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Abstract. The worldline approach to Quantum Field Theory (QFT) allows to efficiently compute several
quantities, such as one-loop effective actions, scattering amplitudes and anomalies, which are linked to
particle path integrals on the circle. A helpful tool in the worldline formalism on the circle are string-
inspired (SI) Feynman rules, which correspond to a specific way of factoring out a zero mode. In flat space
this is known to generate no difficulties. In curved space, it was shown how to correctly achieve the zero
mode factorization by applying BRST techniques to fix a shift symmetry. Using special coordinate systems,
such as Riemann Normal Coordinates, implies the appearance of a non-linear map —originally introduced
by Friedan— which must be taken care of in order to obtain the correct results. In particular, employing
SI Feynman rules, the map introduces further interactions in the worldline path integrals. In the present
paper, we compute in closed form Friedan’s map for RNC coordinates in maximally symmetric spaces, and
test the path integral model by computing trace anomalies. Our findings match known results.

1 Introduction

In the worldline approach to Quantum Field Theory (QFT), particle path integrals are used as a versatile computational
tool. The method was introduced by Feynman who, already in the 1950, proposed a particle model representation for
the dressed scalar propagator in scalar Quantum Electrodynamics [1]. However, it was only in the late 80s that the
method started to be taken seriously as an alternative approach to conventional second-quantized methods. Initially
it was used as a tool to compute chiral anomalies [2–4] and trace anomalies [5,6], and later it was introduced by Bern
and Kosower [7], and Strassler [8], as a proper method to compute QFT effective actions and generic QFT Feynman
diagrams —see [9] for a comprehensive review of the early stages of the method. Since then, several applications
and new implementations of the worldline formalism have been considered. In the realm of perturbative QFT some
examples are: the computation of multiloop effective actions [10], Bern-Kosower rules for dressed propagators [11,12],
the worldline formalism in curved spacetime [13–16], higher-spin field theory approaches [17–20], the spinning particle
approach to Yang Mills theories [21,22], as well as applications to non-commutative QFT [23,24], to the Standard
Model and Grand Unified theories [25,26], and to QFT on manifolds with boundary [27,28].

The extension of the worldline formalism to the computation of effective actions and Feynman diagrams for QFT
in curved spacetime required to tackle some technical issues which, during several years, had resulted in numerous
controversial statements and errors. The main issue boils down to the fact that, when the metric is non-flat, the
associated particle models are characterized by non-linear sigma models which, in the perturbative path integral
approach about the flat space metric, give rise to an infinite set of vertices with double-derivative interactions. By a
simple power counting analysis, these interactions can be shown to lead to ultraviolet divergences, at the one- and two-
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loop level, which need to be suitably regularized1. By now all the ambiguities have been dispelled, various regularization
schemes have been devised and tested, and the method has been consistently used in several computations (see
refs. [29,30] for a detailed description of the method and for a complete list of references) —in the present work we
adopt Dimensional Regularization (DR) to take care of the ambiguous diagrams. However, due to the aforementioned
vertices, the computational difficulty becomes fastly harder as the order in the perturbative expansion increases, and
finding simplified methods to handle the perturbative expansion in curved space would certainly be helpful, which is
one of the objectives of the present manuscript.

In this paper we study bosonic particle path integrals in curved space through the computation of trace anomalies
for scalar fields in various dimensions. As reviewed in sect. 2, trace anomalies are linked to particle path integrals in
curved space with periodic boundary conditions, i.e. path integrals over coordinate trajectories that have the topology
of a circle. In the perturbative approach, as we will see, this leaves the possibility of choosing different boundary
conditions for the particle propagator, which correspond to different ways of factoring out a zero mode of the free
kinetic term. Here we use the so-called “string-inspired” (SI) Feynman rules which correspond to the zero mode
identified as the center of mass of the paths. Along with this, we will make use of Riemann Normal Coordinates in
the expansion, and specialize ourselves to maximally symmetric (MS) spaces. In curved spaces, as it is reviewed in
sect. 3, the use of special coordinates comes with a prize: the need of a map, which we refer to as the “geodesic map”,
that for boundary conditions different than Dirichlet’s gives non-trivial contributions to the perturbative expansion;
as explained by Friedan [31], this is due to the fact that a certain linear shift symmetry becomes non-linear when
expressed in RNCs. In sect. 4 we thus compute the geodesic map, in closed form (i.e. to any order in the curvature),
for MS spaces. Finally, in sect. 5 we obtain the type-A trace anomalies for conformal scalar field theories in MS
spacetimes of dimension six and smaller, and test that our results reproduce known results. In sect. 6 we draw some
conclusions and discuss possible extensions and applications of the model. A technical appendix is added at the end,
which includes the list of worldline integrals needed in the computation, along with a detailed example where the rules
of DR are reviewed.

2 Trace anomalies in the worldline representation

Trace anomalies are linked to the (lack of) Weyl invariance of the effective action of a classically Weyl-invariant
quantum field theory. In particular, as originally shown by Fujikawa [32], in the field theory path integral approach,
the trace anomaly can be seen to arise as a non-trivial Jacobian of the measure under Weyl transformations. As a
paradigmatic example, let us consider a Weyl-invariant scalar field theory φ(x) in a D-dimensional curved spacetime,
whose Wick-rotated Euclidean action reads

S[φ, gµν ; ξ] =
1

2

∫

dDx
√

g(gµν∂µφ∂νφ − ξRφ2), (1)

where ξ ..= D−2
4(D−1) sets the non-minimal conformal coupling2. The latter is invariant under the (infinitesimal) Weyl-

transformation

δσgµν(x) = σ(x)gµν(x), δσφ(x) =
1

2

(

1 − D

2

)

σ(x)φ(x). (2)

The one-loop gravitational effective action Γ [gµν ] associated to the classical action (1) can be obtained from the
functional integral

e−Γ [gµν ] =

∫

Dφ e−S[φ,gµν ;ξ] (3)

and, under the Weyl rescaling, it gives

−δσΓ =

∫

dDxσ(x)gµν δΓ

δgµν
=

∫

dDx
√

g
1

2
σ(x) 〈Tµ

µ(x)〉 . (4)

Now, in order to compute the Weyl rescaling of the r.h.s. of expression (3) it is best to rewrite the fields in terms

of the so-called Fujikawa variables φ(x) → φ̃(x) ..= g
1
4 (x)φ(x), in order to have a dimensional-independent field

transformation δφ̃ = 1
2σφ̃. Such transformation provides a Jacobian which differs from unity by the trace of an infinite

dimensional operator (the scalar field action instead is Weyl invariant by assumption)

det
∂φ̃′(x)

∂φ̃(y)
− 1 = tr

∂δφ̃(x)

∂φ̃(y)
= tr

[
1

2
σ(x)δD(x − y)

]

. (5)

1 One-dimensional non-linear sigma models are super-renormalizable theories and diagrams with more than two loops are finite.
2 Our conventions for the Riemann and Ricci tensors are [∇µ,∇ν ]V ρ = Rµν

ρ
σV σ and Rµν = Rµρ

ρ
ν .
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The trace must thus be regulated

tr

[
1

2
σ(x)δD(x − y)

]

:= lim
β→0

tr

[
1

2
σe−βR

]

, (6)

with the consistent regulator R being the kinetic operator of φ̃, which reads (see [29] for details)

R = −1

2
g−

1
4 ∂µg

1
2 gµν∂νg−

1
4 − 1

2
ξR. (7)

Thus, using the identification pµ = −i∂µ, the differential operator (7) can be interpreted as the quantum Hamiltonian
of a non-relativistic particle in curved space3

H =
1

2
g−

1
4 pµg

1
2 gµνpνg−

1
4 − 1

2
ξR, (8)

and the regulated trace can be written as a particle path integral transition amplitude with periodic boundary condi-
tions. Hence, putting all together we have,

∫

dDx
√

gσ(x) 〈Tµ
µ(x)〉 = lim

β→0

∫

PBC

Dx σ(x) e−S[x], (9)

where

S[x] =
1

β

∫ 0

−1

dt

{
1

2
gµν(x)ẋµẋν + β2[V (x) + VDR(x)]

}

, V ..= −1

2
ξR (10)

is the particle action associated to the Hamiltonian (8), and VDR(x) is the counterterm that arises from the regu-
larization that we choose to be Dimensional Regularization (DR), whose application to finite-time one-dimensional
non-linear sigma models was proposed in [33], after earlier applications to the infinite-time counterparts had been ob-
tained [34]. In the expressions above the limit β → 0 is meant to convey the information that only the β-independent
terms are retained —in fact, it can be shown that terms that diverge in that limit can be removed by adding local
counterterms to the field theory action. Finally, by setting σ to a constant, we recognize that

∫

dDx
√

g 〈Tµ
µ(x)〉 = lim

β→0
Z(β), (11)

with

Z(β) :=

∫

PBC

Dx e−S[x], (12)

i.e. the integrated trace anomaly coincides with the β-independent part of the particle partition function.

3 BRST-methods for the particle path integral

In the short-β perturbative expansion of the partition function (12), needed to compute (11), it is convenient to
expand the background metric gµν(x) that characterizes the action (10), around a fixed point and treat the potential
and the terms with metric derivatives as perturbations. Thus, the leading term becomes a free kinetic term whose
corresponding operator has a zero mode on the circle, which is related to the constant translational symmetry. This
zero mode must be factored out, and an efficient way of doing that, which we review here, was described in [35]. Firstly,
it amounts to decompose the generic periodic path xµ(τ) into a constant zero mode xµ

0 and a quantum fluctuation
yµ(τ)

xµ(τ) = xµ
0 + yµ(τ). (13)

This splitting obviously introduces a constant shift symmetry

δxµ
0 = ǫµ

δyµ(τ) = −ǫµ, (14)

3 Such identification is guaranteed by the fact that, in terms of the rescaled fields, the Hilbert space inner product is given
by 〈ψ|ϕ〉 =

R

dDxψ̃∗(x)ϕ̃(x).



Page 4 of 17 Eur. Phys. J. Plus (2018) 133: 457

which —treating both fields xµ
0 and yµ(τ) as dynamical variables of the path integral— behaves as a gauge symmetry.

Hence, the path integral needs to be gauge-fixed in order not to overcount equivalent field configurations. This can be
achieved using BRST methods: the shift symmetry (14) is thus turned into a BRST symmetry

δxµ
0 = ηµΛ, δyµ(τ) = −ηµΛ,

δηµ = 0, δη̄µ = iπµΛ,

δπµ = 0, (15)

where Λ is an anticommuting parameter and ηµ, η̄µ and πµ are constant fields, the first two anticommuting and the
third commuting. The gauge can thus be fixed by introducing a “gauge fixing fermion”

Ψ [ρ] = η̄µ

∫ 0

−1

dτ ρ(τ)yµ(τ), (16)

which is parameterized by a distribution ρ(τ), normalized to
∫ 0

−1
dτρ(τ) = 1. The gauge-fixed action reads

Sgf [x0, y, η, η̄, π] ..= S[x0, y] +
δ

δΛ
Ψ,

= S[x0, y] + iπµ

∫ 0

−1

dτ ρ(τ)yµ(τ) − η̄µηµ (17)

and all the fields (that appear as arguments of Sgf ) are path-integrated. In particular, the integral over the anti-
commuting constant fields is equal to unity, whereas the integral over the auxiliary commuting field πµ imposes the
constraint ∫ 0

−1

dτ ρ(τ)yµ(τ) = 0 =⇒
∫ 0

−1

dτ ρ(τ)xµ(τ) = xµ
0 , (18)

which allows to invert the free kinetic operator of the fluctuations yµ, to find the particle propagator. Obviously,
different gauge functions ρ’s give rise to different propagators, but the ρ-independence of the partition function is
guaranteed by BRST symmetry, whereas the partition function density may, in general, be ρ-dependent. We can thus
write the partition function as an integral over the zero mode

Z(β) =

∫

dDx0

√

g(x0)Z(ρ)(x0, β), (19)

where Z(ρ)(x0, β) is the partition function density, whose β-independent part yields the trace anomaly. Moreover, the
dependence on ρ of the partition function density must arrange in the form of covariant total derivatives, which are
indeed trivial anomalies, that can be removed by adding local counterterms to the field theory action.

In the present calculation we use the string-inspired (SI) Feynman rules, which correspond to the choice ρ(τ) = 1,
where the zero mode plays the role of the “center of mass” of the loop and the quantum fluctuations are periodic and
have vanishing center of mass [9]. Another popular choice in this type of computations is ρ(τ) = δ(τ) which leads
to Dirichlet boundary conditions (DBC) for the fluctuations and the zero mode is the initial (= final) point of the
loop. The advantage of the SI choice is that, unlike with DBC, the worldline propagator is translationally invariant.
However, as we shall shortly see, in a special coordinate system, SI requires the inclusion of further vertices than DBC.
We will make use of (geodesic) Riemann Normal Coordinates (RNC) ξµ centered around the zero mode xµ

0 , i.e.

yµ = ξµ −
∞∑

n=2

1

n!
Γµ

(ν1ν2;ν3...νn)(x0)ξ
ν1 . . . ξνn , (20)

where Γµ
(ν1ν2;ν3...νn)(x0) is the symmetrized derivative of Christoffel’s symbol evaluated at x0, covariantized on the

lower indices, which leads to RNC expansion of the metric

gµν(x0, ξ) = gµν(x0) +
1

3
Rµρσν(x0)ξ

ρξσ +
1

6
Rµρσν;α1

(x0)ξ
ρξσξα1

+

(
1

20
Rµρσν;α1α2

(x0) +
2

45
Rµρσ

β1Rβ1α1α2ν(x0)

)

ξρξσξα1ξα2 + o(ξ5). (21)

Thus, the coordinate transformation (20), induces the following non-linear BRST transformation on the RNC coordi-
nates

δξµ(τ) = −Qµ
ν(x0, ξ(τ))ηνΛ, (22)

Qµ
ν(x0, 0) = δµ

ν . (23)
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We refer to Qµ
ν as the “geodesic map” and a geometric interpretation thereof is given in the following section, along

with a derivation in closed form, for the case of maximally symmetric backgrounds. However, let us check here how
the particle action changes if we use ξ as dynamical variables. In this case it is convenient —in strict analogy to what
discussed above for a generic coordinate set— to consider the gauge-fixing fermion

Ψ = η̄µ

∫ 0

−1

dτ ρ(τ)ξµ(τ), (24)

which then yields the gauge-fixed action

Sgf [x0, ξ, η, η̄, π] = S[x0, ξ] +
δ

δΛ
Ψ

= S[x0, ξ] + iπµ

∫ 0

−1

dτ ρ(τ)ξµ(τ) − η̄µ

∫ 0

−1

dτ ρ(τ)Qµ
ν(x0, ξ(τ))ην . (25)

Note that, as a consequence of condition (23), the last term of the previous expression is ξ-independent if ρ(τ) = δ(τ)
and thus, for DBC, it does not introduce addition interactions. On the other hand, for SI it is ξ-dependent and does
introduce a new interacting piece of action, which in the perturbative approach leads to an infinite set of vertices, which
must be taken into account in order to correctly compute the short-β expansion, and ultimately the trace anomalies.
Specifically, we thus get

Sgf [x0, ξ, η, η̄, π] = S[x0, ξ] +
δ

δΛ
Ψ

= S[x0, ξ] + iπµ

∫ 0

−1

dτ ξµ(τ) − η̄µ

∫ 0

−1

dτ Qµ
ν(x0, ξ(τ))ην (26)

and the Einstein-invariant and BRST-invariant path integral measure reads

Dx = dx0 dη dη̄ dπ
∏

−1≤τ<0

√

g(x0, ξ(τ)) dξ(τ). (27)

The
√

g factor of (27) can now be conveniently exponentiated by introducing a set of ghost fields, a(τ) (bosonic) and
b(τ), c(τ) (fermionic), with their own dynamics [5],

√

g(x0, ξ(τ)) =

∫

DaDbDc e−Sgh

Sgh[ξ, a, b, c] =
1

β

∫ 0

−1

dτ

[
1

2
gµν(x0, ξ)(a

µaν + bµcν)

]

, (28)

so that the final quantum action is given by

Sq[x0, ξ, η, η̄, π, a, b, c] ..= Sgf [x0, ξ, η, η̄, π] + Sgh[x0, ξ, a, b, c]. (29)

Putting all together, the full transition amplitude reads

Z(β) =

∫

dx0

√

g(x0)Z(SI)(x0, β)

=

∫

dx0 dη̄ dη dπ

∫

DξDaDbDc e−Sq . (30)

In order to compute the perturbative expansion of the latter, we consider the expansion of the metric and of the
geodesic map about the point xµ

0 , i.e. ξµ = 0. The terms quadratic in the various fields yield the propagators

〈ξµ(τ)ξν(σ)〉 = −βgµν(x0)B(τ, σ)

〈aµ(τ)aν(σ)〉 = βgµν(x0)Δgh(τ, σ)

〈bµ(τ)cν(σ)〉 = −2βgµν(x0)Δgh(τ, σ)

〈η̄µην〉 = δµ
ν , (31)
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with

B(τ, σ) =
1

2
|τ − σ| − 1

2
(τ − σ)2 − 1

12
Δgh(τ, σ) = δ(τ − σ). (32)

The interacting part of the action, S
(int)
q , can be obtained by replacing gµν(x0, ξ) → gµν(x0, ξ) − gµν(x0) inside the

kinetic part of (10), and by replacing Qµ
ν(x0, ξ) → Qµ

ν(x0, ξ) − δµ
ν inside the BRST ghost action (for notational

simplicity, we will use reparametrization invariance in x0 to set gµν(x0) = δµν). For the partition function we thus get

Z(β) =

∫

dDx0

√

g(x0)

(2πβ)
D
2

〈

e−S(int)
q

〉

(SI)
, (33)

where the suffix SI is meant to remind that we are using string-inspired Feynman rules. Hence, comparing with (19),
we get

Z(SI)(x0, β) =
1

(2πβ)
D
2

〈

e−S(int)
q

〉

(SI)
(34)

and
〈Tµ

µ(x0)〉 = lim
β→0

Z(SI)(x0, β) (35)

gives the local (i.e. unintegrated) trace anomaly at point x0.
Before proceeding further with the perturbative computation, we need to evaluate the expansion of the geodesic

map Qµ
ν to the necessary order: this was discussed by Friedan in [31]. However, instead of considering a generically

curved space, here we content ourselves with spaces of maximal symmetry, where

Rµνρσ = b(gµρgνσ − gµσgνρ), (36)

and b := R
D(1−D) , is negative on spheres. In this case we find that the above non-linear map can be obtained in closed

form. This is the subject of the following section.

4 The geodesic map in maximally symmetric spaces

As we have anticipated, in order to use RNC coordinates as quantum fluctuations in our path integral, we need to
take into account that the BRST symmetry induced by the linear shift of the zero mode x0, acts non-linearly on the
RNCs, namely

δξµ(τ) = −Qµ
ν(x0, ξ(τ))ηνΛ. (37)

This stems from the fact that, by definition, xµ
0 is the origin of the RNC coordinates which are vectors on the tangent

space Tx0
: they are tangent vectors, in xµ

0 to the geodesics that link xµ
0 to generic points xµ of the manifold. Therefore,

a shift of xµ
0 implies a shift of tangent space, and in turn this means that ξ′µ = ξµ + δξµ is a vector on the shifted

tangent space. Thus, if the manifold is not flat, the transformation of the RNC coordinates is a non-linear expression
of the old RNC coordinates ξµ. On the other hand, if the manifold is flat the different tangent spaces coincide and
Qµ

ν(x0, ξ(τ)) = δµ
ν . Moreover, if xµ ≡ xµ

0 , i.e. ξµ = 0, then δξµ = δyµ = −δxµ
0 , and Qµ

ν(x0, 0) = δµ
ν .

Friedan [31] proposed a method, which we briefly review below, to systematically compute the map Qµ
ν(x0, ξ) in

an arbitrary geometry as a power series in ξ. Let us denote by

Q ..= Qµ
ν(x0, ξ) (38)

the matrix which represents the geodesic map. It was found it convenient to re-write the latter in terms of another
matrix V, as

Q = 1 + ∂ logV. (39)

Above, the derivative operator is defined by

∂ ..= ξµ

(
∂

∂ξµ
− ∇̃µ

)

, (40)

where ∇̃µ is a covariant derivative that acts on tensor-valued functions of ξ (for ξ-independent functions it reduces to
the standard covariant derivative) and satisfies the property

∇̃µξν = 0. (41)
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By formally expanding V as a power series in ξ

V =

∞∑

n=0

1

(n + 1)!
V(n), (42)

where

V(0) = 11, V(1) = 0, V(n) ∝ ξn, (43)

one obtains that, in a generic torsion-free space, the matrices V(n) satisfy the recursion relation

V(n) = 2∇V(n−1) −∇2V(n−2) + V(n−2)R, (44)

with

R ..= Rµ
ρσν(x0)ξ

ρξσ. (45)

The previous recursion relation uniquely fixes V order by order in ξ. However, by increasing the order, the calculation
becomes rapidly harder and, for a generic manifold, a closed form for the matrix is not known. On the other hand, for
MS spaces we obviously have that

∇̃αR = 0, (46)

which immediately implies

V(2n+1) = 0, (47)

V(2n) = Rn (48)

and we thus get

V =

∞∑

n=0

1

(2n + 1)!
Rn =

sinh
√
R√

R
, (49)

with

R0 ..= 11, Rn ..= Rµ
α1β1ρ1

Rρ1
α2β2ρ2

· · ·Rρn−1
αnβnν(x0) ξα1ξβ1 · · · ξαnξβn . (50)

Moreover, note that for MS spaces the operator ∂ defined above just acts as a number operator, i.e. ∂R = 2R.
Therefore, the geodesic map simply reads

Q(MS) =
√
R coth

√
R, (51)

which can be easily expanded to the desired order. Before doing that, let us first rearrange it in a more convenient
form. Note in fact that, using (36) and (45), we get

R = b(δµ
σδρν − δµ

ν δρσ)ξρξσ =: −bξ2P (52)

in terms of the projector P = δµ
ν − ξµξν

ξ2 , which satisfies the condition ∂P = 0. We thus get

Rn = (−bξ2)nP (53)

and, finally,

V(MS) = 11 + P
(

sinh
√

−bξ2

√

−bξ2
− 1

)

, (54)

Q(MS) = 11 + P
(√

−bξ2 coth
√

−bξ2 − 1
)

. (55)

Hence, one can easily expand the previous expression in power series of b. In components the expansion reads

Q(MS)µ
ν = δµ

ν +

[
b

3
+

b2

45
ξρξ

ρ +
2

945
b3(ξρξ

ρ)2 + . . .

]

(ξµξν − δµ
νξρξ

ρ). (56)

Here we only keep the terms that will be needed in the following section to perform our trace anomaly tests.
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5 Computation of the trace anomaly

In order to compute the local trace anomaly of a conformally coupled scalar field theory, we need to obtain the
perturbative expansion of the correlator of eq. (34), which involves the interacting quantum action, whose derivation
was explained in sect. 3, namely,

S(int)
q =

1

β

∫ 0

−1

dt

{
1

2
[gµν(x0, ξ) − δµν ]

[

ξ̇µξ̇ν + aµaν + bµcν
]

+ β2 [V (x0, ξ) + VDR(x0, ξ)]

}

− η̄µ

∫ 0

−1

dτ [Qµ
ν(x0, ξ(τ)) − δµ

ν ] ην . (57)

Notice that, in the MS geometry, the potential term −β(V + VDR) is a constant and can thus be factored out from
the correlator, i.e.

Z(SI)(x0, β) =
e−β(1−4ξ) R

8

(2πβ)
D
2

〈

e−S̃(int)
q

〉

(SI)
, (58)

where the new interacting quantum action is given by

S̃(int)
q

..= S(int)
q − β(1 − 4ξ)

R

8
. (59)

In the present work we content ourselves we the computation of trace anomalies in dimension six or smaller, for which
the necessary RNC expansion of the metric (in MS spaces) is already known, and can be found, for instance, in ref. [36]

gµν(ξ) = δµν + 2 (ξµξν − δµνξρξ
ρ)

[
b

6
− 16

6!
b2 (ξρξ

ρ)
2

+
8

7!
b3 (ξρξ

ρ)
4

+ . . .

]

, (60)

whereas the expansion of the geodesic map is the one given above in eq. (56). Hence,

S̃(int)
q =

1

β

∫ 0

−1

dτ

[
b

6
− 16

6!
b2ξρ(τ)ξρ(τ) +

8

7!
b3 [ξρ(τ)ξρ(τ)]

2
+ . . .

]

× [ξµ(τ)ξν(τ) − δµνξρ(τ)ξρ(τ)]
[

ξ̇µ(τ)ξ̇ν(τ) + aµ(τ)aν(τ) + bµ(τ)cν(τ)
]

− η̄µ

∫ 0

−1

dτ

[
b

3
+

b2

45
ξρ(τ)ξρ(τ) +

2

945
b3 [ξρ(τ)ξρ(τ)]

2
+ . . .

]

[ξµ(τ)ξν(τ) − δµ
νξρ(τ)ξρ(τ)] ην . (61)

Using β as the perturbative parameter, the above action can be split up as

S̃(int)
q = S′

2
︸︷︷︸

β

+ S4
︸︷︷︸

β

+ S′
4

︸︷︷︸

β2

+ S6
︸︷︷︸

β2

+ S′
6

︸︷︷︸

β3

+ S8
︸︷︷︸

β3

+ . . . , (62)

where, for each term, its perturbative weight is indicated. In particular, such terms are

S4 =
b

6β

∫ 0

−1

dτ [ξµ(τ)ξν(τ) − δµνξρ(τ)ξρ(τ)]
[

ξ̇µ(τ)ξ̇ν(τ) + aµ(τ)aν(τ) + bµ(τ)cν(τ)
]

, (63)

S6 =
−16b2

6!β

∫ 0

−1

dτ ξσ(τ)ξσ(τ) [ξµ(τ)ξν(τ) − δµνξρ(τ)ξρ(τ)]

×
[

ξ̇µ(τ)ξ̇ν(τ) + aµ(τ)aν(τ) + bµ(τ)cν(τ)
]

, (64)

S8 =
8b3

7!β

∫ 0

−1

dτ ξσ(τ)ξσ(τ)ξα(τ)ξα(τ) [ξµ(τ)ξν(τ) − δµνξρ(τ)ξρ(τ)]

×
[

ξ̇µ(τ)ξ̇ν(τ) + aµ(τ)aν(τ) + bµ(τ)cν(τ)
]

, (65)

S′
2 = −η̄µ

b

3

∫ 0

−1

dτ [ξµ(τ)ξν(τ) − δµ
νξρ(τ)ξρ(τ)] ην , (66)

S′
4 = −η̄µ

b2

45

∫ 0

−1

dτ ξσ(τ)ξσ(τ) [ξµ(τ)ξν(τ) − δµ
νξρ(τ)ξρ(τ)] ην , (67)

S′
6 = −η̄µ

2b3

945

∫ 0

−1

dτ ξσ(τ)ξσ(τ)ξα(τ)ξα(τ) [ξµ(τ)ξν(τ) − δµ
νξρ(τ)ξρ(τ)] ην (68)
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and they can be used to reduce the contraction in (58) to (to avoid cluttering we omit the suffix SI)

〈

e−S̃(int)
q

〉

= exp

⎛

⎜
⎜
⎝
−〈S4〉
︸︷︷︸

β

−〈S′
2〉

︸︷︷︸

β

−〈S6〉
︸︷︷︸

β2

−〈S′
4〉

︸︷︷︸

β2

+
1

2

〈
S4

2
〉

C
︸ ︷︷ ︸

β2

+
1

2

〈

S′
2
2
〉

C
︸ ︷︷ ︸

β2

+ 〈S′
2S4〉C

︸ ︷︷ ︸

β2

−〈S8〉
︸︷︷︸

β3

−〈S′
6〉

︸︷︷︸

β3

+ 〈S4S6〉C
︸ ︷︷ ︸

β3

− 1

3!

〈
S4

3
〉

C
︸ ︷︷ ︸

β3

− 1

3!

〈

S′
2
3
〉

C
︸ ︷︷ ︸

β3

+ 〈S′
2S6〉C

︸ ︷︷ ︸

β3

+ 〈S′
2S

′
4〉C

︸ ︷︷ ︸

β3

+ 〈S′
4S4〉C

︸ ︷︷ ︸

β3

−1

2

〈

S′
2
2
S4

〉

C
︸ ︷︷ ︸

β3

−1

2

〈
S′

2S4
2
〉

C
︸ ︷︷ ︸

β3

+ . . .

⎞

⎟
⎟
⎠

. (69)

In the following, we report the results for the various contractions of (69), expressed both in terms of their string-
inspired worldline integrals (we indicate them with M) and then explicitly computed —we already write them in
terms of the curvature scalar R. The M integrals are reported in appendix A:

〈S4〉 =
βR

6
M1 = − 1

72
βR, (70)

〈S′
2〉 =

βR

3
M2 = − 1

36
βR, (71)

〈S6〉 =
16β2R2

6!D(1 − D)
(D + 2)M3 = − 1

6480

(D + 2)

D(D − 1)
β2R2, (72)

〈S′
4〉 = − β2R2

45D(1 − D)
(D + 2)M4 =

1

6480

(D + 2)

D(D − 1)
β2R2, (73)

〈

S′
2
2
〉

C
=

β2R2

32D(D − 1)

[
−(D − 1)(M2)

2 + (2D − 5)M5

]
= − 1

2160

1

D − 1
β2R2, (74)

〈
S4

2
〉

C
=

β2R2

18D(D − 1)
[(D − 1)(2M6 + M7 + M8) + 3(M9 − 2M10 + M11)]

= − 1

6480

7D − 46

D(D − 1)
β2R2, (75)

〈S′
2S4〉C =

β2R2

9D
(M12 + M13) = − 1

1620

1

D
β2R2, (76)

〈S8〉 =
8β3R3

7!D2(1 − D)2
(D + 2)(D + 4)M14 = − 8

7! · 1728

(D + 2)(D + 4)

D2(1 − D)2
β3R3, (77)

〈S′
6〉 =

2

945

β3R3

D2(1 − D)2
(D + 2)(D + 4)M15 = − 2

945 · 1728

(D + 2)(D + 4)

D2(1 − D)2
β3R3, (78)

〈S4S6〉C =
16β3R3

6 · 6!D2(1 − D)2
2(D + 2)

[
(D + 1)(−2M16 −M17 − 2M19 −M21)

+ 5(−M18 + 2M20 −M22)
]

= − 16

6 · 6! · 2160

(9D − 74)(D + 2)

D2(1 − D)2
β3R3, (79)

〈
S4

3
〉

C
= − β3R3

63D2(1 − D)2

[

− 24(D − 1)2
(

M23 + M24 − 2M25 + M26 + M28 + M29

+
1

3
M30 + M32 −M35 +

1

3
M39 −M44

)

− 72(D − 1)(M27 + M31 + M33 −M36

− 2M37 + M40 −M41 + 2M43 −M45 − 2M46 + 2M47 −M48) − 24(2D − 5)

(

M34

−M38 −M49 − 2M50 + 2M51 + 2M52 +
1

3
M55

)

+ 8(D − 16)(M42 + 3M54)

+ 24(D + 11)

(

M53 +
1

3
M56

)]

= − 1

63 · 7560

289D2 − 2464D − 4068

D2(1 − D)2
β3R3, (80)
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〈

S′
2
3
〉

C
= − β3R3

33D2(1 − D)2
[
− 2(D − 1)2M57 + 6(D − 1)(2D − 5)M58

− 2(D − 2)(4D − 19)M59

]
= − 1

33 · 30240

D2 + 23D + 6

D2(1 − D)2
β3R3, (81)

〈S′
2S6〉C =

16β3R3

3 · 6!D2(1 − D)
2(D + 2)(2M60 + M61) =

16

3 · 6! · 1440

D + 2

D2(1 − D)
β3R3, (82)

〈S′
2S

′
4〉C =

β3R3

3 · 45D2(1 − D)2
(D + 2) [(4D − 9)M62 + (D − 1)M63]

=
1

3 · 45 · 8640

(D + 2)(D + 4)

D2(1 − D)2
β3R3, (83)

〈S′
4S4〉C = − β3R3

6 · 45D2(1 − D)2
4(D + 2) (M64 + M65) = − 112

6 · 45 · 60480

D + 2

D2(1 − D)
β3R3, (84)

〈

S′
2
2
S4

〉

C
=

β3R3

6 · 32D2(1 − D)3
[
− 4(D − 1)2(2D − 5)(M66 + M68) − 2(2D3 − 10D2 + 17D

− 7)M67 + 4(D − 1)(2D2 − 6D + 7)M69 − 2(2D3 − 6D2 + 9D − 7)M70

+ 4(D − 1)3(M71 + M72)
]

= − 4

54 · 60480

4D2 + 21D − 46

D2(1 − D)2
β3R3, (85)

〈
S′

2S4
2
〉

C
= − β3R3

3 · 62D2(1 − D)

[
8(D − 1)(M73 + M74 − 2M75 − 2M76 + M77 + 2M81

+ M83 + M84 + M85) + 24(M78 −M79 − 2M80 + 2M82 + M86 + M87)
]

=
1

3 · 62 · 7560

37D + 158

D2(1 − D)
β3R3. (86)

In the above calculations, all terms containing equal time propagators with one derivative have been excluded, as they
vanish —see appendix A. This fact contributes significantly to simply the expansion in Wick’s contractions.

Now, putting all together, the local trace anomaly can be extracted from

〈Tµ
µ(x0)〉 = lim

β→0
Z(β)

= lim
β→0

1

(2πβ)
D
2

exp

[
β

4!
(12ξ − 2)R − β2

6!

(D − 3)

D(D − 1)
R2 +

β3

8!

16(D + 2)(D − 3)

9D2(D − 1)2
R3 + . . .

]

. (87)

At fixed dimension D, the β-limit selects the β-independent part in the expansion of the exponent in (87) after the
simplification with the Feynman measure 1/(2πβ)D/2, whereas β-divergent terms are ignored as they may be removed
by a QFT renormalization procedure. Recalling that ξ = D−2

4(D−1) , the result of our trace anomaly reads

D = 2 =⇒ 〈Tµ
µ(x0)〉 = − R

24π

D = 4 =⇒ 〈Tµ
µ(x0)〉 = − R2

48 · 6!π2

D = 6 =⇒ 〈Tµ
µ(x0)〉 = − R3

60 · 9!π3
, (88)

which is in perfect agreement with the results obtained using the standard DBC procedure [36]. Note that trivial
anomalies are absent in MS spaces, as they would appear as covariant derivatives of curvature combinations.

6 Conclusions

We have discussed the application of the string-inspired method within the worldline formalism in curved space which,
on the circle, allows to compute one-loop effective actions and associated scattering amplitudes, and anomalies. The
implementation of SI Feynman rules corresponds to a convenient way of factoring out a zero mode present on the
circle. A BRST technique, studied in [35], has been used for that purpose, along with RNC coordinates.

The main advantage of using the SI Feynman rules, in place of those associated to different ways of factoring out the
zero mode (such as DBC), resides in the simplicity of the worldline propagator which results translationally invariant,
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unlike the DBC propagator. Therefore, all the diagrams that involve equal time propagators with one derivative, are
vanishing. The price to pay for such advantage is the introduction of further vertices in the theory, which arise from a
non-linear “geodesic map”. Above we have computed such map in closed form, for MS spaces, and successfully tested
the associated non-linear sigma model via the computation of type-A trace anomalies of conformally coupled scalar
fields in dimension not larger than six.

The string-inspired formalism in curved space can be exploited in a wider class of calculations, and can be considered
as a powerful tool to reduce the complexity of standard Feynman diagrams computations, in quantum field theory and
in string theory [37,38]. One important example is the systematic computation of graviton scattering amplitudes and
gravitational effective actions. It is an outstanding problem, and the development of new methods, both analytic and
numeric, may be of considerable help. To such extent, an interesting scenario, that was conjectured years ago in [39]
and recently improved in [40–42], consists in the possibility of mapping the particle non-linear sigma model to a linear
sigma model where the gravitational properties are described in terms of an effective potential, with a substantial
gain of effectiveness in the perturbative computation. So far, such mapping has been studied only with DBC Feynman
rules and seems to be guaranteed only for MS spaces. However, it would be interesting to investigate the possibility of
using the SI method there since, because of flatness, the geodesic map should not add complications. Another relevant
extension involves supersymmetric sigma models, which are linked to the worldline approach for Dirac particles in
curved space [14], where it is certainly possible to consider SI Feynman rules.

Appendix A. Worldline integrals

The worldline integrals, that enter in the perturbative calculation described in the main text, involve the coordinate
Green’s function B and the ghost Green’s function Δgh, which read

B(τ, σ) = B(σ, τ) =
1

2
|τ − σ| − 1

2
(τ − σ)2 − 1

12
(A.1)

Δgh(τ, σ) = δ(τ − σ), (A.2)

and derivatives of the former, which at the unregulated level read

•B(τ, σ) =
1

2
sgn(τ − σ) − τ + σ = −B•(τ, σ) (A.3)

••B(τ, σ) = δ(τ − σ) − 1 = B••(τ, σ). (A.4)

Due to the translational invariance of the string-inspired propagator (A.1), the derivative with respect to the second
variable (right bullet) is the opposite of the derivative with respect to the first variable (left bullet). However, for
future convenience, in the formulas below we prefer to keep explicit the distinction. Propagators satisfy the properties

∫ 0

−1

dτ B(τ, σ) = (•B(τ, σ))
∣
∣
σ=τ

= 0,

[•B•(τ, σ) + Δgh(τ, σ)]σ=τ = 1, (A.5)

which will be largely exploited in the actual computation. The last property of (A.5) shows an example of divergence
cancellation: a δ(0) term gets canceled in the sum. This is the simplest example of how the ghost fields contribute to
cancel worldline divergences.

In the following, we report the list of the SI worldline integrals which have been used for the calculation of the
trace anomalies. They are computed using dimensional regularization (DR), when needed. For completeness, at the
end of the section we provide an example of how DR works in this worldline context. To simplify the notation, we

define
∫

..=
∫ 0

−1
, B|τ ..= B(τ, τ) and B ..= B(τ1, τ2) (or B12

..= B(τ1, τ2) for triple integrals):

M1 =

∫

dτ B|τ (•B• + Δgh) |τ = − 1

12

M2 =

∫

dτ B|τ = − 1

12

M3 =

∫

dτ B|τ 2 (•B• + Δgh) |τ =
1

144

M4 =

∫

dτ B|τ 2 =
1

144

M5 =

∫

dτ1

∫

dτ2 B2 =
1

720
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M6 =

∫

dτ1

∫

dτ2 B|1 •B2 (•B• + Δgh) |2 = − 1

144

M7 =

∫

dτ1

∫

dτ2 B|1B|2
(
•B•2 − Δgh

2
)

= − 1

144

M8 =

∫

dτ1

∫

dτ2 B2 (•B• + Δgh) |1 (•B• + Δgh) |2 =
1

720

M9 =

∫

dτ1

∫

dτ2 B2
(
•B•2 − Δgh

2
)

=
1

120

M10 =

∫

dτ1

∫

dτ2 BB• •B •B• = − 11

1440

M11 =

∫

dτ1

∫

dτ2 B•2 •B2 =
1

80

M12 =

∫

dτ1

∫

dτ2 B2 (•B• + Δgh) |2 =
1

720

M13 =

∫

dτ1

∫

dτ2 B•2B|2 = − 1

144

M14 =

∫

dτ B|τ 3 (•B• + Δgh) |τ = − 1

1728

M15 =

∫

dτ B|τ 3 = − 1

1728

M16 =

∫

dτ1

∫

dτ2 B|1B|2•B2 (•B• + Δgh) |2 =
1

1728

M17 =

∫

dτ1

∫

dτ2 B|1B|22
(
•B•2 − Δgh

2
)

=
1

1728

M18 =

∫

dτ1

∫

dτ2 B2B|2
(
•B•2 − Δgh

2
)

= − 1

1440

M19 =

∫

dτ1

∫

dτ2 B2B|2 (•B• + Δgh) |1 (•B• + Δgh) |2 = − 1

8640

M20 =

∫

dτ1

∫

dτ2 B|2 BB• •B •B• =
11

17280

M21 =

∫

dτ1

∫

dτ2 B•2B|22 (•B• + Δgh) |1 =
1

1728

M22 =

∫

dτ1

∫

dτ2 B•2 •B2B|2 = − 1

960

M23 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1•B12
2 •B23

2 (•B• + Δgh) |3 = − 1

1728

M24 =

∫

dτ1

∫

dτ2

∫

dτ3 B|12 •B12
2
(
•B•

23
2 − Δgh,23

2
)

= − 1

1728

M25 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 •B12 B23
•B23

•B•
12 = 0

M26 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 •B12
•B13 B23 (•B• + Δgh) |2 (•B• + Δgh) |3 =

1

8640

M27 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 •B12
•B13 B23

(
•B•

23
2 − Δgh,23

2
)

=
1

1440

M28 =

∫

dτ1

∫

dτ2

∫

dτ3 B|12 •B12 B•
23

•B•
13 (•B• + Δgh) |2 = − 1

1728

M29 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 B23
2
(
•B•

12
2 − Δgh,12

2
)
(•B• + Δgh) |3 =

1

8640

M30 =

∫

dτ1

∫

dτ2

∫

dτ3 B|13 (•B•
12

•B•
23

•B•
13 + Δgh,12 Δgh,23 Δgh,13) = − 1

1728

M31 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 B23
2 (•B•

12
•B•

23
•B•

13 + Δgh,12 Δgh,23 Δgh,13) =
1

1440
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M32 =

∫

dτ1

∫

dτ2

∫

dτ3 B12
2 •B23

2 (•B• + Δgh) |1 (•B• + Δgh) |3 =
1

8640

M33 =

∫

dτ1

∫

dτ2

∫

dτ3 B12
2 •B13

•B23
•B•

12 (•B• + Δgh) |3 = − 11

20160

M34 =

∫

dτ1

∫

dτ2

∫

dτ3 B12
2 •B13

2
(
•B•

23
2 − Δgh,23

2
)

= − 1

4032

M35 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
12 B23

•B23 (•B• + Δgh) |1 (•B• + Δgh) |3 = 0

M36 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
12

•B12
•B13

•B23 (•B• + Δgh) |3 =
11

60480

M37 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
12

•B13 B23
•B•

12 (•B• + Δgh) |3 = − 1

60480

M38 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
12 B23

•B23

(
•B•

13
2 − Δgh,13

2
)

=
61

120960

M39 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B23 B13 (•B• + Δgh) |1 (•B• + Δgh) |2 (•B• + Δgh) |3 = − 1

30240

M40 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B23 B13 (•B• + Δgh) |1
(
•B•

23
2 − Δgh,23

2
)

=
1

40320

M41 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B13 B•
23

•B23
•B•

23 (•B• + Δgh) |1 =
13

120960

M42 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B23 B13 (•B•
12

•B•
23

•B•
13 + Δgh,12 Δgh,23 Δgh,13) =

143

120960

M43 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
13 B•

23
•B23

2 (•B• + Δgh) |1 = − 1

6720

M44 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 B|3 •B12 B•
23

•B•
12

•B•
23 = 0

M45 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 •B12
•B13 B•

23
•B23

•B•
23 = − 11

17280

M46 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 •B12 B23
•B23

•B•
13

•B•
23 = − 11

17280

M47 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 •B12 B•
23

•B23
2 •B•

13 =
1

960

M48 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 B23 B•
23

•B23
•B•

12
•B•

13 = − 11

17280

M49 =

∫

dτ1

∫

dτ2

∫

dτ3 B12
2 •B13

•B23
•B•

13
•B•

23 =
1

30240

M50 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
12

•B13
2 B•

23
•B•

23 =
1

30240

M51 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
12

•B13 B23
•B•

13
•B•

23 = − 79

120960

M52 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
12

•B13
•B23 B•

23
•B•

13 = − 1

30240

M53 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B13
•B23 B•

23
•B•

12
•B•

13 = − 19

40320

M54 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
13

•B•
12

•B13 B•
23

•B23 =
11

12096

M55 =

∫

dτ1

∫

dτ2

∫

dτ3 B•
12

2 •B13
2 B•

23
2 =

17

20160

M56 =

∫

dτ1

∫

dτ2

∫

dτ3 B•
12 B•

13
•B12

•B13 B•
23

•B23 = − 17

20160
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M57 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 B|2 B|3 = − 1

1728

M58 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 B23
2 = − 1

8640

M59 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B23 B13 = − 1

30240

M60 =

∫

dτ1

∫

dτ2 B2 B|2 (•B• + Δgh) |2 = − 1

8640

M61 =

∫

dτ1

∫

dτ2 B•2 B|2 =
1

1728

M62 =

∫

dτ1

∫

dτ2 B|2 B2 = − 1

8640

M63 =

∫

dτ1

∫

dτ2 B|1 B|22 = − 1

1728

M64 =

∫

dτ1

∫

dτ2 B|1 B|2 •B2 =
1

1728

M65 =

∫

dτ1

∫

dτ2 B2 B|2 (•B• + Δgh) |1 = − 1

8640

M66 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 •B12
•B13 B23 =

1

8640

M67 =

∫

dτ1

∫

dτ2

∫

dτ3 B12
2 •B13

2 =
1

8640

M68 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B23 B13 (•B• + Δgh) |1 = − 1

30240

M69 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B13
•B12

•B13 = 0

M70 =

∫

dτ1

∫

dτ2

∫

dτ3 B13
2 •B12

2 =
1

8640

M71 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 B|3 •B12
2 =

1

1728

M72 =

∫

dτ1

∫

dτ2

∫

dτ3 B12
2 B|3 (•B• + Δgh) |1 = − 1

8640

M73 =

∫

dτ1

∫

dτ2

∫

dτ3 B12
2 •B23

2 (•B• + Δgh) |3 =
1

8640

M74 =

∫

dτ1

∫

dτ2

∫

dτ3 B|3 B12
2
(
•B•

23
2 − Δgh,23

2
)

=
1

8640

M75 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
12 B23

•B23 (•B• + Δgh) |3 = 0

M76 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
12 B•

23
•B•

23 B|3 = 0

M77 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B23 B13 (•B• + Δgh) |2 (•B• + Δgh) |3 = − 1

30240

M78 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B23 B13

(
•B•

23
2 − Δgh,23

2
)

=
1

40320

M79 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B13
•B23 B•

23
•B•

23 =
13

120960

M80 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
13 B23

•B23
•B•

23 = − 1

60480

M81 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
13 B•

23 B|3 (•B• + Δgh) |2 =
1

8640
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M82 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
13 B•

23
•B23

2 = − 1

6720

M83 =

∫

dτ1

∫

dτ2

∫

dτ3 B•
12

2 B23
2 (•B• + Δgh) |3 =

1

8640

M84 =

∫

dτ1

∫

dτ2

∫

dτ3 B•
12

2 B•
23

2 B|3 = − 1

1728

M85 =

∫

dτ1

∫

dτ2

∫

dτ3 B|2 B|3 B•
12 B•

13
•B•

23 = − 1

1728

M86 =

∫

dτ1

∫

dτ2

∫

dτ3 B23
2 B•

12 B•
13

•B•
23 = − 11

20160

M87 =

∫

dτ1

∫

dτ2

∫

dτ3 B•
12 B•

13 B23 B•
23

•B23 =
11

60480
.

To provide an example, we report a step-by-step DR calculation of the integral M27.

M27 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 •B12
•B13 B23

(
•B•

23
2 − Δgh,23

2
)

→
∫

dD+1t1

∫

dD+1t2

∫

dD+1t3 B|1 µB12 µB13 B23

(

νB23ρ
2 − Δgh,23

2
)

= B|1
∫∫∫

µB12 µB13 B23 (νB23ρ νB23ρ − 1 − ννB23 − B23ρρ − ννB23 B23ρρ)

= B|1
∫∫∫

(

µB12 µB13 B23 νB23ρ νB23ρ − µB12 µB13 B23 − µB12 µB13 B23 ννB23

− µB12 µB13 B23 B23ρρ − µB12 µB13 B23 ννB23 B23ρρ

)

= B|1
∫∫∫

[
− νB23 µB12 (µB13 B23 νB23ρ)ρ − µB12 µB13 B23 (1 + 2B23ρρ)

+ νB23 µB13 (µB12 B23 B23ρρ)ν

]

= B|1
∫∫∫ [

− νB23 µB12 µB13ρ B23 νB23ρ − νB23 µB12 µB13 B23ρ νB23ρ

−
�

�
�

�
�

�
�

�
�

�
��

νB23 µB12 µB13 B23 νB23ρρ − µB12 µB13 B23 (1 + 2B23ρρ) + νB23 µB12ν µB13 B23 B23ρρ

+ νB23 µB12 µB13 νB23 B23ρρ +
�

�
�

�
�

�
�

�
�

�
��

νB23 µB12 µB13 B23 νB23ρρ

]

= B|1
∫∫∫

[

νB23 µµB12 B13ρ B23 νB23ρ
︸ ︷︷ ︸

≡I

−νB23 µB12 µB13 B23ρ νB23ρ
︸ ︷︷ ︸

≡J

− µB12 µB13 B23 (1 + 2B23ρρ) − νB23 B12ν µµB13 B23 B23ρρ + νB23 µB12 µB13 νB23 B23ρρ

]

, (A.6)

with

I : =
1

2

(

νB23
2
)

ρ µµB12 B13ρ B23 ≃ −1

2
νB23

2
µµB12 B13ρρ B23 −

1

2
νB23

2
µµB12 B13ρ B23ρ

J : = νB23 µµB12 B13 B23ρ νB23ρ =
1

2

(

νB23
2
)

ρ µµB12 B13 B23ρ ≃ −1

2
νB23

2
µµB12 B13ρ B23ρ

− 1

2
νB23

2
µµB12 B13 B23ρρ, (A.7)
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where the symbol “≃” means equal up to an irrelevant integration by parts. Hence,

B|1
∫∫∫

[I + J − µB12 µB13 B23 (1 + 2B23ρρ) − νB23 B12ν µµB13 B23 B23ρρ + νB23 µB12 µB13 νB23 B23ρρ]

= B|1
∫∫∫ [

− 1

2
νB23

2
µµB12 B13ρρ B23 −

1

2
νB23

2
µµB12 B13ρ B23ρ

− 1

2
νB23

2
µµB12 B13ρ B23ρ − 1

2
νB23

2
µµB12 B13 B23ρρ − µB12 µB13 B23 (1 + 2B23ρρ)

− νB23 B12ν µµB13 B23 B23ρρ + νB23 µB12 µB13 νB23 B23ρρ

]

D→0−−−→ B|1
∫

dτ1

∫

dτ2

∫

dτ3

[

− 1

2
•B23

2 ••B12 B••
13 B23 − •B23

2 ••B12 B•
13 B•

23

− 1

2
•B23

2 ••B12 B13 B••
23 − •B12

•B13 B23 (1 + 2B••
23) − •B23 B•

12
••B13 B23 B••

23

+ •B23
•B12

•B13
•B23 B••

23

]

=
1

1440
. (A.8)

In the first line of (A.6) we have •B•
23

2 − Δgh,23
2, which needs to be regularized. To do that we adopt the worldline

dimensional regularization scheme studied in [33,29]. We introduce D arbitrary dimensions for each worldline integral,
i.e. we extend the worldline time variable to a (D +1)-dimensional vector t ..= (τ, t1, . . . , tD) along with its derivatives

µB(t1, t2) ≡
∂

∂t1µ
B(t1, t2)

Bν(t1, t2) ≡
∂

∂t2ν
B(t1, t2) (A.9)

and we integrate over the (D + 1)-dimensional space. Now, by means of successive integrations by parts we remove
ambiguous expressions, neglecting all boundary terms because of momentum conservation in the new D dimensions
and periodicity of the propagators in the original interval. We proceed until the final expression is written in a manner
that can be unambiguously computed removing the additional dimensions.
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