4–nitroaniline, 1.731g, 10 mmol) Yield: 76%; FT–IR (KBr, cm⁻¹): 3494, 3176 v(N–H), 3128 v(aromatic C–H); 2958, v(aliphatic C–H);1733, v(ester –COOR); 1588, v(C=O); 1518, v(aromatic, C=C); 1501, [Thioamide band I, v(C–N) + v (N–H)]; 1342, [Thioamide band II, v(C–N) + v(C=S)]. ¹H NMR (500 MHz, DMSO-d₆, δ , ppm): 10.74 (s, 1H, CSNH), 9.01 (s, 1H, CONH), 8.04 (d, 1H, J = 3.1 Hz, –C₆H₃), 7,88 (dd, 1H, J = 8.5, 3.1 Hz, –C₆H₃), 6.78(d, 1H, J = 9.0 Hz, –C₆H₃), 4.12 (t, 2H, J = 7.0 Hz, –OCH₂), 2.46 (m, 2H, –(CH₂)–), 1.50 (m, 4H, 2x(–CH₂), 0.79 (t, 3H, J= 4.1 Hz, –CH₃). ¹³C NMR (125 MHz, DMSO-d₆, δ , ppm): 181.7 (C=S), 153.7 (C=O), 136.5, 133.4, 126.7, 126.1, 125.1, 124.9 (Ar–C), 66.2 (–OCH₂), 28.1–22.1 –(CH₂)₃–; 14.2 (–CH₃). Elemental analyses for C₁₃H₁₆N₃O₄SCI (345.80) (%) Calcd: C, 45.15; H, 4.66; N, 12.15. Found: C, 44.73; H, 4.63; N, 12.11.

N-(2-methoxy-4-nitrophenyl)-N'-(pentoxycarbonyl) thiocarbamide (H₂L3)

Dark yellow solid m.p 90-91°C; (2–Methoxy–4–nitroaniline, 1.682g, 10 mmol) Yield: 88%; FT–IR (KBr, cm⁻¹): 3407, 3179 v(N–H),3031 v(aromatic C–H);2958, v(aliphatic C–H);1731, v(ester –COOR); 1598, v(C=O); 1537, v(aromatic, C=C); 1417, [Thioamide band I, v(C–N) + v(N–H)]; 1367, [Thioamide band II, v(C–N) + v(C=S)]. ¹H NMR (500 MHz, DMSO-d₆, δ , ppm): 12.31 (s, 1H, –CSNH),11.53 (s, 1H,–CONH), 9.03 (d,1H, J = 9.5 Hz ,–C₆H₃), 7.90 (dd, 1H, J = 9.5, 3.0 Hz, –C₆H₃), 7.83 (d, 1H, J = 2.5 Hz, –C₆H₃), 4.15 (s, 3H,–OCH₃), 4.13 (t, 2H, J = 6.5 Hz,–OCH₂), 2.49 (m, 2H,–(CH₂)–), 1.60 (m, 4H, 2x(–CH₂), 0.85 (t, 3H , J = 7.0 Hz, –CH₃). ¹³C NMR (125 MHz, DMSO–d₆, δ , ppm): 178.2 (C=S), 150.6(C=O), 134.1, 133.4, 128.7, 127.8, 125.1, 122.6(Ar–C), 57.2 (OCH₃), 66.8 (–OCH₂), 28.0-22.1 –(CH₂)₃–; 14.26 (–CH₃). Elemental analyses for C₁₄H₁₉N₃O₅S (341.38) (%) Calcd: C, 49.26; H, 5.61; N, 12.31. Found: C, 49.23; H, 5.58; N, 12.29.

N-(3-nitrophenyl)-N'-(pentoxycarbonyl) thiocarbamide (H₂L4)

Dark yellow solid; m.p 78-79°C; (3–nitroaniline, 1.381g, 10 mmol) Yield: 78%; FT–IR (KBr, cm⁻¹): 3430, 3326 v(N–H),3098 v(aromatic C–H);2923, v(aliphatic C–H);1736, v(ester –COOR); 1627, v(C=O); 1580, v(aromatic, C=C); 1526, [Thioamide band I, v(C–N) + v(N–H)];

1338, [Thioamide band II, v(C–N) + v(C=S)]. ¹H NMR (500 MHz, DMSO-d₆, δ , ppm): 11.46 (s, 1H, –CSNH), 8.34 (s, 1H,–CONH), 7.58 (d, 1H, J = 6.1 Hz, –C₆H₄), 7.57 (dd, 1H, J = 6.1, 2.5 Hz, –C₆H₄), 7.49 (dt,1H, J = 6.1, 2.5, 2.0 Hz, –C₆H₄), 6.95 (d, 1H, J = 2.5 Hz, –C₆H₄), 4.19 (t, 2H, J = 7.0 Hz, –OCH₂), 2.17 (m, 2H,–(CH₂)–), 1.66 (m, 2H, 2x(–CH₂), 0.92(t, 3H, J = 5.0 Hz, –CH₃). ¹³C NMR (125 MHz, DMSO-d₆, δ , ppm): 181.7 (C=S), 166.9(C=O), 149.3, 147.4, 142.8, 136.4, 129.9, 120.6 (Ar–C), 67.2 (–OCH₂), 28.6–22.2 –(CH₂)₃–; 13.9 (–CH₃). Elemental analyses for C₁₃H₁₇N₃O₄S (311.35) (%) Calcd: C, 50.15; H, 5.50; N, 13.50. Found: C, 50.11; H, 5.47; N, 13.47.

N-(naphthyl)-N'-(2, 2, 2-trichloroethoxycarbonyl) thiocarbamide (H₂L5)

Yellow solid; m.p 80-81°C; (Naphthylamine, 1.432g, 10 mmol) Yield: 85%; FT–IR (KBr, cm⁻¹): 3443, 3235, v(N–H), 3010 v(aromatic C–H); 2961, v(aliphatic C–H); 1732, v(ester –COOR); 1505, v(C=O); 1597, v(aromatic, C=C); 1519, [Thioamide band I, v(C–N) + v(N–H)]; 1383, [Thioamide band II, v(C–N) + v(C=S)].¹H NMR (300 MHz, CDCl₃, δ , ppm): 11.34 (s, 1H, –CSNH), 8.61 (s, 1H, –CONH), 7.92 (m, 1H, C₁₀H₇), 7.90 (m, 2H, C₁₀H₇), 7.86(m, 1H, C₁₀H₇), 7.56(m, 3H, C₁₀H₇), 4.88 (s, 2H, –OCH₂). ¹³C NMR (75 MHz, CDCl₃, δ , ppm): 178.6 (C=S), 151.2(C=O), 134.1, 133.4, 128.7, 127.8, 125.1, 121.6 (Ar–C), 77.4(–OCH₂), 75.1 (–CCl₃). Elemental analyses for C₁₄H₁₁N₂O₂SCl₃ (377.57) (%) Calcd: C, 44.54; H, 2.94; N, 7.42. Found: C, 44.42; H, 2.90; N, 7.40.

Biological assays

Cell lines

Two human cervical cancer cell lines (2008 and C13*) and three ovarian cancer cell lines (IGROV-1, A2780 and A2780/CP) were used. Among these, C13* and A2780/CP are cisplatin (ccDDP)-resistant cells.^{44, 45} Cells were grown as monolayers in RPMI 1640 medium containing 10% heat-inactivated fetal bovine serum and 50 μ g/ml gentamycin sulfate. All cell media and serum were purchased from Lonza (Verviers, Belgium). Cultures were equilibrated with humidified 5% CO₂ in air at 38 °C. All studies were performed in Mycoplasma negative cells, as routinely determined with the MycoAlert Mycoplasma detection kit (Lonza, Walkersville, MD, USA).

Cytotoxicity screening

In vitro cytotoxicity of compounds used in the present study was determined by MTT assay.⁴⁶ The cells were seeded into 96-well plates and cultured overnight .Various concentrations of the test compounds dissolved in DMSO solvents were then added and incubated for 72 h. After

incubation, the medium was removed and added fresh culture medium 100µl containing 0.5 mg mL-1MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenytetrazolium bromide; Sigma) and then incubated at 38°C for 4 h. The medium was removed and 100 µL DMSO solvent was added to dissolve the dark blue crystals. After incubation for 30 min at room temperature, to ensure that all crystals were dissolved, absorbance was measured using an ELISA plate reader at 570 nm with reference wavelength of 650 nm.

Conclusion

In our present work, five N, N'-disubstituted thiocarbamide derivatives were prepared using the mentioned method in this paper and all of them were characterized by various spectroscopic and single crystal X-ray diffraction techniques. The crystal structure of H_2L1 and H_2L5 revealed the planar confirmation of thiocarbamide unit which may be due to the formation of intramolecular hydrogen bond N1–H······O=C. An intermolecular hydrogen bond N2–H······S=C links two thiocarbamide molecules as a dimer in case of H_2L1 . An offset face-to-face $\pi -\pi$ stacking is present in H_2L5 . *In vitro* cytotoxicity study of the synthesized compounds against five human cancer cell lines indicated significant inhibitory activity for compounds H_2L2-H_2L4 in which H_2L2 is most promising.

Acknowledgements

The author, SKP is grateful to Banaras Hindu University, Varanasi, India for the financial assistance. I am thankful to Prof. G. Marverti, Department of Biomedical Sciences, Metabolic and neurosciences, University of Modena, Italy for cytotoxicity studies. I am also very thankful to Prof. R. J. Butcher, Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA for the X-ray studies.

Supplementary Information

X-ray crystallographic hydrogen bonding Table S 1 of compounds (H_2L1) and (H_2L5), Cytotoxicity Table S 2 of compounds (H_2L1-H_2L5) and Figures (S 1, S 2 and S 3) have been provided in Supporting Information.

CCDC **999080** and **999081** contain the supplementary crystallographic data for compounds (H_2L1) and (H_2L5) . These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif, by e-mailing deposit@ccdc.cam.ac.uk or by contacting the Cambridge Crystallographic Data.

References:

- [1] Saeed, A.; Flörke Ulrich & F. Erben Mauricio. J. Sulfur Chem. 2014, 35, 318–355.
- [2] Ashraf, A. Aly.; Essam, K. Ahmed.; Khaled, M.J. Sulfur Chem. 2007, 28, 73–93.
- [3] Estevez-Hernandez, O.; Otazo-Sanchez, E. Spectrochim. Acta Part A 2005, 62, 964–971.
- [4] Otazo-Sanchez, E.; Ortiz-del-Toro, P. Spectrochim. Acta Part A 2002, 58, 2281–2290.
- [5] Estevez-Hernandez, O.; Duque J & Reguera, E. J. Sulfur Chem. 2011, 32, 213-222.

[6] Zhang, Q.; Zhao, B.; Song, Y.; Hua, Chengwen.; Gou, Xiao.; Chen, B.; Zhao, Junlong. *Heteroatom Chem.* **2015**, 26, 5.

[7] Halim, A. N. A.; Ngaini, Zainab. *Phosphorus Sulfur Silicon Relat. Elem.* 2017, 192, 1012-1017.

[8] Yuan, Y. F.; Wang, JiTao.; Gimeno, M. C.; Laguna, A.; Jones, P. G. *Inorg. Chim. Acta.* **2001**, 324, 309–317.

[9] Xian, L.; Wei, T.; Zhang, Y. M. J. Coord. Chem. 2004, 57, 453-457.

- [10] Duque, J.; Hernández, O. E.; Reguera, E.; Ellena, J.; Corrêa, R. S. J. Coord. Chem. 2009, 62, 2804–2813.
- [11] Li, D.; Che, D. J.; Li, Z. F.; Zhu, Y.; Zou, D. P. New J.Chem. 2002, 26, 1629–1633.
- [12] Singh, D. P.; Pratap, S.; Shukla, M. Inorg. Chim. Acta 2014, 423, 386-396.
- [13] Singh, D. P.; Pratap, S.; Pandey, S. K.; Butcher, R. J.; Marverti, G. J. Coord. Chem. 2015, 68, 261-276.
- [14] Khanam, S.; Pandey, S. K.; Rai, S. K.; Verma, D.; Jasinski, J. P.; Pratap, S.; Tewari, A. K. *ChemistrySelect* **2017**, 2, 6370 6374.
- [15] Wang, Dan.; Wu, Su-Yun.; Li, Hai-Pu.; Yang, Y.; Roesky, H. W. Eur. J. Inorg. Chem.
 2017, 1406–1413.
- [16] Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F. C.; Marzano, C. *Chem. Rev.* 2014, 114, 815–862.
- [17] Eatock, M. M.; Schatzlein, A.; Kaye, S. B. Cancer Treat. Rev. 2000, 26, 191.
- [18] Marverti, G.; Ligabue, A.; Lombardi, P.; Ferrari, S.; Monti, M. G.; Frassineti, C.; Costi, M. P. *Int. J. Oncol.* 2013, 43, 1269–1280.
- [19] Li, H.Q.; Yan, Tao.; Yang, Ying. Bioorg. Med. Chem. 2010, 18, 305–313.

[20] Zhang, Y.M.; W	ei, T.B.; Xian, L.; Gao, L. M. Phosphorus Sulfur Silicon Relat. Elem. 2004,
179, 2007-2013.	
[21] Rashid, S. S.; H	ussain, N.; Ali, R.; Jones, M. Eur. J. Med. Chem. 2010, 45, 4990-4996.
[22] Solomon, V. R	; Haq, W.; Smilkstein, M.; Srivastava, K.; Puri, S.K.; Katti, S.B. Eur. J.
Med. Chem. 2010, 45	, 4990-4996.
[23] Li, Q.J.; Yang, G	C. L.; J. Chem. Crystallogr. 2008, 38, 927–930.
[24] Selvakumaran,	N.; Pratheepkumar, A.; Ng, S.W.; Karvembu. R. Inorg. Chim. Acta 2013,
404, 82–87.	
[25] Maurya, M. R.;	Uprety, Bhawna. Eur. J. Med. Chem. 2015, 98, 54-60.
[26] Venkatachalam,	T. K.; Mao, C.; Uckun, F. M. Bioorg. Med. Chem. 2004, 12, 4275-4284.
[27] Saeed, S.; Rash	d, N.; Jones, P.G.; Ali, M.; Hussain, R. Eur. J. Med. Chem. 2010,45, 1323-
1331.	
[28] Hernandez, O.E	; Duque, J.; Reguera, E. J. Sulfur Chem. 2011, 32, 213-222.
[29] Luckay, R. C.;	Mebrahtu, F.; Esterhuysen, C.; Koch, K. R. Inorg. Chem. Commun. 2010,
13, 468-470.	
[30] Seshadri, T.; Ha	upt, H. J. J. Mater. Chem. 1998, 8, 1345-1350.
[31] Seshadri, T.; Ha	upt, H. J.; Florke, U.; Herald, G. Liq. Cryst. 2007, 34, 33-47.
[32] Venkataramanan	n, V.; Srinivasan, M. R.; Bhat H. L. J. Raman Spectrosc. 1994 , 25, 805-811.
[33] Venkataramana	n, V.; Bhat, H.L.; Srinivasan, M. R.; Ayyub, P.; Multan, M.S. J. Raman
Spectrosc.1997, 28, 7	79-784.
[34] Gunasekaran, N	.; Ramesh, P.; Ronnuswami, M. N. G.; Karvembu, R. Dalton Trans. 2011,
40, 12519-12526.	
[35] Gunasekaran, N	I.; Jerome, P.; Ng, S.W.; Tiekink, E. R. T.; Karvembu, R. J. Mol. Catl.
2012 ,353, 156-162.	
[36] Saeed, A.; Erber	n, M.F.; Bolte, M. Spectrochim. Acta 2013, 102, 408-413.
[37] Qiao, Lei; Zhai	ng, Yu; Hu, Wei; Guo, J.; Cao, W.; Ding, Z.; Guo, Z.; Fan, A.; Song, J.;
	ruct. 2017, 1141, 309–321.
[38] Silverstein, R. N	1.; Webster, F. X.; Kiemle, D. J. Spectrometric Identification
	ds, Wiley: New York, Seventh Edition. ISBN0-471-39362-2.
[39] Weiqun, Zhou. 1 223.	Kuishenga, Leng. Yonga.; Zhang.; Lude, Lu. J. Mol. Struct. 2003, 657, 215-
223.	ng.; Cheng, Ming. J. Chem. Crystallogr. 2009, 39, 612–614.

[41] Farrugia, Louis. WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 2012, 45, 849-854.

[42] Burnett, M. N.; Johnson, C. K.Oak ridge thermal ellipsoid plot program for crystal structure illustrations.**1996**, Report ORNL-6895, Oak Ridge National Laboratory, Oak Ridge, TN.

[43] Macrae, C.F.; Bruno, I.J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R. J. Appl. Cryst. 2008, 41, 466.

[44] Korch, C.; Spillman, M. A.; Jackson, T. A.; Jacobsen, B. M.; Murphy, S. K.; Lessey, B. A.;

Jordan, V. C.; Bradford, A. P. Gynecol. Oncol. 2012,127, 241-248.

[45] Andrews, P. A.; Jones, J. A. Cancer Commun. 1991,3, 93-102.

[46] Mosmann, T. J. Immunol.Methods 1983, 65, 55-63.

Page 13 of 21

Compounds	H_2L1	H_2L5
Empirical Formula	$C_{17} H_{20} N_2 O_2 S$	C ₁₄ H ₁₁ Cl ₃ N ₂ O ₂ S
Formula Weight	316.41	377.66
Crystal System / Space Group	Triclinic / P-1	Triclinic / P-1
a/Å	7.139(5)	8.115(5)
b / Å	10.751(5)	8.899(5)
c / Å	12.442(5)	12.238(5)
α/°	109.738(5)	75.345(5)
β/°	99.872(5)	87.734(5)
γ/°	106.335(5)	64.477(5)
V / Å ³	824.2(8)	769.1(7)
Z	2	2
D_{calc} (g/cm ³)	1.275	1.631
μ (mm ⁻¹)	1.812	0.738
Crystal size (mm)		0.5481 x 0.2877 x 0.106
Color / Shape	Bright yellow single crystal	Bright yellow single cry
Temp (K)	120(2)	120(2)
Theta range for collection	3.950 to 76.019°	2.790 to 41.226°
Reflections collected	5337	20621
Independent reflections	3279 [R(int) = 0.0200]	9968 [R(int) = 0.0257
Data/restraints/parameters	3279 / 7 / 231	9968 / 0 / 199
Goodness of fit on F^2	1.067	1.040
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0375, wR2 = 0.0984	R1 = 0.0376, wR2 = 0.08
R indices (all data)	R1= 0.0399,wR2 = 0.0996	R1 = 0.0524, wR2 = 0.09
Largest difference peak/hole	0.497 and -0.244 e. Å ⁻³	1.283 and -0.592 e. Å ⁻³

Table 1: Summary of crystal data and structure refinement of H2L1 and H2L5

Compound H ₂ L1		Compound	H_2L5
Bond lengths (Å)		Bond ler	ngths (Å)
C(11)–S(1)	1.674(16)	C(1)–N(1)	1.429(12)
C(11)–N(1)	1.331(18)	N(1)-C(11)	1.335(11)
C(1)–N(1)	1.431(18)	C(11)–S(1)	1.667(12)
O(1)–C(12)	1.327(18)	N(2)-C(12)	1.364(13)
O(2)–C(13)	1.455(16)	O(1)–C(12)	1.213(11)
N(2)–C(11)	1.381(18)	O(2)–C(12)	1.347(11)
N(2)–C(12)	1.378(18)	O(2)–C(13)	1.424(12)
C(16)–C(17)	1.491(4)	C(13)–C(14)	1.769(11)
C(15)–C(16)	1.520(3)	C(14)–Cl(1)	1.764(11)
C(15)–C(16)	1.520(3)	C(14)–Cl(2)	1.771(11)
C(13)–C(14)	1.502(6)	C(14)–Cl(3)	1.769(11)
Bond	angles (°)	Bond and	gles (°)
C(12)-O(2)-C(13)	116.50(3)	C(11)-N(1)-C(1	1) 124.25(8)
C(11)-N(1)-C(1)	123.60(10)	C(12)-O(2)-C(2)	13) 117.13(7)
C(12)-N(2)-C(11)	127.52(12)	C(12)-N(2)-C(2)	11) 127.38(7)
C(2)-C(1)-C(10)	121.79(12)	C(2)-C(1)-N(1)	120.13(8)
C(2)-C(1)-N(1)	119.97(13)	C(10)-C(1)-N(1) 118.14(9)
C(10)-C(1)-N(1)	118.24(12)	N(1)-C(11)-N((2) 116.10(8)
N(1)-C(11)-N(2)	116.90(12)	N(1)-C(11)-S(1) 125.55(7)
N(1)-C(11)-S(1)	124.48(11)	N(2)-C(11)-S(1) 118.35(6)
N(2)-C(11)-S(1)	118.61(10)	O(1)-C(12)-O((2) 124.84(8)
O(1)-C(12)-O(2)	125.94(12)	O(1)-C(12)-N((2) 126.88(8)
O(1)-C(12)-N(2)	125.60(13)	O(2)-C(12)-N((2) 108.26(7)
O(2)-C(12)-N(2)	108.46(11)	O(2)-C(13)-C(14) 110.00(8)
O(2)-C(13)-C(14)	107.40(8)	С(13)-С(14)-С	l(1) 111.32(6)
C(13)-C(14)-C(15)	115.70(5)	С(13)-С(14)-С	l(2) 106.93(6)
C(14)-C(15)-C(16)	111.66(19)	С(13)-С(14)-С	1(3) 110.27(7)

Table 2: Selected bond lengths (Å), and bond angles (°) for H_2L1 and H_2L5

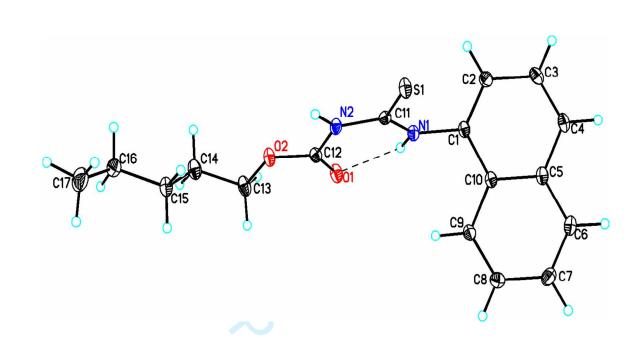


Figure 1(a): Molecular structure of H_2L1 . The intramolecular hydrogen bonds as shown by dashed lines.

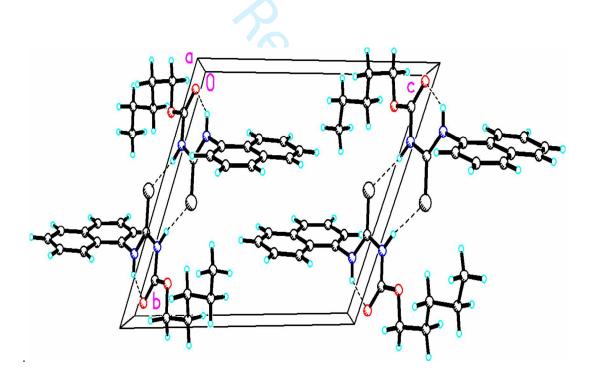


Figure 1(b): Unit cell diagram of H₂L1.

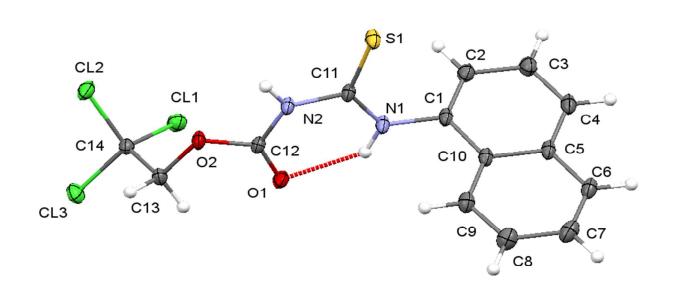


Figure 2(a): Molecular structure of H_2L5 . The intramolecular hydrogen bonds as shown by dashed lines.

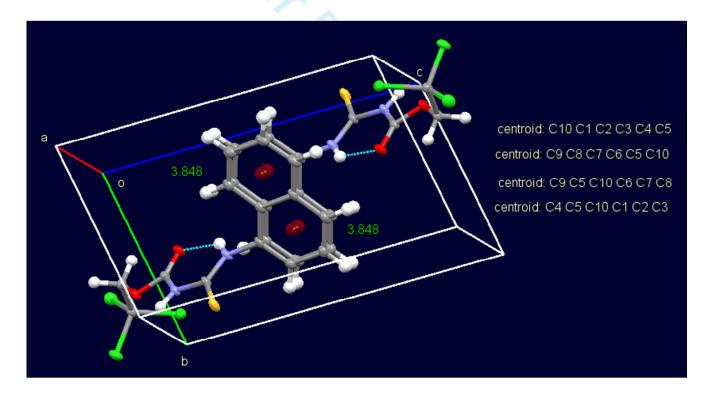
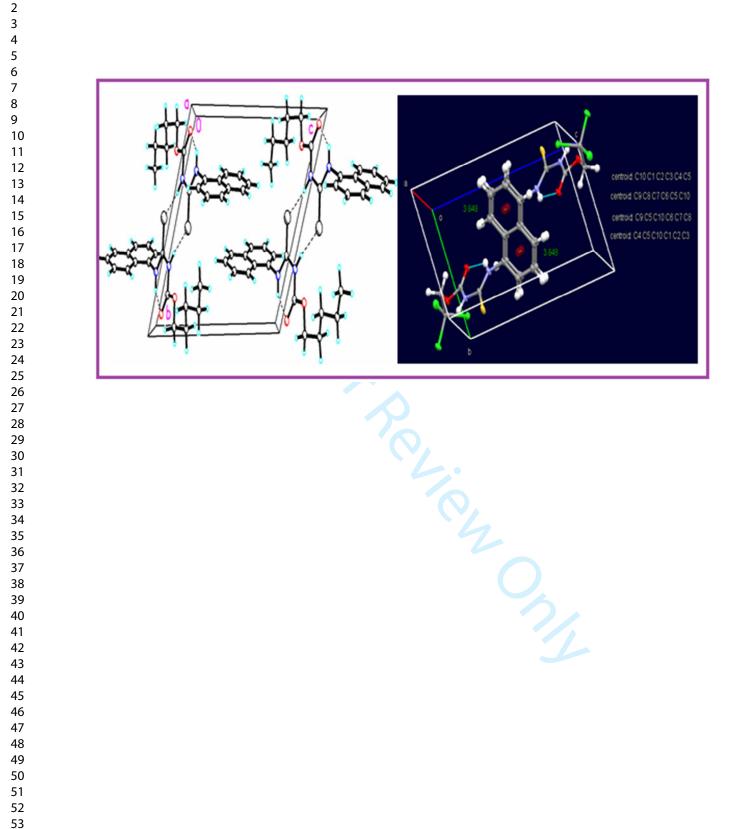



Figure 2(b): Unit cell diagram viewed down the b axis for H₂L5. Intermolecular face-to-face π - π stacking interaction is also observed in the compound.

Synthesis, molecular structure exploration and in vitro cytotoxicity screening of five novel N, N'- disubstituted thiocarbamide derivatives

Sunil K. Pandey^a, Seema Pratap^{a*,} Gaia Gozzi^b, Gaetano Marverti^b, R. J. Butcher^c

^a Department of Chemistry (M.M.V), Banaras Hindu University, Varanasi, India.

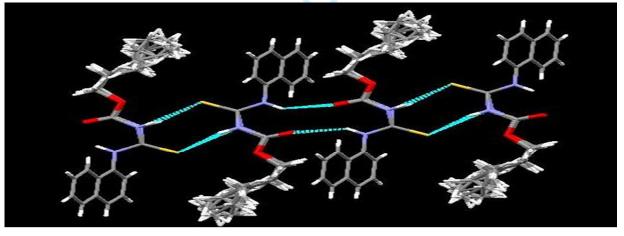
^b Department of Biomedical Sciences, Metabolic and Neurosciences, University of Modena at

Reggio Emilia, Modena, Italy.

² Department of Unc... Email: drseemapratap@gmail.com ^c Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059,

Table S 1: Imp	portant hydrogen	bonding intera	ictions of H ₂ I	$_1$ and H_2L5	[Å and °].

D –H····A	D-H	Н••••А	D····A	< (DHA)
H_2L1				
N(1)-H(1N)····O	(1) 0.83(2)	2.05(19)	2.701(2)	134.6(17)
N(1)-H(1N))····C	0(1)#1 0.83(2)	2.48(2)	3.160(2)	139.9(16)
N(2)-H(2N)····S(1)#2 0.89(2)	2.45(2)	3.327(16)	166.8(16)
H_2L5				
N(1)-H(1A)····O(1) 0.88	2.00	2.6995(13)	135.7
N(2)-H(2B)S(1	1)#1 0.88	2.53	3.3811(14)	162.5


Symmetry transformations used to generate equivalent atoms:

 H_2L1 .#1 -x+2,-y+1,-z+1 #2 -x+2, -y+2, -z+1 H_2L5 . #1 -x+1, -y, -z+2

Table S 2: IC_{50} Values (μ M) for the compounds $H_2L1 - H_2L5$ against two human cervical Cell lines (2008 and C13*) and three human ovarian carcinoma cell lines (A2780, A2780/CP and IGROV-1).

Compounds	2008 cells	C13*cells	A2780 cells	A2780/CP cells	IGROV-1 cells
H_2L1	73.4±5	91.7±5	102.8±5	101.5±11	105.6±9
H_2L2	21.0±5	26.3±6	28.9±5	25.6±5	23.0±2
H_2L3	31.2±5	37.2±7	32.5±7	34.4±5	29.1±3
H_2L4	31.8±7	38.4±6	36.2±5	35.2±3	38.0±6
H_2L5	67.5±1	97.7±2	73.9±1	78.9±4	72.2±1
5-FU	4.1±0.3	8.5±0.5	5.5±0.3	12.8±0.5	5.1±0.2

Figure S 1: Four molecules linked with H-bonds indicated by dashed lines. Weak intermolecular interactions (C–O····H-N and C–S·····H-N) lead to an infinite chain length along the a-axis.

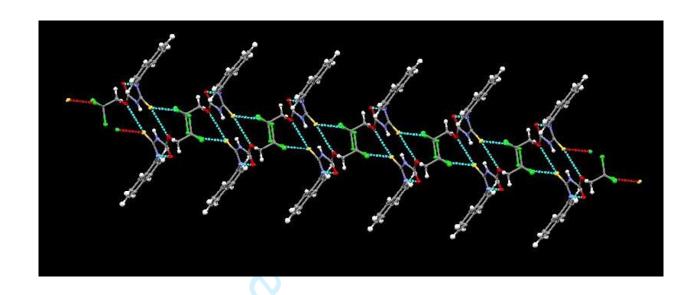


Figure S 2: The packing diagram of H₂L5. Weak intermolecular interactions (C–O·····H, C–S····H, and C–Cl····H) lead to an infinite chain length along the a-axis.

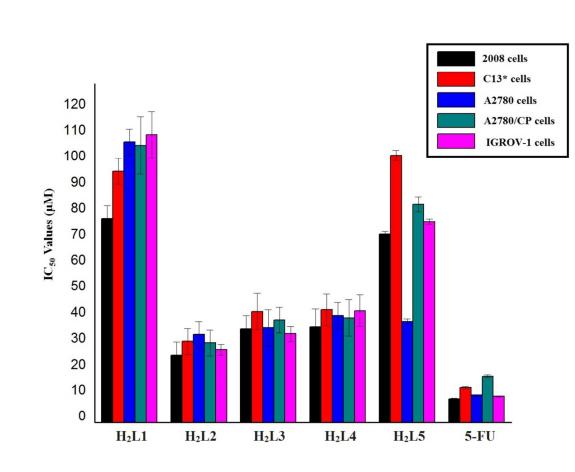


Figure S 3: Comparative cytotoxicity of compounds $H_2L1 - H_2L5$