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Abstract. A major limitation of the classical random Boolean network model

of gene regulatory networks is its synchronous updating, which implies that all

the proteins decay at the same rate. Here a model is discussed, where the

network is composed of two different sets of nodes, labelled G and P with

reference to “genes” and “proteins”. Each gene corresponds to a protein (the one

it codes for), while several proteins can simultaneously affect the expression of a

gene. Both kinds of nodes take Boolean values. If we look at the genes only, it is

like adding some memory terms, so the new state of the gene subnetwork

network does no longer depend upon its previous state only.

In general, these terms tend to make the dynamics of the network more

ordered than that of the corresponding memoryless network. The analysis is

focused here mostly on dynamical critical states. It has been shown elsewhere

that the usual way of computing the Derrida parameter, starting from purely

random initial conditions, can be misleading in strongly non-ergodic systems.

So here the effects of perturbations on both genes’ and proteins’ levels is

analysed, using both the canonical Derrida procedure and an “extended” one.

The results are discussed. Moreover, the stability of attractors is also analysed,

measured by counting the fraction of perturbations where the system eventually

falls back onto the initial attractor.
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1 Introduction

Random Boolean models of genetic regulatory networks (RBNs) are very well-known

and, in spite of their long age, they still provide useful descriptions of important

observational and experimental results [8, 12–17]. A major limitation of the classical

RBN model is its synchronous updating: from a physical viewpoint, this amounts at

assuming that all the proteins decay at equal rates: this unrealistic assumption allows

one to write the gene activation pattern at time t + 1 as a function of that pattern at time

t, forgetting the previous history. Asynchronous updating has been sometimes pro-

posed (one gene at each time step), but this also leads to difficult interpretations, due to

the relatively large typical protein decay time and to the very large number of genes.

Other interesting “intermediate” update strategies have also been proposed [5, 19].
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Some properties of RBNs are robust with respect to the updating strategy, but in

general there is no guarantee that this is the case. In particular, one should be very

careful when dealing with the networks’ dynamical properties. We have been partic-

ularly interested in the response of genetic networks to perturbations like gene

knock-out and we have shown that, if the RBN model is chosen, the distribution of

avalanches in gene expression levels in S. Cerevisiae that follows a single knock-out

provides information about the dynamical regime of the biological network [8, 16].

This result is particularly relevant, given the importance of the “criticality hypothesis”,

which states that biological systems should preferentially be found in dynamically

critical states [13]. If we are indeed interested in biological genetic networks, such

issues should be addressed in a way that does not critically depend upon the unrealistic

assumption of synchronicity: different updating schemes should be considered, privi-

leging whenever possible those that are closer to what we know about the behaviour of

real gene regulatory networks.

In order to do so, while retaining the simplifications related to the use of Boolean

variables and to the “generic” approach of RBNs, we introduced the GPBN model

(Gene-Protein Boolean Network), where the network is composed of two different sets

of nodes, labelled G and P with reference to “genes” and “proteins” [9–11]. It is now

well-established that proteins are not the only genetically-encoded products which can

influence the effective expression level of other genes (think for example of miRNAs [2,

3]). However, in order to simplify the model description, we will call here “proteins” all

the products of gene activation that are able to influence the expression of other genes.

Each gene corresponds to a protein (the one it codes for), while several proteins can

simultaneously affect the expression of a gene. Both kinds of nodes take Boolean

values: the state at time t + 1 of a G node depends upon the state of a fixed set of P

nodes at the same time, while the state at time t + 1 of a P node depends upon the state

of its corresponding G node at time t. Once a P node is set active (its state is 1), it

remains active for at least a fixed number of steps. If a new activation signal comes in

before decaying, the counter is reset. If no activation signal arrives, the P node is set to

0 at the end of its “lifespan”. If we look at the genes only, it is like adding some

memory terms, so the new state of the network is no longer “Markovian”, i.e. it does no

longer depend upon the previous state only.

This model has been thoroughly studied and its properties have been described

elsewhere [9, 11]. In those papers the usual definition of dynamical criticality, based on

the value of the so-called Derrida parameter, had been used. We have recently shown

some limitations related to the use of that single measure to characterize critical states

in RBNs [4]. In particular, the choice of a completely random initial state in the

computation of the Derrida parameter has been criticized and a different measure

(“extended Derrida parameter”) has been proposed [18].

This prompted a more thorough analysis of the dynamics of GPBNs, whose main

features are presented in this paper.

The paper is organized as follows: in Sect. 2 the GBPN model is described, while

in Sect. 3 the measures of dynamical criticality are discussed and the extended Derrida

parameter is introduced. In Sect. 4 the results obtained by simulating GPBNs are

shown and discussed, paying particular attention to the similarities and differences

between the “canonical” (i.e. standard) and the extended Derrida procedures.

Dynamical Properties of a Gene-Protein Model 143

marco.villani@unimore.it



A different way to evaluate the robustness of the network behaviour, based upon

perturbations of its dynamical attractors, is also presented. Critical discussion and

suggestions for further research are summarized in Sect. 5.

2 The GPBN Model

A GPBN model [9–11] is a bipartite oriented graph containing two types of Boolean

nodes: the G nodes, which represent the genes set, and the P nodes, which represent the

set of proteins (or, in general, gene products). A G node can be active or inactive

(producing or not its protein), whereas a P node describes the presence (or absence) of a

protein within the system. There are two types of links: synthesis links, which go from a

G node to only one P node, and transcriptional regulation links, from a P node to one

or more G nodes.

As usual in RBNs, time evolves in discrete steps. Note that the state at time t + 1 of

the GPBN model is determined by its state at time t, and the update is formally

synchronous. However, due to the presence of the P nodes, the updating of the gene

subnetwork is not synchronous, i.e. the states of G nodes at time t + 1 are not deter-

mined by their states at the previous time step.

Each G node, say the j-th, produces its protein when active (synthesis link) and a G

node is driven by the action of its k inputs (k being the number of its transcriptional

regulation links, coming from P nodes), according to a fixed Boolean function fj
associated to it (fj: {0, 1}

k ! :{0, 1}).

The topology of the transcriptional links is random, and so is the choice of the

Boolean functions: each fj is generated by assigning at random to each of its 2k possible

inputs an output equal to 1 with probability p (the so-called bias of the set of Boolean

functions), 0 otherwise.

To each P node, say the i-th, an integer non-negative variable hi is also associated

(its decay phase) which can change in time and which represents its residual lifetime.

The maximum value of hi is the decay time dti of node i, representing the lifespan of the

protein, once activated (i.e. just synthesized). When a P node is activated, its decay

phase hi takes the value dti and it is later decreased by 1 at each time step, until it ends

in 0 (unless the same node is not activated again in that time interval). When the

incoming G node is active, then the corresponding P node resets its decay phase to the

decay time. As long as the decay phase takes a nonzero value, the P node has a

regulation role on its outgoing links (i.e. its value in the transition function is 1).

The decay time of each node is taken randomly with uniform probability between 1

and a parameter defined as maximum decay time (MDT); note that when MDT is equal

to 1 the GPBN is identical to the corresponding RBN (i.e. the one with the same

topology and the same activation functions). If the value of a G node is 1 at time t then

the value of the corresponding P node will be 1 at time t + 1 and its decay phase will be

set to dti, otherwise the decay phase of the P node is decremented by one unit (in case

of dti = 0, the activation of P is set to 0). On the other hand, the value of the G node at

time t is immediately determined by its function fj, which depends on the states of its

incoming P nodes at time t.
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3 Dynamical Regimes

The asymptotic states of finite RBNs are periodic cycles; fixed points correspond to

cycles with unitary period. Different dynamical regimes have been observed in RBNs

[1, 13, 14], classified as disordered (sometimes called “chaotic”, although all the

attractors are indeed periodic), ordered or critical depending upon the length of their

periods and the sensitive dependence upon initial conditions. In chaotic networks the

cycle length sharply increases with the network size, and nearby initial states are likely

to lead to different attractors, while in ordered systems the typical cycle length shows a

polynomial dependence upon the number of nodes, and basins of attraction are quite

regular. Given the random nature of these systems, the analysis usually concerns

families of networks built by keeping fixed some parameters, like e.g. the number of

nodes, the average number of connections per node and/or the average bias of the

Boolean functions, while changing in different network realizations the topology of

connections and the transition functions. Critical networks are those whose parameters

lie on (or close to) the manifolds that separate regions in parameter space with ordered

behaviours from the chaotic regions. It is important to stress that these terms refer to the

typical features of networks with those parameters, while a single network realization

can behave in a way very different from the typical ones. Large deviations from typical

behaviours can easily be found in critical networks [15].

The asymptotic dynamics can be identified by means of the so-called dynamical

Derrida parameter k [6, 7], which measures the tendency of a temporary perturbation to

vanish, to persist or to spread through the entire system: so, ordered, critical and chaotic

dynamical regimes correspond respectively to k < 1, k � 1 and k > 1.

This parameter can be determined by analysing a plot of the average distance

between two states at time t + 1 versus their distance at time t (the Derrida plot) and by

looking at the slope of the tangent to the curve in the limit of small initial distances.

Different (static) measures of the dynamical properties have also been proposed,

based on an analysis of the properties of the set of Boolean functions rather than on

actual simulations: they are discussed in depth in [18] alongside with their relationships

with the dynamical Derrida parameter, described above, which is the only such mea-

sure considered in this paper.

Another important remark raised in [18] concerns the dependency of the dynamical

Derrida parameter from the set of initial conditions. The usual recipe is that of choosing

a fully random initial state, and of considering the time behaviour of its perturbed

states. While this is entirely reasonable in ergodic systems (where all accessible states

are equiprobable over a long period of time), RBNs with a small number of connec-

tions per node are strongly non-ergodic [20], so it may easily happen that such purely

random states are never encountered in the life of the cell modelled by the Boolean

genetic network.

It seems therefore physically much more appropriate to determine the dynamical

Derrida parameter while limiting the set of allowed initial states only to those states that

are the successors of some other states. The initial state might be found by starting the

network simulation from a purely random state, letting it evolve for Tev steps (Tev � 1)

and by choosing the state that has been reached as the initial state for computing the
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Derrida parameter. When the set of allowed initial states is limited in this way, we refer

to an “extended Derrida approach”, or to an “extended Derrida parameter”, to distin-

guish it from the canonical one.

Note also that different types of perturbations are possible: in GPBNs the initial

perturbation could affect G nodes, P nodes, or both. In our approach a perturbation of a

P node can correspond either (i) to an activity change from 0 to 1, with a decay phase hi
randomly chosen within the range [1, dti] or (ii) to an activity change from 1 to 0, with

hi = 0. A perturbation of a G node can correspond (i) to an activity change from 0 to 1,

followed by the appropriate effect on the protein or (ii) to an activity change from 1 to 0

– in this case, the G node is not producing its protein, and the P node reduces its decay

phase by one.

4 Results

It had already been observed in [9, 11] that, as it might be apriori expected, the

presence of a memory term tends to make the dynamical behaviour “more ordered”.

This can be shown by comparing the behaviour of networks with MDT 6¼ 1 with those

of the corresponding network with MDT = 1 (that are identical to the corresponding

RBNs). The comparison can be made for different dynamical behaviours, in this paper

we will report results concerning networks that are critical if MDT = 1. Three sets of

parameters, all corresponding to critical behaviours, will be discussed: [k = 2, p = 0.5],

[k = 3, p = 0.21], [k = 3, p = 0.79]. The fact that two different cases are chosen for

k = 3 is due to the fact that in GPBN the 0–1 symmetry of RBNs no longer holds.

Fig. 1. Number of different attractors vs. maximum decay time (MDT, ranging from 1 to 10);

each point represents the average of 1000 different networks (case [k = 2, p = 0.5]) with 100 G-P

node pairs. For each network 100 runs with different initial conditions are performed, until an

attractor (with period lower than 1000 time steps) is reached or until the sum of the transient time

exceed 10000 time steps
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The stabilizing effect of memory can be seen in Fig. 1, where the number of

different attractors versus the maximum decay time is shown to decrease sharply even

with a short memory term [9].

Let us now turn to the dynamical regime, as determined by the Derrida procedure.

As discussed in Sect. 3, perturbations can be performed either on G or on P nodes. Let

us first consider this latter case. In all the simulations described here below the per-

turbations can be either up (i.e. setting equal to one the value of a P node which is 0) or

down, depending on the not perturbed activity of the chosen P node. In each simulation

series we create 50 different networks with 100 G-P node pairs, 100 different initial

conditions for each network. In order to allow an easier series comparison we consider

the decay time of each P node being exactly equal to MDT.1

In Fig. 2 the behaviour of the Derrida parameter for the critical case k = 2, p = 0.5

is shown. The two curves refer to the G-node and to the P-node subnetworks. Very

large values of MDT have also been considered, and it is shown that the network

remains critical notwithstanding the memory term.

In Fig. 3 the same parameter is shown for the two cases with k = 3. While the

G-node subnetwork remains critical, here the effect of the memory term on the P

subnetwork is neither that of leaving it critical, nor that of always bringing it in the

Fig. 2. Canonical Derrida parameter vs MDT (MDT 2 {1, 2, 4, 8, 16, 32, 64, 126, 256}), case

k = 2, p = 0.5. The two curves refer to the G-node and to the P-node subnetworks, subject to a

P-node perturbation

1 Subsequent simulation series where the decay time of each node is randomly chosen (with uniform

probability) in [1, MDT] show that the main effect of choosing the decay times randomly with

uniform probability between 1 and MDT is that of slightly soften the shape of the curves, without

altering their behavior (data not shown).
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ordered region; this happens for the case with high bias, while the Derrida parameters

becomes larger than one in the low-bias case.

This behaviour may seem surprising (but see the comments in Sect. 5), therefore it

is interesting to consider also the extended Derrida parameter described in Sect. 3. The

results are shown in Figs. 4 and 5.

Fig. 3. Canonical Derrida parameter vs MDT, case k = 3: left p = 0.21, right p = 0.79. The two

curves refer to the G-node and to the P-node subnetworks, subject to a P-node perturbation

Fig. 4. Extended Derrida parameter vs maximum decay time for the case k = 2, p = 0.5; left

Tev = 1, right Tev = 3. The two curves refer to the G-node and to the P-node subnetworks,

subject to a P-node perturbation

Fig. 5. Extended Derrida parameter vs maximum decay time for the case k = 3; Left p = 0.21,

right p = 0.79. In both cases Tev = 3. The two curves refer to the G-node and to the P-node

subnetworks, subject to a P-node perturbation
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Note that, while the G subnetwork remains critical, the behaviour of the P sub-

network is different from that of the canonical Derrida parameter. In the k = 2 case, it is

more ordered (k < 1 even for values of MDT slightly larger than 1) while it was critical

in Fig. 2. In the k = 3, low-bias case the network is critical, while it was supercritical in

Fig. 3. Only in the case of k = 3 with low bias the two behaviours are at least quali-

tatively the same. It should also be observed that the length of the time window Tev

may affect the outcomes: for example, by choosing it equal to one in the same case as

that of Fig. 5 left, one would have concluded that the P subnetwork is slightly

supercritical (data not shown here).

In order to complete the description of the model behaviours, let us now consider

the results that have been obtained by perturbing the gene subnetwork (recall that all

the previous ones referred to perturbations of P nodes). As it can be seen from Fig. 6

below, in all the cases both subnetworks are ordered even for values of MDT larger

than 1.

The dynamical regimes of GPBNs have been analysed so far by using canonical or

modified Derrida methods, i.e. the discrete analogues of Lyapunov exponents. A major

interest concerns the robustness of networks of this kind, and in order to characterize

this property a different measure, independent of Tev or of any similar parameter, is

given by the fraction of perturbations that, starting from an attractor cycle, end in the

same attractor.

Fig. 6. Extended Derrida parameter vs maximum decay time for the cases k = 2 and p = 0.5,

k = 3 and p = 0.21, k = 3 and p = 0.79. In all cases Tev = 1. The curves refer to the G-node and

to the P-node subnetworks, subject to a G-node perturbation
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These data are shown in Fig. 7. As it is expected, the fraction of perturbations that

fall back onto the initial attractor decreases as the intensity of the perturbation

increases. This fraction increases when a memory term is added and, like in the other

cases described above, the effect is observed for small values of the maximum decay

time, while further increases of MDT do not lead to any appreciable change.

5 Conclusion

The GPBN model of genetic regulatory systems maintains the abstraction level of the

RBN framework and at the same time allows an explicit modelling of time delay

effects.

It is of course extremely interesting to compare abstract-level models with

real-world data. It has indeed been possible to show that RBNs can properly describe

the distribution of perturbations in gene expression levels induced by single knock-outs

in S. Cerevisiae [15, 16]. However, the techniques used for this purpose do not allow

one to test the behaviour of the model when the perturbation affects several genes at the

same time – a situation that is much more frequently encountered in experiments, like

those related to the effects of drugs or contaminants. In these cases the comparison of

model behaviour and experimental data should concern the time behaviour of the

perturbation after the initial shock, but time-course data cannot be properly compared

to RBNs because of their unrealistic synchronous updating. On the contrary, the

introduction of memory terms in GPBNs should make it possible to deal also with

Fig. 7. The fraction of perturbations that came back to the starting attractor by varying MDT, if

perturbing 1, 2, 5, 10, 15 or 20 P-nodes. Each point is the average of 50 different systems with

100 GP nodes: in each system the attractors are identified by using 100 random initial conditions;

all states of the so sampled attractors are perturbed. In these experiments, we considered the same

decay time for each P node.
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time-course data following a multiple initial perturbation, thus greatly increasing the

wealth of experimental data available for testing the appropriateness of the abstract

framework.

The kind of memory that has been introduced has different effects in case of

information transmission from G to P nodes or from P to G nodes, and pose some

interesting questions about the correct way of measuring of the system dynamical

regimes through Derrida-like procedures. Anyway, the robustness of the system’s

attractors can constitute a sort of global measure related to its general “degree of order”.

In the future it will be interesting to analyse a Derrida parameter modified in a way

different from those of Sect. 4, i.e. computed by allowing as initial states only those

that belong to an attractor.

In order to understand the behaviour of the GPBN model when P nodes are per-

turbed, it will be interesting to consider separately the effects of up and down per-

turbations. Indeed, the impacts of “up” and “down” perturbations of P nodes are likely

to have different intensities. The effect of a “down” perturbation, i.e. the disappearance

of a protein, should typically die out quite rapidly, as the rest of the nodes resynthesize

that protein. On the other hand, the impact of an “up” perturbation is likely to last

longer, i.e. for a number of steps equal to its phase. Investigating the effects of the two

types of perturbations by canonical and modified Derrida parameters may therefore

provide important clues about the properties of the model.
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