
 
 

EFFECTS OF CHARACTERISTIC MATERIAL LENGTHS  
ON DUCTILE CRACK PROPAGATION 

 
 
 

 
E. Radi 

Dipartimento di Scienze e Metodi dell’Ingegneria  
Università di Modena e Reggio Emilia 

Viale Allegri, 13. I-42100 Reggio Emilia, Italia. E-mail: eradi@unimore.it 
 
 

 
ABSTRACT 

 
The asymptotic fields near the tip of a crack steadily propagating in a ductile material under Mode III loading conditions are 
investigated by adopting an incremental version of the indeterminate theory of couple stress plasticity displaying linear strain 
hardening. The adopted constitutive model is able to account for the microstructure of the material by incorporating two distinct 
material characteristic lengths. It can also capture the strong size effects arising at small scales, which results from the 
underlying microstructures. The effects of microstructure on Mode III crack tip fields mainly consist in a substantial increase in 
the singularities of the skew-symmetric stress and couple stress fields, which occurs also for small values of the strain 
hardening coefficient, whereas the symmetric stress field turns out to be non-singular according to the asymptotic crack tip 
fields for a stationary crack provided by the indeterminate theory of couple stress elasticity. The performed asymptotic analysis 
thus predicts a significant increase of the tractions level ahead of the crack-tip, due to the contribution of the rotation gradient. 
 

Introduction 
 

Due to the lack of a length scale, classical plasticity theories are not able to characterize the constitutive behavior of ductile 
materials at the micron scale. This lack is expected to be particularly significant for the analysis of the stress and deformation 
fields very near the tip of a crack propagating in a ductile metal, which are altered by the presence of the microstructure. In 
particular, experimental observations performed by Elssner et al. [1] found that during crack propagation the interface between 
a ductile crystal of niobium and a sapphire single crystal remained sharp and not blunted up to the atomic scale. They also 
found that the stress level required to produce atomic decohesion of the lattice turns out to be about 10 times the tensile yield 
stress, whereas fracture mechanics analyses based on classical plasticity theories provide a maximum stress level near a 
crack tip not larger than 4–5 times the tensile yield stress [2]. Therefore, for the investigations of the crack tip fields at the 
micron scale it becomes necessary to adopt enhanced constitutive models, which account for the non linear behavior of the 
material as well as for the presence of microstructure and dislocations. A way of doing that consists in the inclusion of one or 
more characteristic lengths within the framework of elastic-plastic rate constitutive relations. These lengths are typically of the 
same order of the compositional grain size, namely few microns, for polycrystalline metals. Several strain gradient (SG) 
plasticity models [3-9] based on phenomenological theories have been proposed for this purpose. They proved to be able to 
predict the size effect exhibited at the micron scale by ductile materials when subject to inhomogeneous plastic deformation, 
providing accurate predictions in the modeling of torsion of thin wires and bending of thin beams [5]. In a first attempt, Fleck 
and Hutchinson [4] presented a couple stress (CS) flow-theory of plasticity which involves strain rotation gradients only. This 
model includes an intrinsic characteristic material length l, which specifies the range where strain gradients are dominant. A 
further elastic length scale le was artificially introduced in order to partition the curvature rate tensor into elastic and plastic 
contributions. A generalization of this model was presented in [5], where the micro-rotation field is treated as an independent 
kinematical quantity with no direct dependence upon the displacement field. A flow-theory version of CS plasticity based on the 
indeterminate theory of CS elasticity [10] was also developed in [6, 7]. This model involves two material characteristic lengths, 
namely l and l′, whose effects on the ductile crack propagation are almost unexplored. 
 
The asymptotic and full-field solutions for a stationary crack under Mode I and Mode II, obtained in [11-13] by using the CS 
deformation theory of plasticity presented in [4], revealed that the stress field dominates the couple stress field and thus the 
tractions level ahead of the crack-tip does not increase substantially. Therefore, rotation gradients seem to play a relatively 
small role in altering the stresses at the tip of a Mode I stationary crack. They are expected to have a major effect on the 
tractions ahead of a Mode III crack tip, whereas Mode I crack-tip fields are more significantly influenced by stretch gradients. It 
must be observed that the CS models failed to estimate the results of tests where also stretch gradients come into play, as for 
instance micro-indentation and void growth, since the strain gradients considered by these models derive uniquely from 



rotation gradients. Enhanced SG theories [8, 9, 14] have been proposed to supply this lack. They may incorporate several 
material length scales and provide a link between the mesoscale SG plasticity level and the microscale dislocation mechanics. 
However, investigations of the stationary crack tip fields performed by adopting these refined constitutive models give 
physically unacceptable results. In particular, Chen et al. [15] found that the normal stresses ahead of the crack-tip under 
Mode I loading condition predicted by the SG theory of plasticity turn out to be compressive, while Shi et al. [16] showed that 
the crack-tip fields obtained by using the mechanism-based strain gradients (MSG) theory of plasticity do not admit a 
separable-variable form. Recent analyses carried out to investigate the effects of microstructure on crack propagation in 
ductile materials showed that the incorporation of couple stress and rotation gradients in the constitutive description, by using 
the flow theories of CS or SG plasticity, considerably improves the estimation of the tractions level ahead of the crack-tip and 
may explain the occurring of cleavage or atomic decohesion during the crack growth process, experimentally observed in 
ductile metals also [1]. In particular, the analyses of a steadily propagating crack-tip under Mode I loading conditions [17, 18] 
found that the couple stress field is dominant near to the crack-tip and produces a remarkable increase in the stress 
singularity, even for small strain hardening, whereas former investigations of crack propagation performed by using classical 
elastic-plastic constitutive models displaying linear strain hardening [19, 20], predicted an extremely weak stress singularity for 
the small values of the strain hardening coefficient generally adopted for ductile metals. Moreover, the investigations [17, 18] 
showed that the contribution of the elastic strain gradients strongly affects the asymptotic crack-tip fields, through the artificial 
elastic length scale le. 
 
The problem of Mode III crack propagation in ductile materials was first analyzed within the classical J2-flow theory for linear 
and isotropic hardening [19, 20] and extended to mixed isotropic/kinematic hardening [21]. These investigations found that the 
strength of the stress singularity turns out to be extremely weak for small strain hardening. The effects of strain gradients on 
the stress concentration at the tip of a Mode III stationary crack in a linear elastic material were considered in [22-25]. While 
strain gradients are introduced in [22, 25] through the second gradient of displacement, only rotation gradients are considered 
in [23, 24] by adopting a couple stress theory which account for a single characteristic length. The results obtained in [23] for 
the indeterminate theory of CS elasticity indicate that the skew-symmetric stress components have r−3/2 singularity near the 
crack-tip, where r is the distance to the crack tip, with no need to take stretch gradients into consideration. Although this 
singularity is much stronger than the conventional square-root singularity, it does not violate the boundness of strain energy 
surrounding the crack tip and leads to a finite energy release rate. The effects of strain rotation gradients on Mode III crack 
propagation in ductile metals was recently investigated in [26] by using the flow theory version of CS plasticity developed in [4]. 
The asymptotic analysis of the crack-tip fields performed in [26] showed that the contribution of the elastic strain gradients, 
which are related to the elastic length scale le, strongly affects the asymptotic crack-tip fields, according to the results obtained 
for Mode I crack propagation [17]. Moreover, the skew-symmetric stress field asymptotically dominates the symmetric stress 
and couple stress fields, displaying a much stronger singularity than that predicted by the classical J2-flow theory. In particular, 
a strong increase in the singularity is observed if the elastic strain gradients are kept sufficiently small, namely for le << l.   
 
In the present work, the effects of strain rotation gradients on ductile steady-state crack propagation under Mode III loading 
conditions are investigated by performing an asymptotic analysis of the crack-tip fields derived from the flow theory of the 
indeterminate CS plasticity with two characteristic material lengths of the same order, namely l and l′. Rotation gradients are 
found to give a significant contribution at a distance from a crack-tip smaller with respect to these characteristic lengths, 
whereas they become negligible at larger distances, with a gradual transition in the intermediate region. According to the 
results obtained in [23, 26] for a single characteristic material length l, the skew-symmetric stress field dominates the 
asymptotic field, producing thus a remarkable increase of  tractions level at the crack tip, almost independently of the value of 
the strain hardening coefficient. The roles of both characteristic lengths are examined in detail and the influence of their ratio 
on the crack tip fields is numerically explored. The inclusion of two distinct characteristic lengths provides more realistic 
predictions on the tractions level ahead of the propagating crack-tip then the classical solution obtained for the J2-flow theory 
and gives more accurate results then the CS theory of plasticity with a single characteristic length, allowing the detailed 
mechanisms by which fracture may grow and propagate in ductile metals to be understood in more depth, up to the micron 
scale. 
 

Governing  Equations 
 

The flow-theory version of the couple stress strain gradient plasticity developed in [6, 7] is adopted in the present study. This 
constitutive model derives from the indeterminate theory of CS elasticity developed by Koiter [10] and assumes the following 
kinematical compatibility conditions between the displacement vector u, rotation vector θ, strain tensor ε and deformation 
curvature tensor χ  

 ε = 
2
1 (∇u + ∇uT),  θ = 

2
1 curl u, χ = ∇θ,  χ = curl ε.  (1) 

Therefore, rotations are derived from displacements and the tensor field χ turns out to be irrotational. According to the CS 
theory [10] the non-symmetrical Cauchy stress tensor t can be decomposed into a symmetric part σ and a skew-symmetric 
part τ, namely t = σ + τ. In addition, the couple stress tensor μ is introduced as the work-conjugated quantity of χT.  



The reduced surface tractions vector p and couple stress tractions vector q are defined respectively as 

 p = tT n + 
2
1

∇μnn × n, q = μT n − μnn n, (2) 

where n denotes the outward unit normal. The conditions of quasistatic equilibrium of forces and moments write 

 div tT = 0,  div μT +  τ = 0.  (3)  

where   is the third order alternator tensor. Within the context of small deformations incremental theory, the total strain rate ε&  
is the sum of elastic ε& e and plastic ε& p parts. Similarly, the total deformation curvature rate χ&  is the sum of elastic χ& e and 
plastic χ& p contributions. Both elastic parts are related to stress and couple stress rates through the following isotropic rate 
constitutive relations  

 ε& e = 
G2
1 [ σ&  − 

ν+
ν

1
 (tr σ& ) I], χ& eT = 

)1(2 22

T

η−
η

l

&&

G
μ−μ , (4) 

where G is the elastic shear modulus, ν the Poisson ratio and η = l′/l the dimensionless ratio between characteristic lengths 
introduced by Koiter [10], with −1 < η < 1. Both material characteristic lengths are related to the microstructure and generally 
are of the order of few microns for ductile polycrystalline metals. It is worth noting that the constitutive equations of the 
indeterminate CS theory do not define the skew-symmetric part τ of the total stress tensor t, which can be however obtained 
from the equilibrium equation (3)2. Moreover, within the couple stress theory χ, χe, χp and μ are purely deviatoric tensors. 
 
The fundamental relationships of the constitutive model are briefly summarized below. 
 

• Yield condition 
 f (Σ, Y) = Σ − Y = 0,  (5) 

 
where Y = uniaxial flow stress for isotropic hardening 

 Σ = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
η−

η−
+

••
•

)1(2
3

22

T

l

μμμμSS  = overall effective stress (6) 

 S = deviatoric part of the symmetric stress tensor σ.  
 

• Associative flow rules 

 pε&  = Λ 
σ∂

∂ f = 
Σ
Λ

2
3  S, pχ& T = Λ 

μ∂
∂ f = 

)1(
)(

2
3

22

T
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η−

Σ
Λ

l

μμ , (7) 

 Λ = plastic multiplier 
 

• Linear isotropic hardening rule 
 Y&  = Λ H, (8) 

where H is the constant hardening modulus, which depends on the ratio α = Gt /G between the tangent plastic shear 
modulus Gt  and the elastic shear modulus G (0 < α < 1), namely 

 H = 
α−
α

1
3  G. (9) 

• Consistency condition 
 f&  = 0,            ⇒         Σ&  = Y& , (10) 

which gives the non-negative plastic multiplier Λ as 

 Λ  = 
0,Y),(
0Y),(

0 <Σ
=Σ

⎪⎩

⎪
⎨
⎧ Σ

fif 
fif H&

  Σ&  = 
Σ2

3
⎥
⎦

⎤
⎢
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&& μμμSS . (11) 

The elastic-plastic rate constitutive equations resulting from (4) and (7) are 

 ε&  = 
G2
1 [ σ& − 

ν+
ν

1
 (tr σ& ) I] + 

Σ
Λ

2
3  S, l2 χ& T = 21

1
η− ⎥

⎦

⎤
⎢
⎣

⎡
η−

Σ
Λ

η− + )(
2
3)(

2
1 TT μμμμ &&
G

.  (12) 



These equations hold when the stress and couple stress fields obey the yield condition (5). Otherwise, the plastic multiplier 
Λ is set equal to 0. In this case, isotropic elastic behavior with couple stress is recovered. Therefore, strain gradient effects 
also occur for a purely elastic response. Finally, note that constitutive equations (12) reduce to the widely used J2-flow theory 
of plasticity when the strain gradients are vanishing small.   
 

Mode III Crack  Propagation Problem 
 

The problem of a semi-infinite plane crack propagating at constant velocity V along a rectilinear path is considered in the 
present section by performing an asymptotic analysis of the crack tip fields. Reference is made to a cylindrical coordinate 
system (r, θ, x3) centred at the crack-tip and moving with it towards the θ = 0 direction, where the x3-axis coincides with the 
straight crack front. The condition of steady-state propagation yields the following time derivative rule for any arbitrary scalar 
function φ: 

 ⎟
⎠

⎞
⎜
⎝

⎛ θ
∂
∂φ

−θ
∂θ
∂φ

φ cos
r

rsin
r
V =& . (13) 

For antiplane problems, the non-vanishing stress and couple stress components with respect to a cylindrical coordinate 
system in cylindrical coordinates are σr3, σθ3, τr3, τθ3, μrr, μrθ, μθr and μθθ, where μθθ = −μrr. Accordingly, the strain and 
deformation curvature components are εr3, εθ3, χθr, χrθ, χrr, and χθθ, where χθθ = −χrr. The equilibrium conditions (5) write 

 (r tr3),r + tθ3,θ = 0,  (r μrr),r + μθr,θ − μθθ + 2 r τθ3 = 0, (r μrθ),r + μθθ,θ + μθr − 2 r τr3 = 0. (14) 

The kinematical compatibility conditions (1)  between displacement, strains and deformation curvatures imply in rate form 

 v3 = 3u&  v3,r = 2 ε& r3, v3,θ = 2 r ε& θ3,   (15) 

 χ& rr = ε& 3θ,r, χ& rθ = ε& 3θ,θ + r/r3ε& , χ& θr = − ε& 3r,r.  (16) 

Equations (14)-(16) together with rate constitutive equations (8) and (12) form a system of first order PDEs that governs the 
problem of the crack propagation. The asymptotic crack-tip fields are sought in the separable variable form φ(r, θ) = r p F(θ), 
where the exponent p defines the radial dependence of the generic function φ as r → 0. A qualitative analysis performed in [26] 
gives the relative order of singularity of the crack-tip fields, which holds in the present context also. Therefore, the 
displacement, velocity, stress and couple stress asymptotic crack-tip fields are assumed in the form 

 u3 (r, θ) = r 
p

R
r

⎟
⎠

⎞
⎜
⎝

⎛ u(θ), v3 (r, θ) = V 
p

R
r

⎟
⎠

⎞
⎜
⎝

⎛ w(θ),  (17)  

  σα3 (r, θ) = G
p

R
r

⎟
⎠

⎞
⎜
⎝

⎛ sα(θ), μαβ(r, θ) = G 
r

2l
p

R
r

⎟
⎠

⎞
⎜
⎝

⎛  Mαβ(θ), τα3 (r, θ) = G 2

2

r
l

p

R
r

⎟
⎠

⎞
⎜
⎝

⎛ tα(θ),  (18)  

where the Greek indices α and β stand for polar coordinates r and θ. Since μ and M are purely deviatoric tensors, the condition 
Mθθ = − Mrr holds true. As r goes to zero, the symmetric stress, couple stress and skew symmetric stress fields (18) behave as 
r p, r p−1 and r p−2, respectively. Therefore, the latter field gives the most singular contribution near to the crack tip, for r < l. 
Oppositely, for r > l, the couple stress and skew symmetric stress fields become negligible with respect to the symmetric 
stress field, in agreement with the classical theories of elastic-plastic fracture mechanics. The constant R in (17) and (18) plays 
the role of an undetermined amplitude factor for the leading order asymptotic fields. The solution of the homogeneous 
asymptotic problem can indeed be determined up to an amplitude factor, which depends on far-field loading and specimen 
geometry and can be estimated by matching the asymptotic solution with the far-field conditions. Nevertheless, the asymptotic 
analysis can capture the strength of the singularity of the crack tip field and their angular variation, once a normalization 
condition is adopted.  
 
According to the asymptotic representations (18) of the stress and couple stress fields the overall effective stress and flow 
stress fields near the crack-tip may be assumed in the form 

 Σ(r, θ) = G 
r
l

p

R
r

⎟
⎠

⎞
⎜
⎝

⎛ Γ(θ), Y(r, θ) = G 
r
l

p

R
r

⎟
⎠

⎞
⎜
⎝

⎛ γ(θ), (19) 

where the function Γ resulting from (6) and (18) is 

 Γ = ⎥
⎦

⎤
⎢
⎣

⎡
η−

+
+η−

η− θθ
θθ

rr
rr

rr MMMMM
2

)1(
1

3 22
2

2 , (20) 



since near the crack-tip, namely for r < l, the couple stress field gives the most singular contribution to the effective stress and, 
thus, to the yield condition. When the asymptotic fields (18) are introduced into equilibrium equations (14) the following ODEs 
are derived at leading order 

 tθ' =  (1 − p) tr,  Mθr' =  − (1 + p) Mrr − 2 tθ,  Mrr' =  Mθr + p Mrθ − 2 tr, (21) 

where ( )' = d( )/dθ. By using the steady-state derivative rule (13), the rates of σ, μ and Y in (18) and (19) can be written in the 
form 

 σ& α3(r, θ) = G 
r
V  

p

R
r

⎟
⎠

⎞
⎜
⎝

⎛ hα(θ), μ& αβ(r, θ) = G V 2

2

r
l

p

R
r

⎟
⎠

⎞
⎜
⎝

⎛ Hαβ(θ), Y& (r, θ)  =  G V 2r
l

p

R
r

⎟
⎠

⎞
⎜
⎝

⎛ κ(θ), (22) 

where the polar components hα and Hαβ  and the function κ follow from (18)1,2 and (19)2 as 

 hr = (sr' − sθ) sin θ − p sr cos θ,  hθ = (sθ' + sr) sin θ − p sθ cos θ, (23) 

 Hrr = (Mrr' − Mθr − Mrθ) sin θ + (1 − p) Mrr cos θ = −Hθθ ,  Hrθ = (Mrθ' + 2 Mrr) sin θ + (1 − p) Mrθ cos θ,    (24)  

 Hθr = (1 − p) (Mrr sin θ + Mθr cos θ) − 2 tθ sin θ. κ = γ ' sin θ + (1 − p) γ cos θ.  (25) 

Note that the equilibrium condition (21)2 has been used in (25)1. The rate constitutive relations (12) require that the strain and 
deformation curvature rates must have the same radial dependence assumed for the stress and couple stress rates in (22)1,2, 
namely 

 ε& α3(r, θ) = 
r
V p

R
r

⎟
⎠

⎞
⎜
⎝

⎛ dα(θ), χ& αβ(r, θ) = 2r
V p

R
r

⎟
⎠

⎞
⎜
⎝

⎛ Xαβ(θ). (26)  

In contrast with the problems of Mode I and Mode II crack [11, 12, 17], the dominant strain rate field for the antiplane crack 
problem turns out to be rotational. Therefore, the compatibility equations (16) admit non-vanishing deformation curvature rates 
at lowest order. In agreement with the asymptotic representations (17) and (26), the kinematical compatibility conditions (15)2,3 
and (16) can be written as 

 dr = 
2
1 p w, w ' = 2 dθ.  Xrr = (p − 1) dθ,  Xθr = 

2
1 (1 − p) p w  Xrθ = dθ' + 2

1 p w. (27) 

After the definitions (19) of the effective and flow stress fields, the yield condition (5) writes Γ = γ. The introduction of the 
asymptotic fields (17)-(19) and their rates (22) and (26) in the incremental constitutive relationships (12) and (8), by using 
(27)1,5, yields the following set of equations  

 hr + 2 〈λ〉 sr =  p w, hθ  + 2〈λ〉 sθ =  2 dθ.  (28) 

 Hrr + 2 〈λ〉 Mrr = 2 (1 + η) Xrr,  (Hrθ − η Hθr) + 2 〈λ〉 (Mrθ − η Mθr)  = 2 (1 − η2) Xθr,  (29) 

 (Hθr − η Hrθ) + 2 〈λ〉 (Mθr − η Mrθ) = (1 − η2)(2 dθ' + p w),  3 κ = 2 〈λ〉 h Γ, (30) 

where h = H/G is the non-dimensional hardening modulus and the function λ(θ) is defined such that λ = 0 when Γ < γ, and  

 λ = *
1
h

 [2 (1−η) Mrr Hrr + (Mrθ −η Mθr)Hrθ + (Mθr −η Mrθ) Hθr],  (31) 

when Γ = γ, in agreement with (11), being h* = h )1( 2η− (2 Γ/3)2. Equations (28)-(30) hold true when the effective stress and 
flow stress obey the yield condition. Under elastic unloading or neutral loading λ ≤ 0 and thus equations (28)-(30) reduce to the 
rate constitutive relations of linear isotropic elasticity with strain gradient effects.  

 
Explicit Form of the ODEs System 

 
An explicit form of the ODEs system is now derived by rearranging the equations presented in the previous subsection. The 
introduction of (31) in equations (29) after some algebraic manipulations, allows to obtain the following explicit expression for 
the functions Hrr and Hrθ: 

 ⎥
⎦

⎤
⎢
⎣

⎡

θr

rr

H
H

 = ⎥
⎦

⎤
⎢
⎣

⎡

η−+η−η−−
η−−η−+

Δ 2)1(4)()1(4
)(2)(21

θθ

θθ
2

θθ

rr
*

rrrr

rrrrrr
*

MhMMM
MMMMMh

⎥
⎦

⎤
⎢
⎣

⎡

θz
zr , (32) 

where 
 Δ = h* [h* + 2 (Mrθ − η Mθr)2 + 4 (1 – η) Mrr

2], 

 zr = 2 h*(1 + η) Xrr – 2 Mrr (Mθr − η Mrθ)
 Hθr,  zθ = 2 h*(1 − η2) Xθr + [h*η – 2 (Mrθ − η Mθr) (Mθr − η Mrθ)] Hθr.  



Note that Δ is always positive for h > 0, being −1 < η < 1. Since the derivatives of the unknown angular functions do not enter 
the algebraic expressions (32), (25)1 and (27)1,2 for  Hrr, Hrθ, Ηθr, Xrr and Xθr, the expressions (32) and (25)1 for Hrr, Hrθ and Ηθr 
can be introduced in (31) to obtain λ in explicit form. Moreover, the derivatives with respect to θ of the stress and couple stress 
components sr, sθ Mrr and Mrθ follow from (23) and (24) as 

 sr' = sθ + (hr + p sr cos θ) / sin θ, Mrr' = Mθr + Mrθ  − (1 − p) Mrr cot θ + Hrr / sin θ, (33) 

 sθ'  = − sr + (hθ + p sθ cos θ) / sin θ, Mrθ' = − 2 Mrr  − (1 − p) Mrθ cot θ + Hrθ / sin θ. (34) 

where hr, hθ, Hrr and Hrθ  are given by (28) and (32). Similarly, from (25)2 and (30)2 and by using the steady-state condition (13) 
for the derivative of the displacement field (17)1 one obtains 

 γ ' = (p – 1) γ cot θ + 
3
2

〈λ〉 h Γ / sin θ,  u ' =  [w + (p + 1) u cos θ] / sin  θ. (35) 

Equations (21)1,2, (27)2, (30)1, (33)-(35) form a system of 10 first order homogeneous ODEs governing the near-tip stress and 
velocity fields for the antiplane crack propagation problem in couple stress strain gradient solids. This system may be written in 
the following explicit form: 

 y '(θ) = 
( )
( )⎪⎩

⎪
⎨
⎧

≤λγ=Γγ<Γθθ

>λγ=Γθθ

,)0()(,
,0)(,

e

p

andorif
andif

yf
yf

 (36) 

where the vector y = {w, tθ, sr, sθ, Mrr, Mrθ, Mθr, dθ, γ, u} collects the 10 unknown functions. Note that tr and dr are not primary 
unknown functions because the former may be obtained from (21)3, by using (33)2, whereas the latter is given by the algebraic 
equation (27)1 once all the functions in y are known. The unknown exponent p can be determined as an eigenvalue of the 
nonlinear homogeneous problem (36), once a normalization condition is assumed for the asymptotic solution.  
 
The flow-theory of CS plasticity adopted in the present work allows to consider the occurring of elastic unloading. The position 
of a material point moving along a rectilinear path with respect to the crack-tip is specified by the angular coordinate θ. A 
generic material point near the trajectory of the crack-tip experiences plastic loading ahead of the crack-tip. Depending on the 
values of the material parameters, it may undergo elastic unloading at θ = θ1 and subsequent plastic reloading at θ = θ2 or, 
alternatively, the zone surrounding the crack tip may be fully plastic. The condition of elastic unloading may occur at the angle 
θ1 defined by the condition Σ&  = 0, so that λ(θ1) = 0. Then, plastic reloading may occurs at crack flanks at the angular 
coordinate θ2 where the material point reaches a stress state obeying the yield condition discarded at unloading. 
 

Mode  III  Boundary Conditions 

The symmetry condition of Mode III crack propagation restricts the analysis to the range 0 ≤ θ ≤ π. It is reasonable to assume 
regular behavior of the angular functions at θ = 0, so that relations (23)-(25) imply 

 hα(0) = − p sα(0), Hαβ(0) = (1 − p) Mαβ(0),  κ(0) = − p γ(0).  (37) 

By using condition (37)2, the function λ defined in (29) at θ = 0 attains the initial value  

 λ(0) = 
h2

3 (1 − p), (38) 

which is positive for p < 1. The skew-symmetry of the antiplane crack problem requires ahead of the crack-tip at θ = 0: 

 u(0) = 0, w(0) = 0, Mθr (0) = 0. (39) 

After some algebraic manipulations, the introduction of (37)-(39) into the constitutive equations (28)-(30) for θ = 0 yields 

 sr (0) = 0, dθ(0) = 
h

ph
2

)3(3 +−  sθ(0), Mrr(0) = (1+ η) ⎟
⎠

⎞
⎜
⎝

⎛
+

−
h

p
3

3 sθ(0), Mrθ(0) = 0, dθ'(0) = 0.  (40)

 

 

Vanishing of reduced tractions (2)1 along the radial direction at θ = 0 requires Mrr'(0) = 2 tr(0). Hence, from the equilibrium 
condition (21)3 it follows that 
 tr (0) = 0,  Mrr'(0) = 0. (41) 

In order to solve the system (34), the Runge-Kutta procedure is used (subroutine DIVPRK of the IMSL library). This approach 
requires knowledge of the initial values y(0). Since all the assigned boundary conditions (39)-(43) are homogeneous, the 
normalization condition for the skew-symmetric stress  

 tθ(0) = -1  (42) 

is adopted to avoid the trivial solution. The negative sign is considered since the results obtained in [26] reveal that the skew-



symmetric shear stress τθ3 ahead of the crack tip and the crack-tip opening displacement occur with opposite signs. 
 
Under the assumption that the zone ahead of the crack-tip is experiencing plastic loading, the yield condition γ(0) = Γ(0) holds 
true, where Γ(0) may be obtained by introducing (39)3, (40)4 in (20), so that 

 γ(0) = )1/((0)3 2 η+rrM . (43) 

By taking the derivatives with respect to θ of (23)1 and (28)2, evaluated at θ = 0 and using (27)2 and (40)1,2, it follows that  

 sr'(0) = ⎟
⎠

⎞
⎜
⎝

⎛
+

+
h

hp
3

sθ (0), sθ'(0) = 0.  (44) 

Moreover, from the equilibrium equations (21)1,2 and the derivatives of (24)2 and (28)3 evaluated at θ = 0, by using (40)4, the 
following results can be found 

 tθ'(0) = 0, Mrθ'(0) = )0(
)]0(22)][0(21[

)])(0(2)1()2[()1)(1(2
θλ+−λ+−

η+λ++−η+− d
pp

pppp
− 2 η tθ(0).  (45) 

By taking the derivative of Γ(θ) and λ(θ) from (20) and (29) and using (39)3, (40)4, and (41)2 it follows that Γ'(0) = λ'(0) = 0. 
Then, from the derivatives of (35) evaluated at θ = 0 and the use of (27)2 it follows that  

 γ '(0) = 0,  u '(0) = − 2 dθ (0) / p. (46) 

The conditions (39)-(43) give the initial values of all the unknown functions at θ = 0 depending on p and sθ (0). The values of p 
and sθ (0) can be calculated by an iterative procedure based on the achievement of the boundary conditions at θ = π. Therein, 
the vanishing of the reduced tractions (2) on the crack surfaces implies the following two conditions  

 2 tθ (π) + (1 − p) Mrr (π) = 0, Mθr (π) = 0. (47) 

This iteration is performed by using the modified Powell hybrid method (subroutine DNEQNF of the IMSL library), until the 
conditions (47) on the general tractions are verified within a prescribed accuracy.  
 
It must be remarked that the numerical integration procedure of the governing ODE system (36) displays a numerical difficulty 
at θ = 0, due to the term sin θ which multiplies the highest order derivative. This inconvenience can be bypassed by performing 
a Taylor series expansions of the unknown angular functions collected in the vector y, starting at θ = 0, namely: 

 y(ε) = y(0) + ε y'(0) + o(ε), (48) 

where ε << 1. In this way, the unknown functions can be evaluated at θ = ε, since the derivatives of the unknown functions at 
θ = 0 are known from relations (21)1,2, (40)5, (41)2 and (44)-(46). Once that y(ε) has been determined as in (48) within an error 
lower than ε, the numerical integration of (36) can be performed by starting at θ = ε, rather than at θ = 0. 
 

Results 
 
Figure 1 shows the variation of the exponent p with the ratio η = l′/l for different values of the strain hardening coefficient α. 
The ratio η has a limited influence on p, since just a small variation of p occurs as η ranges between -1 and 1. However, the 
ratio η produces remarkable changes in the angular distribution of the crack tip fields. As can be expected, the larger is the 
coefficient α, the lower is the exponent p and thus the stronger is the singularity of the couple stress and skew symmetric 
stress fields, which behave as r p−1 and r p−2, respectively. Since the values assumed by p range between 0.8 and 1 for almost 
every realistic value of the strain hardening coefficient for ductile metals, the hardening coefficient α has a small influence on 
the strength of stress singularity, unlike in classical plasticity [19, 20]. Actually, the skew symmetric stress field displays a 
strong singularity almost independently of α. It must be remarked that it does not contribute to the effective stress Σ and to the 
strain-energy density, which are instead dominated by the weakly singular couple-stress field, so that the flux of energy toward 
the crack-tip remains finite. It follows that the tractions level ahead of the crack tip increases with respect to the classical J2-
flow theory due to the contribution of the skew-symmetric stress components, also for very small strain hardening. In fact, the 
solution obtained for conventional elastic-plastic response predicts a weak stress singularity for small strain-hardening, which 
becomes vanishing small in the limit case of elastic-perfectly plastic behavior of the material, namely for α = 0. 
 
Figures 2-3 display the angular distributions of the asymptotic crack-tip fields for α = 0.01 and η = ± 0.5. In both cases the 
zone surrounding the crack-tip at distance lower than the characteristic material lengths is fully plastic. In particular, the 
angular variations of symmetric stresses (a), out-of-plane velocity and displacement (b), couple stresses (c) and skew 
symmetric stresses (d) are plotted therein. All functions are normalized by condition (42). 



 

Figure 1. Variation of the exponent p with the ratio η = l′/l for different values of the hardening coefficient α.  

 

         

             
Figure 2. Angular variation of the crack-tip fields for α = 0.01 and η = 0.5 
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Figure 3. Angular variation of the crack-tip fields for α = 0.01 and η = -0.5 

 

The curves plotted in Figures 2b and 3b show that the displacements ahead and behind the crack-tip are opposite in sign, 
unlike the classical Mode III crack-tip fields in non-polar materials [19-21]. Similar results have been also obtained for a Mode 
III crack both for CS elastic [23] and CS elastic-plastic material behavior [26]. This unusual aspect seems to be due to the 
presence of microstructures (compositional grains) introduced through the characteristic lengths l and l′. During crack growth 
the separation process between two material particles at the crack tip can be divided into two steps. In the first step the 
particles rotate with respect to each other. Only in the second step they move apart. The local rotation of grains and particles 
currently at the crack-tip produces opposite displacements ahead and behind the crack-tip under Mode III loading condition 
thus originating a scissors effect. These results confirm that the microstructure remarkably affect the solutions of fracture 
mechanics problems. 
 
The angular variations of the skew-symmetric stress components are plotted in Figures 2d and 3d. In agreement with the 
inversion of the displacement field ahead of the crack-tip, the shear stress tθ is also negative therein and, thus, opposite to its 
counterpart in the classical Mode III solution. For positive values of the ratio η the radial shear stress component tr also 
displays negative values in a small sector ahead of the crack-tip. This switch in the shear direction agrees with the findings in 
[23, 26].  
 

Conclusions 
 

The obtained results show that the use of the SG theory of plasticity with two characteristic lengths for the analysis of the 
stress field near the tip of a propagating Mode III crack gives accurate predictions on the increase of the tractions level ahead 
of the crack-tip occurring at very small distances from it, comparable with the size of the compositional grains. Moreover, the 
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lower radius of validity for the obtained asymptotic solution is much smaller than that found for the classical theories of 
plasticity, allowing to understand the detailed mechanisms by which fracture may grow and propagate in ductile polycrystalline 
metals up to the micron scale. 
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