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Abstract. Along the interfaces between ductile and brittle materials a slow, stable crack
growth is often observed before the crack propagates into one of the two materials. In the
present work, a numerical asymptotic solution is provided for the stress and velocity fields
near the tip of an interface crack, steadily propagating between a porous elastic-plastic
material and a rigid substrate, under plane strain conditions. The Gurson model with
constant and uniform porosity distribution and isotropic hardening is assumed for the
constitutive description of the ductile material. This model may accurately describe the
behavior of incompletely sintered porous metals and particulate-reinforced metal matrix
composites. In analogy with the problem of interface crack growth in fully dense elastic-
plastic materials, two distinct kinds of solution can be found in variable-separable form,
corresponding to predominantly tensile or shear mixed mode. These solutions exist only if the
hardening coefficient is lower than a critical value. For higher values the solution may
display a complex stress singularity, as for the problem of an interface crack between linear
elastic materials. In any case, if the ductile material is elastically incompressible then the
Dugdale parameter vanishes and variable-separable crack-tip fields can be found for every
set of the material parameters.

Due to the higher hydrostatic stress state, the porosity influences only the stress fields of
the tensile mode significantly. In particular, for high porosities the maximum of the hoop
stress deviates from the interface line ahead of the crack-tip towards the porous ductile
material, causing possible kinking of the fracture, so that the toughness of the interface crack
may increase significantly. Therefore, the performed analysis of debonding process of this
kind of interface results to be essential for the determination of the overall strength, toughness
and reliability of many advanced composite materials.
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1. INTRODUCTION

Interfaces between porous ductile metals and brittle layers are common in many advanced
engineering materials obtained by compaction and sintering of metal and ceramic powders or
formed by multi-layer substrates, like modern structural metallic/ceramic composites and
packaging structures for electronic devices. This kind of interfaces specifically occurs in
protective coatings of sintered metal components, where thin hard wear-resistant layers of
titanium nitride (TiN), titanium carbonitride (TiC), alumina (Al2O3) or zirconia (ZnO), are
deposited on the surface of these components in order to protect them from wear, high
temperatures, chemical attack and corrosion. The use of protective coatings has been largely
increased over the last years, since it may enhance the performance and extend the service life
of many advanced structural components. In particular, an intensive employ has been made in
a wide area of industrial applications, which range from gas turbine technology to aircraft and
electronics industries, including several engineering applications, like filters, bearings, pumps,
compressors, gears and cutting and forming tools. As well known, the properties of these
components on a macroscopic scale depend on the adhesion and microstructure of the inter-
faces, since a commonly encountered kind of damage in the failure of layered composites is
represented by slow, stable crack propagation along the interface. Therefore, in order to fully
exploit the advantages of layered structural composites and protective coatings in improving
the strength, toughening and surface properties of many engineering components, it becomes
necessary to understand more thoroughly the detailed mechanisms by which fracture may
growth and propagate along the interface between a porous ductile metal and a stiffer material.

The near-tip asymptotic fields for a crack steadily growing along a ductile/brittle interface
have been investigated by several authors. In particular, the problem of interface crack
propagation between an elastic-perfectly plastic material, obeying the von Mises yield
condition, and a brittle substrate, assumed to be rigid for the sake of simplicity, has been
studied by using limit analysis theory1,2. Moreover, the analysis has been extended to the
interface between a ductile material characterized by the J2-flow theory of plasticity, with
linear strain hardening, and an isotropic linear elastic material3. These analyses show that two
families only of solutions are possible near the growing crack-tip, under plane strain
conditions. The first one displays a stress field mainly of the tensile type (Mode I-like), while
the other one is prevalently of the shear type (Mode II-like). Moreover, if the Dugdale
parameter is different from zero, a solution in variable-separable form exists only if the
hardening coefficient is lower than a critical value3. Recently, the problem has been
generalized by considering the plane stress condition4 and the dynamic effects5.

The problem of a stationary crack in a homogeneous porous ductile metal has been initially
addressed6-7 and recently extended to steadily crack propagation8, also for linear hardening
behavior9,10. All these analyses consider a constant porosity version of the Gurson constitutive
model11-13, which may accurately describe the behavior of incompletely sintered porous
metals and particulate-reinforced metal matrix composites. The assumption of constant
porosity may be reasonable out of the very near crack-tip zone, where micro-inhomogeneities,
cavitation and finite deformation effects dominate. When a nucleation law for the porosity is
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included, the crack-tip fields may not admit a variable-separable form and their determination
may require finite element investigations. In any case, the evaluation of the asymptotic crack-
tip fields gives important information about the debonding process and can also be used in
conjunction with finite element simulations14,15.

The objective of the present work is to study the steady-state crack propagation along the
interface between a porous ductile material, perfectly bounded to a brittle substrate, which is
modeled as rigid. In particular, an asymptotic analysis of the crack-tip fields is carried out in
order to obtain detailed information on the structure of the local stress and deformation fields,
and, thus, on the toughening mechanisms associated with the interface. The performed
analysis follows the approach previously employed for the analysis of crack growth in
homogeneous porous ductile media9,10. The results elucidate the effects of the constitutive
parameters on the crack-tip fields, as well as the role played by the porosity in the stability of
the crack propagation and in the occurrence of straight-ahead propagation or kinking. In
analogy with the results for fully dense material3, two distinct kinds of solution are found,
corresponding to mainly tensile or shear crack-tip stress fields. However, due to the higher
hydrostatic stress component, the effect of porosity is more pronounced for the tensile
solution, rather than for the shear solutions. Previous findings can be obtained as special cases
of the present formulation. In particular, for vanishing small porosities the ductile material
coincides with the fully dense matrix material and the results recover those obtained for the J2-
flow theory displaying linear isotropic hardening3. Moreover, when the hardening modulus
tends to vanish the results obtained from the limit analysis theory1,2 are approached.

2. CONSTITUTIVE  EQUATIONS

Reference is made to the Gurson model11,12
 of elastic-plastic solids containing spherical

voids. The model is based on a yield surface having the form ϕ (σ, σm, φ) = 0, where φ is the
volume fraction of voids, σ is the average macroscopic stress tensor and the internal variable
σm denotes the current flow stress of the matrix. By considering a constant porosity, the yield
condition is taken in the form:

f (σ, σm) = 
2

2

2

3

m

dev

σ
σ

 + 2 φ cosh 





σm

tr

2

σ
 − (1 + φ2) = 0, (1)

where dev σ and tr σ denote the deviatoric part and the trace of σ, respectively. A
generalization of the yield function in (1) could be easily included13,16, but, for the sake of
simplicity, is not considered here. Moreover, the growth and nucleation of voids has been
neglected and the void volume fraction φ is assumed constant6-10, so that the condition of
associated plastic flow law for the matrix material implies an associated plastic flow law for
the macroscopic porous material. Therefore, by assuming an elastic-plastic behavior
displaying linear and isotropic hardening, the incremental constitutive equations relating the
stress rate σ  to the velocity of deformation ε, result in 9,10:
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where E and ν are the elastic Young modulus and Poisson ratio of the matrix material, respec-
tively. The MacAuley brackets are defined such that 〈x〉 = Sup{x, 0} for every real value x,
and Q is a second order tensor proportional to the gradient of the yield function (1), namely:

Q = 
2
mσ

 
∂
∂

f

σ
 =  

mσ2

3
dev σ  + 

φ
2

  sinh 





σm

tr

2

σ
 I. (3)

The hardening modulus H of the macroscopic porous material turns out to be9:

H  =  
)(1

E

α−
α ( )

2

2

)1( mσφ−
• σQ

, (4)

where α = Et / E, and Et is the current longitudinal modulus of the matrix material. From (4),
it can be noted that a positive hardening (0 < α < 1) of the matrix material results in a positive
hardening modulus H of the porous material, since the dot product Q • σ vanishes if and only
if σ = 0, which may occur inside the yield locus only.

Moreover, the rate of growth of the yield surface, measured by mσ , results in9,10:

mσ  = 
σ
σ

•

•

Q

Q
 σm. (5)

In the following, it will be assumed that the incremental constitutive equations (2) and (5)
hold when the stress state satisfies the yield condition (1), whereas an elastic isotropic
constitutive behavior is considered during elastic unloading.

3. INTERFACE CRACK  PROPAGATION

The problem of a plane crack propagating at constant velocity c along a rectilinear interface
between a porous ductile medium and a rigid substrate is considered (Fig. 1). A cylindrical co-
ordinate system (r, ϑ, x3) moving with the crack-tip towards the ϑ = 0 direction is considered,
with the x3-axis along the straight crack front.

The mechanical behavior of the elastic-plastic material is described by the rate constitutive
laws (2) and (5). This framework allows considering elastic unloading sectors, which may
appear in the proximity of the crack-tip during crack propagation.

The steady-state condition yields the following time derivative rule, for any scalar function
φ(r, ϑ):

r
= 

cφ  (φ,ϑ sin ϑ – r φ,r cos ϑ).  (6)
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Figure 1. Cylindrical co-ordinate system centered at the moving interface crack-tip and trajectory
of the material point P through elastic and plastic sectors, bounded by angles ϑ1 and ϑ2.

The conditions of kinematics compatibility for infinitesimal deformations and quasi-static
equilibrium imply:

ε  =  2
1 (∇v + ∇vT), (7)

div σ = 0.

Moreover, the plane strain condition ε33 = 0 must be also considered.
Compatibility (71), equilibrium (72) and constitutive incremental equations (2.2) and (2.5)

form a first order PDEs system, which governs the problem of the crack propagation. The
solution can be searched in variable-separable form, by considering single term asymptotic
expansions of near crack-tip fields. In particular, the stress, velocity, and flow stress fields are
assumed in the form:

v(r, ϑ)  = − 
s

c
s








B

r
w(ϑ), (8)

σ(r, ϑ)  = E 
s








B

r
T(ϑ),

σm(r, ϑ) = E 
s








B

r
Tm(ϑ),

where s denotes the (negative) exponent of the stress singularity, and B is a characteristic
dimension of the plastic zone, which remains undetermined by the asymptotic analysis, since
the lower order problem is homogeneous. Nevertheless, the amplitude of the asymptotic fields
can be estimated by a matching procedure with the findings of a full-field analysis performed,
e.g., by the finite element  method14,15.

The introduction of the asymptotic stress fields (82) into equilibrium equations (72), yields
the following two ODEs:

Trϑ,ϑ = − (1 + s) Trr + Tϑϑ,  (9)

Tϑϑ,ϑ =  − (2 + s) Trϑ.

The rates of the fields ε, σ and σm may be consequently assumed in the form:
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ε  = −
rs
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s








B
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D(ϑ), (10)

σ  = 
r
Ec s








B

r Σ(ϑ),

σ m = 
r
Ec

s








B

r Σm(ϑ),

where the components of D, Σ, and Σm are functions of the angular coordinate ϑ. In particular,
by using the derivative rule (6) and equilibrium relations (9), the cylindrical components of Σ
and Σm assume the following expressions:

Σrϑ = − s (Trr sin ϑ + Trϑ cos ϑ), (11)

Σϑϑ = − s (Trϑ  sin ϑ + Tϑϑ  cos ϑ),

Σrr = (Trr,ϑ − 2 Trϑ ) sin ϑ − s Trr cos ϑ,

Σ33 = T33,ϑ sin ϑ − s T33 cos ϑ,

Σm = Tm,ϑ sin ϑ − s Tm cos ϑ.

Moreover, the compatibility relation (71) yields:

Drr  = s wr, (12)

Dϑϑ = wϑ,ϑ + wr,

Drϑ  = 
2
1 [wr,ϑ − (1 – s) wϑ].

It is worth noting that, when the asymptotic stress fields (82,3) are introduced in (1) and (3),
the yield function f and its gradient Q turn out to be independent of r, so that they may be
written in the equivalent form:

f (T, Tm) = 
2

2

T2

3

m

dev T
+ 2 φ cosh 






m

tr

T2

T − (1 + φ2) = 0, (13)

Q = 
mT2

3
dev T + 

φ
2

 sinh 






m

tr

T2

T
I.

As a consequence of (8) and (10), the dimensionless hardening modulus of the porous
material h = H/E becomes:

h = 
)(1 α−

α
2

2

T)(1

)(

mφ−
•TQ

. (14)
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A substitution of the asymptotic fields (8) and their rates (10) into the incremental
constitutive relationships (2) and (5) by using (12) yields the following system of five
equations:

wr,ϑ =  (1 − s) wϑ  − 2 s [(1 + ν) Σrϑ + λ Qrϑ], (15)

wϑ,ϑ = − wr − s [Σϑϑ − ν (Σrr + Σ33) + λ Qϑϑ],

Σrr − ν (Σϑϑ + Σ33) + λ Q rr  + wr = 0,

Σ33 − ν (Σϑϑ + Σrr) + λ Q33 = 0,

Tm,ϑ sin ϑ = (s cos ϑ + 
TQ •

λ h
) Tm, (16)

where

λ = 〈Q • Σ〉 / h, (17)

if the stress fields meet the yield condition (13), else λ = 0. During elastic unloading or neutral
loading, the constitutive relations (15) reduce to the incremental equations of linear isotropic
elasticity, recovered for λ = 0, and equation (16) becomes equivalent to the condition σ m = 0.
Equations (15) and (16), together with the equilibrium equations (9), result in seven homo-
geneous first order ODEs, for the seven unknown angular functions wr, wϑ, Trϑ, Trr, Tϑϑ, T33

and Tm. It is worth noting that the unknown exponent s may be determined as an eigenvalue of
the non-linear problem17, by considering a normalization condition for the solution.

In order to employ a numerical integration procedure, the ODEs (15) should be
transformed in explicit form. In particular, from (153,4) the following system of equations may
be derived:

(h + Qrr
2 ) Σrr − (νh − Qrr Q33) Σ33  =  − wr h + (νh − Qrr Qϑϑ) Σϑϑ − 2 Qrr Qrϑ Σrϑ, (18)

(νh − Qrr Q33) Σrr − (h + Q33
2 ) Σ33 =  2 Q33 Qrϑ Σrϑ  − (νh − Q33 Qϑϑ) Σϑϑ.

Equations (111,2) make clear that Σrϑ and Σϑϑ do not depend on the derivatives of the unknown
functions, and so the right hand sides of (18). Therefore, equations (18) may be solved for Σrr

and Σ33. In particular, Σrr turns out to be:

Σrr =
1

∆
{Σϑϑ [ν(1+ν)h +νQ33 (Q33−Qϑϑ) −Qrr (νQ33+Qϑϑ)] −2 Σrϑ Qrϑ (νQ33+Qrr) −wr (h + }Q33

2 ) ,

      (19)
where:

∆  =  (1−ν2) h + Q33
2  + Qrr

2  + 2 ν Qrr Q33, (20)

is always greater than zero. Being Σrr known from (19), Σ33 may be obtained from a
rearrangement of (182). When Σrr and Σ33 are substituted into (113,4), the derivatives of the
stress components Trr and T33 with respect to the angular co-ordinate ϑ may be obtained:
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Trr,ϑ = 2 Trϑ + (s Trr cos ϑ + Σrr) / sin ϑ, (21)

T33,ϑ = (s T33 cosϑ + Σ33) / sin ϑ.

Then, the expressions for wr,ϑ and wϑ,ϑ follow from the constitutive relations (151,2).
Equations (9), (151,2)-(16) and (21) form the first order ODEs system, which governs the

near-tip stress and velocity fields. This system may be written in the explicit form:

y'(ϑ) = 




≤=<ϑϑ

>=ϑϑ

•

•

,00)T,(0)T,()),(,(

,00)T,()),(,(

e

p

Σ

Σ

QTTyf

QTyf

andforfifs

andfifs

mm

m
(22)

where the vector:

y = {wr, wϑ, Trϑ, Trr, Tϑϑ, T33, Tm}. (23)

collects the unknown velocity and stress functions of the angular co-ordinate ϑ.

3.1.  Elastic unloading and secondary plastic reloading

Under the assumption of small deformations, the motion of a generic material point P close
to the trajectory of the crack-tip is assumed to occur along a straight path at a fixed distance,
say d, from the interface crack line (Fig. 1). The angular co-ordinate ϑ singles out the position
of the material point moving along its rectilinear path, defined by the geometric relation:

r(ϑ) = d / sin ϑ. (24)

As the crack-tip approaches and, then, goes beyond the material point, the point
experiences plastic loading, elastic unloading and subsequent plastic reloading. In particular,
the material point, initially ahead of the crack-tip, leaves the plastic loading sector at the
elastic unloading angle ϑ1 where the plastic multiplier λ vanishes, namely when:

 Q(ϑ1) • Σ(ϑ1) = 0. (25)

Throughout the elastic unloading sector the plastic multiplier λ vanishes, the rate
constitutive law (15) reduces to the usual linear isotropic elastic relation and the current flow
stress σm of the point remains constant and equal to the value assumed at the elastic unloading
angle ϑ1. Plastic reloading on crack flanks occurs at the angle ϑ2 where the point reaches a
stress state lying on the yield surface left at unloading, that is:

f {σ[r(ϑ2), ϑ2], σm [r(ϑ1), ϑ1]} = 0. (26)

4. INTERFACE  BOUNDARY CONDITIONS

The rigid interface implies the vanishing of the velocity functions along the interface plane
at ϑ=0, namely:

wϑ(0) = wr(0) =  0, (27)
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whereas the free crack surface at ϑ=π implies the following conditions on the stress functions:

Tϑϑ(π) = Trϑ(π) = 0. (28)

By using the boundary conditions (27) and relations (11) evaluated at ϑ=0, the constitutive
equations (15) become:

wr,ϑ(0)  = 2 s2 (1 + ν) Trϑ(0) − 2 s λ(0) Qrϑ(0), (29)

wϑ,ϑ(0) = s2 {Tϑϑ(0) − ν[Trr(0) + T33(0)]} − s λ(0) Qϑϑ(0),

−s {Trr(0) − ν [T33(0) + Tϑϑ(0)]} + λ(0) Qrr(0) = 0,

                              −s {T33(0) − ν [Trr(0) + Tϑϑ(0)]} + λ(0) Q33(0) = 0,

where Q(0) and λ(0) may be evaluated from (132) and (17):

Q(0) = 
)0(T2

3

m

 dev T(0)  + 
φ
2

 sinh 





)0(T2

)0(

m

trT
 I,  (30)

λ(0) = −s  

α
α− )(1

)0()0(

)0(T)1( 2

TQ •

φ− m . (31)

Note that the product:

Q(0) • T(0) = 
)0(T2

3

m

 | dev T(0) |2  +  
φ
2

 [tr T(0)] sinh 





)0(T2

)0(

m

trT
, (32)

is always positive, since T(0) ≠ 0. It follows that λ(0) > 0, i.e. along the interface ahead of the
crack-tip the ductile material undergoes plastic loading.

By taking the difference between equations (293) and (294) it may be found that:









ν−−λ

)1(
)0(T2

)0(3
s

m

 [Trr(0) − T33(0)] = 0. (33)

Since the first term in (33) is always positive, it follows that T33(0) = Trr(0) and thus:

tr T(0)  = Tϑϑ(0)  + 2 Trr(0), (34)

| dev T(0)| 2 = 
3

2
{[Tϑϑ(0) − Trr(0)]2 + 3 Trϑ(0) 2}.

In order to solve the system of ODEs (22) the Runge-Kutta procedure is used (IMSL
subroutine DIVPRK). This approach requires the knowledge of y(0). However, the boundary
conditions do not specify the stress components at ϑ = 0, and thus, their values must be
preliminarily defined. Firstly, the normalization condition Tm(0) = 1 is adopted to avoid the
trivial solution due to the homogeneous boundary conditions (27) and (28). Then, Trϑ(0) is
obtained from the yield condition (131) evaluated at ϑ = 0:
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        Trϑ(0) 2 = 
3

1
{1 + φ2 − 2 φ cosh [0.5 Tϑϑ(0) + Trr(0)] − [Tϑϑ(0) − Trr(0)]2}, (35)

which admits two distinct and opposite roots. Moreover, the position:

 p = Trr(0)/Tϑϑ(0), (36)

is made and the value of Tϑϑ(0) is found as an implicit function of p by solving the non-linear
algebraic equation obtained from the constitutive relation (293), by using (35) and (36):

1 + φ2 − 2 φ cosh ξ + φ ξ sinh ξ + 
])1[(2

)(1)1(

ν−ν−α
α−φ−

p
[(p + 0.5) φ 

ξ
ξsin  + p −1] = 0, (37)

where:

ξ = (p + 0.5) Tϑϑ(0). (38)

Note that equation (37) admits at least two opposite roots for ξ, which are numerically
detected (IMSL subroutine DZBREN).

The unknown values of s and p are numerically calculated by the following iterative
procedure, based on the achievement of the boundary conditions (28). The integration of the
ODEs system (22) is initially performed by assuming arbitrary values for p and s. Then, the
corresponding values of Trr(0), Tϑϑ(0) and Trϑ(0) are found from equations (35)-(37) and, thus,
the components of y(0) are fully defined, so that the numerical integration procedure may
start. On the basis of a check on the values of Tϑϑ(π) and Trϑ(π), the guessed values of p and s
are reassigned and the process is iterated using a modified Powell hybrid method (IMSL
subroutine DNEQNF), until Tϑϑ(π) and Trϑ(π) turn out to be sufficiently close to zero as
required by (28). Finally, all the fields are normalised through the condition Tm(ϑ1) = 1.

The choice of the right sign for the values of Trϑ(0) and ξ resulting from (35) and (37)
depends on the sign obtained at the end of the integration procedure for the velocity
component wϑ(π), which must be negative or null to avoid interface crack closure.

5. RESULTS  AND  CONCLUSIONS

Two distinct solutions have been found with slightly different values of the stress singula-
rity and very different, but fixed, mixities of the local crack-tip fields, corresponding to
predominantly tensile or shear stress field. Therefore, the discrete near-tip mode mix turns out
to be independent of the remote mode mix. This is consistent with the results obtained for full
densities of the ductile material1-5, which may be recovered by the present analysis for φ = 0. It
is worth noting that two further solutions have been detected with the same singularities but
opposite values of the crack-tip fields. However, these solutions have been rejected since their
velocity fields correspond to interface crack closure.

In analogy with the problem of interface crack growth in fully dense elastic-plastic
materials3, the solution can be found in variable-separable form only if the hardening
coefficient α is lower than a critical value, which depends on the Poisson coefficient ν
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through the Dugdale parameter ε evaluated for the case of a rigid interface:

ε = 
π2

1
 ln (3 – 4 ν). (39)

This occurrence is consistent with the problem of an interface crack between linear elastic
materials18, for which the stress singularity is complex of the form s = −0.5 + i ε. In particular,
if the material is elastically incompressible, namely for ν=0.5, the parameter ε in (39) vanishes
and the solution can be found for every value of α ranging between 0 and 1. The results
reported in the following have been obtained for the value ν=0.3, which corresponds to a
critical value of α close to 0.275. Note that the present analysis does not exclude the existence
of solutions different from those in variable-separable form, which could be detected by a full
field numerical analysis. However, the finite element investigations14 performed for vanishing
porosity (φ=0) confirmed the predictions of the asymptotic analysis3 and so is expected for
porous ductile metals.

The effects of porosity on the stress singularity s, elastic unloading ϑ1 and plastic reloading
ϑ2 angles are outlined in Figs. 2-4 for both tensile and shear solutions and for two distinct
values of the linear hardening parameter, namely α=0.01 and α=0.1. The results presented in
Fig. 2 for the tensile solution show that the strength of the stress singularity, given by the
absolute value of s, increases with respect to the case of fully dense material (φ=0). The
increase of singularity generally turns out to be an instabilizing effect on the interface crack
propagation. However, the singularity attains a maximum at intermediate values of porosity
and then decreases, so that a greater propensity for stable crack growth occurs for higher
porosities. A different trend may be observed for the shear mode. In this case the singularity
decreases almost linearly, so that the crack propagation becomes more and more stable as the
porosity increases. Note that for low porosities the tensile solution has a lower singularity with
respect to the shear mode. In this case, the shear state may be unstable and may be regarded as
a transitory state towards a more stable state of near-tip tension, as already observed in the
small scale yielding analysis14 performed for φ = 0. On the contrary, for high porosities the
shear solution has a lower singularity, so that it may result more stable than the tensile mode.

From Fig. 3 it may be noted that for tensile mode the size of the elastic unloading sector
(E) in proximity of the crack-tip enlarges as the porosity increases, so that the plastic defor-
mation tends to concentrate ahead of the crack-tip. Unlike tensile mode, for shear mode the
porosity has low effects on the extension of elastic (E) and plastic (P) sectors, see Fig.4,
except for the size of a secondary plastic loading sector, which arises within the elastic
unloading sector for high hardening values.

The angular variations of the asymptotic fields for the components of the stress tensor T
and for the current flow stress Tm are plotted in Fig. 5, for both tensile (a, b) and shear (c, d)
modes. These plots refer to the low hardening coefficient α=0.01 and to the values of porosity
φ=0.001 and φ=0.1.
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Figure 2. Strength of the stress singularity s under tensile (bold curve)
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The results obtained in Fig. 5a for low porosity (φ=0.001) show that the tensile stress field
ahead of the crack-tip is characterized by large stress triaxiality in the ductile material. In
particular, the hydrostatic stress component ahead of the crack-tip exceeds more than three
times the current flow stress. The stress fields in Fig. 5b, obtained for φ=0.1, show that the
main effects of the porosity increase is a lowering of the mean stress, together with a decrease
of the shear stress component Trϑ, which becomes negative along the interface line at ϑ=0.
Correspondingly, the location of the maximum hoop stress Tϑϑ for the tensile solution
deviates from the interface line ahead of the crack-tip towards the porous ductile material.
Precisely, the maximum is attained where the shear stress vanishes, as it follows from (92).
This occurrence may cause possible kinking of the fracture trajectory, so that the interfacial
toughness may significantly increase. The stress fields of the shear mode display positive, but
very low, mean stress at ϑ=0, see Figs. 5c,d, thus resulting approximately in a Mode II
solution. Therefore, the porosity influences mostly the stress fields of the tensile mode, as a
consequence of the high hydrostatic stress level.

In the limit case of vanishing hardening the elastic-perfectly plastic behavior is approached,
as can be noted from Fig 5 obtained for a low hardening coefficient (α=0.01). In this case, the
near-tip stress fields tend to display for both modes a centered-fan sector starting from the
rigid interface to the elastic unloading angle, followed by an elastic deformation sector and a
constant stress plastic sector, as already found for fully dense ductile material obeying the von
Mises yield condition1-3. Nevertheless, the problem of a crack growing between a porous
elastic-perfectly plastic material and a rigid substrate has not yet been studied and will be the
focus of a future investigation.

The angular variations of the Cartesian components of velocity are shown in Fig. 6 for the
same hardening value (α=0.01). These plots show that the component of velocity w2 evaluated
at ϑ=π turns out to be positive for all the reported results, thus implying crack opening.

The angular variations of the tensile stress fields for the high hardening value of α=0.1 are
reported in Figs. 7a,b. These results are roughly similar to those relevant to the low hardening
case (α=0.01) plotted in Figs. 5a,b, except that the shear stress component at ϑ=0 is negative
also for small porosity. On the contrary, the angular variation of the stress fields for shear
mode, shown in Figs. 7c,d, turns out to be opposite in sign with respect to the low hardening
case in Figs. 5c,d. In particular, along the interface line the shear stress component Trϑ is
negative, while the hoop stress Tϑϑ remains tensile, leading thus to crack opening (see the
angular variation of the velocity functions in Fig. 8). Note that solutions displaying near-tip
fields opposite to those reported in Figs. 5-8 may also occur, but they imply crack closure and,
therefore, have been rejected.

It is worth noting that linear isotropic hardening may represent an intermediate model
between the limit cases of linear elastic and perfectly-plastic constitutive behavior and may
adequately account for the dissipation of energy in the plastic zone near the crack-tip, which is
responsible for stable crack growth. In any case, the rough model of isotropic hardening may
be refined by the introduction of a more realistic mixed isotropic\kinematic hardening
behavior, as already done for crack propagation in homogeneous porous ductile metals10.
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Figure 5. Angular variations of the stress fields near crack-tip under tensile (a, b) and
 shear (c, d) modes, for ν=0.3, α=0.01 and two distinct values of the porosity φ.
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 shear (c, d) modes, for ν=0.3, α=0.1 and two distinct values of the porosity φ.
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In conclusion, the results of the present investigations show that an increase of porosity
leads to significant modifications of the angular distribution of stress and velocity fields,
together with a drastic reduction in the hydrostatic stress level, especially along the interfacial
line. The performed near-tip asymptotic analysis predicts, rather accurately, the stress
singularity and the near-tip mode mix for a crack between a porous ductile metal and a stiffer
substrate. Moreover, it gives important information about the interfacial toughness and
stability. Finally, the obtained results may be useful to check further numerical simulations
performed, e.g., by the finite element method.
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