
10/04/2024 00:28

A new method for motion synchronization among multivendor’s programmable controllers / CAVALAGLIO
CAMARGO MOLANO, Jacopo; Lahrache, Achraf; Rubini, Riccardo; Cocconcelli, Marco. - In: MEASUREMENT. -
ISSN 0263-2241. - 126:(2018), pp. 202-214. [10.1016/j.measurement.2018.05.050]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:



A new method for motion synchronization among

multivendor’s programmable controllers

Jacopo Cavalaglio Camargo Molano, Achraf Lahrache, Riccardo Rubini,
Marco Cocconcelli

Department of Sciences and Methods of Engineering, University of Modena and Reggio
Emilia, Reggio Emilia, Italy

Abstract

This paper is aimed at increasing the number of possible architectures of
distributed control systems by investigating and developing novel methods
for the synchronization of axes between PLCs and iPCs of different vendors.
In order to find a global solution to this problem, particular attention has
been focused on programmable controllers that can manage axes by means
of point-by-point control or motion instructions.
Two synchronization algorithms have been developed and validated for real
and virtual axes; they differ in computational load so that they can be used
with programmable controllers having high or low computational perfor-
mances.

Keywords: Synchronization, Coordinated motion control, Real-Time
Ethernet network, Multi-axis motion

1. Introduction

Distributed solutions for real-time system architectures are more and
more used for the improvement of the industrial process and the develop-
ment of smart factories in order to follow the new wave of Industry 4.0 [1].
In comparison with the centralized architecture, these systems improve the
dependability, compensability, scalability and extensibility of the products
[2]. They are also called networked motion control systems (NMCSs) and
they consist of a set of different nodes such as controllers, sensors, drive
controllers, regulators, HMIs and actuators, spatially distributed and inter-
connected by a communication network [3, 4].

Preprint submitted to Measurement May 26, 2018



In the automation field [5] there are several communication networks and
communication protocols that answer different requirements for different ap-
plications. Real-time Ethernet (RTE), which is a field bus technology, is
commonly used for the communication of data among nodes of distributed
real-time systems thanks to its security and reliability [6, 7, 8]. Several Eth-
ernet applications exist such as ControlNet [9], PROFIBUS [10], EtherCAT
[11] and Ethernet/IP [12].
The new challenges of distributed control system have been presented by
Dripke et alt. [13]. The most important challenge, which have been identify
by them are communication among multi-agent systems, time and synchro-
nization due to the parallel computing nature of distributed systems, control
tasks, capacity and scalability. In this direction, a lot of new communication
protocols for IoT and time synchronization systems, such as OPC UA [14, 15]
and TSN [16, 17, 18], are being developed and standardized in order to over-
come the existing problems. While in the industrial field there are some
examples of the use of the OPC UA protocol for communication [19], in the
case of motion synchronization, this protocol is used together with another
protocol (EtherCAT) in order to achieve the synchronization of multiple axes
[20]. As regards Time-Sensitive Networking (TSN), it is a new communica-
tion protocol that is focused on the simultaneous motion synchronization of
axes and data exchange [21]. Several companies are developing new devices
in order to implement this new protocol [22] and to increase its reliability,
security and performances for industrial applications. A milestone of mo-
tion control is synchronization among multiple axes [23, 24, 25, 26] that is
fundamental in different fields such as Computer Numerical Control (CNC),
Surface Mounting Technology (SMT)[27, 28] and automated factories [29].
It is acknowledged that a new step towards the development of distributed
control systems is represented by integration and interoperability among in-
dustrial programmable controllers of different producers [29]. Some applica-
tions already use communication between PLCs or iPCs of different vendors
[30] but only for the exchange of information and not for the motion control
of motors. Several studies have been carried out to implement distributed
controls for motion axes [31, 32, 33]. In all these cases the master control
directly commands drivers of the same vendor or drivers directly compatible
with the communication network of the master control. This is due to the
fact that different vendors use different methods for the control of the dy-
namics of motors; moreover, motion control is a hard real-time task, which
requires a high level of accuracy and reliability. The advantages of a dis-

2



tributed motion control system, which can be used with drives and motors of
different vendors, are the increase of re-usability, reconfigurability and exten-
sion of distributed systems. The novel approach of this paper consists in the
implementation of a distributed motion control in which a master iPC com-
mands incompatible drivers and motors through a slave PLC. This method
differs from the actual ones in which the motion control between different
PLCs/iPCs of different vendors is possible only if the two systems use the
same protocol for communication and synchronization.
Even in the field of Neural Networks some new finite-time synchronization

(FTS) methods have been developed [34]. An example of accurate time syn-
chronization among multiple devices is presented by Shiying et alt [35]. They
use the IEEE 1588 protocol for the design of a time synchronization network
of experimental advanced superconducting tokamak (EAST) poloidal field
(PF) power supply control system. In this case, they synchronize the time
among a control system of PFPS on EAST, local controllers, coordination
operations of several sets of power supply and DAQ systems (DAS) with the
maximum time offset from the master node that never exceeds 50 ns.
This paper is focused on the development of a general master-slave real-time

interface between different programmable controllers for the synchronization
of motion control by the use of real-time Ethernet communication networks
with the IEEE 1588 V2 Time Synchronization protocol [36, 37] and the Eth-
ernet/IP protocol [38].
The hardware architecture, the used communication network and the algo-
rithms, which will be subsequently shown, represent a global solution for
motion control among industrial programmable controllers of different ven-
dors.This solution can be used for any type of distributed real-time control
systems that include both PLC and iPC devices. The tests have been per-
formed with different PLCs and iPCs, but the vendors’ names cannot be
shown because of the NDA.
The general solution developed in this paper will be also used with the latest
protocols, such as TSN, when they are introduced into the automation field
as standard protocols.
Following the method shown in the paper it is possible to overcome the prob-
lem of connectivity between PLC and iPC of different vendors without the
reduction of the function of one of the two systems. De facto, it is also pos-
sible to control functions that require high accuracy and safety such as the
motion control of different motors.
The paper is organized as follows. Section 2 shows the notations used in this

3



paper; Section 3 deals with the existing hardware architectures for the mo-
tion synchronization of distributed control systems and the architecture used
in this study; Section 4 describes the problem and possible solutions; Section
5 illustrates the simulations performed; Section 6 and Section 7 analyze the
solutions adopted for different system architectures; Section 8 explains the
experimental results; Section 9 provides a discussion about the work; Section
10 expounds the conclusions drawn at the end of the research.

2. Notations

ClM Clock Master
ClS Clock Slave
MotM Motion Master CPU
MotS Motion Slave CPU
pi i-th Set position
vi i-th Set velocity
ai i-th Set acceleration
ji i-th Set jerk
Tad Actuation delay
Tstt Motion task time of the MotS
CUP Coarse update
Di i-th Time difference
Tmci i-th Time instant in which MotM imposes the set values on its axes
Tsci i-th Time instant in which MotS imposes the set values on its axes
Tt Total time
pfi i-th extrapolated future position
vfi i-th extrapolated future velocity
afi i-th extrapolated future acceleration
Ta Acceleration time
Tt Time at constant velocity
p0 Actual position
v0 Actual velocity
vjog The input velocity given to the jog
ajog The input acceleration given to the jog
ep Position error
ev Velocity error

4



3. Hardware architecture

In order to generalize the architecture of the system, the hardware com-
ponents used are typical of every programmable controller vendor. The only
constraints are:

• the Ethernet communication network for the exchange of the kinematic
data of motors with a velocity of at least 100Mbps. For some vendors
it is directly integrated in the controller card while other vendors need
an appropriate card

• an Ethernet card that allows the use of the IEEE 1588 V2 protocol. In
some cases it is the Ethernet communication card itself if the system
uses a CIP Sync protocol, or in other cases an appropriate card is
necessary.

Furthermore, the programmable controller that moves the main motors is
called Motion Master CPU (MotM), while the one that synchronizes its mo-
tors with the master is called Slave Motion CPU (MotS). With this method
it is possible to synchronize both real and virtual axes. This is very impor-
tant because in the automation field the main axis of the machine is often
virtual and all the other axes, both real and virtual, move synchronously
with it.
If the system needs to synchronize real motors, the hardware architecture
includes drivers and motors.
If the system synchronizes only virtual axes, drivers and motors are not in-
cluded in the hardware architecture.
Other studies relating to motor synchronization have been carried out by
means of the use of the IEEE 1588 synchronization protocol and Ethernet
connections [31]. Even they consider a master-slave architecture, but the
main difference lies on the fact that they use only a master controller and
some slave drivers of the same vendor as in Fig.1.
On the contrary, this study aims at developing an interface between pro-
grammable controllers of different vendors, which control drivers and motors.
In this case a master CPU controls different slave CPUs that send the set
values to the drive in order to control several motors as represented in Fig.2.

5



Figure 1: Literature system architecture

4. Problem definition

The synchronization of several axes between programmable controllers of
different vendors can be divided into four parts:

1. time synchronization of the system

2. exchange of kinematic data

3. computation of trajectory

4. driver actuation

4.1. Time synchronization

First of all programmable controllers need to have the same time refer-
ence so that they can evaluate the kinematic values of the system properly.
The clocks of programmable controllers can be very different in accuracy and
reliability, consequently it is necessary to use a method which is oriented to
find a common clock between the controllers. In order to obtain a high accu-
racy in motion synchronization, a high accuracy of the global time of CPUs
is required.Therefore, the synchronization protocol used is the IEEE 1588 V2
(Precision Time Protocol), because it is one of the most used, it is based on
Ethernet communication network and it achieves a clock accuracy < 100ns
[36].
This protocol uses a Clock master(ClM) that is the source of the synchro-
nization reference and a Clock slave(ClS) that is the destination of the syn-
chronization message. In order to synchronize the ClS with the ClM , the
former computes the time difference between its clock and the synchroniza-
tion message. If the delay is higher than 100ns, the ClS overwrites its time in

6



Figure 2: System architecture

order to ensure synchronization, this means that there are some gaps in the
time reference of ClS. Therefore, it is very important to understand which
CPU between MotM and MotS will be the ClM or the ClS. The ClM cho-
sen between the two different programmable controllers has to be the MotS,
because it is not possible to control the dynamics of an axis in an accurate
way if the reference time is overwritten during the computation of motion.

4.2. Exchange of kinematic data (Communication configuration)

The communication network between the two programmable controllers
is based on Ethernet/IP with a Produced/Consumed tag method. This type
of communication allows to broadcast and to receive system-shared tags.
The choice of this method for the exchange of data is due to the fact that
it can be used with typical control networks, it is reliable and it is real-time
communication.
The MotM can send the synchronization data for multiple axes within a data
path. For each axis the shortest data path necessary for the synchronization
of the i-th axis (Fig.3) consists of: Time of master commands (Tmci(i)) and
Set Position, Velocity, Acceleration, Jerk (pi(i+Tstt), vi(i+Tstt), ai(i+Tstt),
ji(i+ Tstt)) of the axis with a look ahead equal to the Motion Task Time of
the MotS (Tstt).

7



Figure 3: Data path sent to the MotS by the MotM

4.3. Computation of trajectory

Different vendors use different methods for the motion of axes. Some of
them can directly move an axis point by point defining its pi, vi and ai at
each motion task. Other vendors, who cannot control a motor point by point,
use motion instructions in order to impose the desired trajectory. This case
is the most interesting because it requires to impose the desired trajectory
by using a predefined motion profile. If the axes to be moved are real, the
programmable controller computes their pi, vi and ai and sends them to the
drivers. In order to synchronize two or more virtual or real axes between two
programmable controllers, the MotS needs to take into account the pi, vi, ai
and ji of the MotM with respect to the instant of time in which the MotM
will actuate these commands. Thanks to the time synchronization, the two
CPUs have the same clock reference and so it is possible to correlate the
time instant in both CPUs. Both in the case of the point-by-point control
and in the case of the control obtained by means of motion instructions,
the coarse update (CUP) of the motion task and the coarse update of the
data sending task of the MotM must be shorter than the ones of the MotS.
This choice reduces the possibility of receiving the same data of motion twice
because of the jitter of the tasks that different CPUs have. Moreover, the
task in which the motion algorithm is computed must be synchronous with
the motion task of the CPU to be sure that the actuation delay (Tad) with
which the CPU sends the pi, vi and ai of the system is constant and equal
to one CUP of the motion task. To compensate the actuation delay that is
equal to one CUP of the motion task of the MotS (Tad = Tstt), the kinematic

8



values sent by the MotM have a look ahead in time equal to Tstt and they
are (pi(i+ Tstt), vi(i+ Tstt), ai(i+ Tstt), ji(i+ Tstt)).
The main idea for the synchronization of the two systems is based on the
determination of the time difference (Di) between the time instant in which
the MotM imposes the set values on its axes (Tmci) and the time instant in
which the MotS will impose the set values on its axes (Tsci).
With the computation of this delay and thanks to the kinematic data of the
MotM , it is possible to extrapolate the future set position (pfi), future set ve-
locity (vfi) and future set acceleration (afi) that the master axes will achieve
after the total time (Tti = (Di + Tad)). The computation of Tti is afflicted
by the jitter of the motion task because the MotS can only compute the
previous instant of time in which it imposes the commands and not the next
one. However, the motion task of the MotS is scheduled and so it is almost
constant except for the jitter of the task (Tti = Tadi + Di + jitteri). PLCs
and iPCs define a maximum level of the jitter of the task that is different
among different vendors and different controllers. The communication jitter
does not influence the computation because it is included in the Di value and
so it is determined for each calculation accurately.
In order to synchronize the axes of MotS with the axes of MotM , the MotS
has to impose on its axes a trajectory congruent to their actual kinematic
values to achieve, at the future time instant, the same pfi , vfi and afi as the
MotM reaches.
The extrapolated formulas are the following:

pfi = pi(i+ Tstt) + vi(i+ Tstt)Di +
1

2
ai(i+ Tstt)D

2
i +

1

6
ji(i+ Tstt)D

3
i (1)

vfi = vi(i+ Tstt) + ai(i+ Tstt)Di +
1

2
ji(i+ Tstt)D

2
i (2)

afi = ai(i+ Tstt) +
1

2
ji(i+ Tstt)Di (3)

For each motion task the MotS has to move its axes satisfying the con-
straints pfi , vfi , afi with respect to their actual positions (pai), actual veloci-
ties (vai) and actual accelerations (aai).

4.4. Drive actuation

The driver can have different control strategies to perform the best control
of motors, but it generally uses only the set positions and the set velocities

9



given by the controller. The driver interpolates the set values with a fre-
quency of about 8KHz and computes the current necessary to impose the
defined motion. For this reason all the synchronization algorithms that have
been developed have the aim of generating the correct set positions and set
velocities required to synchronize two or more axes.

5. Simulations

Several simulations have been performed in order to demonstrate the
correctness of this architecture. The tests consist in the evaluation of the
synchronization error between a MotM axis and a MotS axis with the trajec-
tories shown in Fig.17 and Fig.5. The method used to synchronize the two
axes is the aforementioned one. The task time chosen for the motion task of
the MotM is 2ms and the one of MotS is 4ms. The MotM sends the data
path to the MotS every 1ms, while the MotS reads the data path every 2ms.
A random jitter has been imposed on different tasks as follows:

• ±5µs Master Send Data Task

• ±40µs Slave Read Data Task

• ±40µs Slave Read Data Task

• ±40µs Slave Actuation Task

The timing model is shown in Fig.4. The simulation results are shown in
Fig.5 and Fig.6.

The simulations lead to the following deductions:

• synchronization errors are bounded

• jitter causes noise on the synchronization error

• it is possible to have few points with a high synchronization error of
velocity and acceleration in case the motion task of the MotM does not
sample the punctual variations of the dynamic variables.

6. Point-by-point control

In case the MotS uses a point-by-point control it is possible to directly
impose pfi , vfi and afi on the axes so synchronization is insured except for
the jitter of the task.

10



Figure 4: Timing model of the system

7. Motion instruction control

In case the programmable controller can not directly impose the kine-
matic values on the axes by means of point-to-point control but it can only
use motion instructions, it is necessary to use different algorithms to respect
the kinematic constraints. In order to develop a global method for the mo-
tion synchronization between two different controllers, the motion instruction
used to move the axes of the MotS is a jog.
The choice of this type of motion instruction depends on the fact that the
jog is a trapezoidal velocity profile and it is used in any type of automation
PLCs or iPCs. Different vendors give different names to this instruction but,
independently from the name, its behavior is the same. The jog instruction
allows to carry out a trapezoidal velocity profile (Fig.7) by defining the ve-
locity that the axis has to reach and the acceleration with which it has to
obtain the desired velocity.

In this case it is necessary to divide the problem into three different sce-
narios that depend on the value of the actual velocity(v0) of the MotS axis
with respect to the extrapolated velocity(vf ) which the axis has to reach at
the next motion task time: (vf < v0), (vf = v0), (vf > v0).

11



Figure 5: Synchronization error with the first trajectory

Figure 6: Synchronization error with the second trajectory

In case vf > v0, the equations describing the problem are:

pf = p0 + v0Tt +
1

2
aT 2

a + (vf − v0)Tr (4)

vf = v0 + aTa (5)

Tt = Ta + Tr (6)

where Ta is the time of acceleration, Tr is the time in which the axis has the
desired velocity and Tt is the total time. So the solution is the following:

Ta = 2
(pf − p0) − vfTt

v0 − vf
(7)

a =
(vf − v0)

Tt
(8)

12



Figure 7: Velocity shape of a jog in which the final velocity vf of the axis is higher than
the actual velocity v0

Figure 8: Problem scenarios (vf < v0), (vf = v0), (vf > v0)

13



In case vf < v0, the solution is similar to the previous one. In the case in
which vf = v0, the unique solution is the following:

pf = p0 + v0Tt (9)

a =
vf − v0
Tt

(10)

The solutions, which also depend on the values of Ta and T, lead to four
different cases:

• 0 < Ta < TT the solution always exsists;

• Ta = 0 one and only one solution exists and it is not implementable:

(pf − p0) = vfTt (11)

∆p

Tt
= vf (12)

• Ta < 0 it is impossible to satisfy the position and the velocity con-
straints at the same time:

(pf − p0) − vfTt < 0 (13)

∆p

Tt
< vf (14)

• Ta > Tt it is impossible to satisfy the position and the velocity con-
straints at the same time:

(pf − p0) > v0Tt (15)

∆p

Tt
> v0 (16)

Only in the first case there is always a solution. In the second case
there are no implementable solutions because it is necessary to give a new
velocity to the axis without any variation of acceleration. In the third case
and in the fourth case it is not possible to respect all the constraints so it is
necessary to develop an approximated solution. In order to achieve the best
synchronization performances with respect to the computational effort, two
different algorithms have been developed:

• Discrete approximation

• Linear approximation

14



7.1. Discrete approximation

With this algorithm, in case Ta = 0, the input velocity and acceleration
given to the jog are the same as in the previous task. In this way the MotM
and the MotS axes increase their synchronization difference and in the next
task Ta will be different from 0. The synchronization error is not high if the
time of the motion task is shorter than the dynamics of the MotM axes. In
the third case (Ta < 0), the acceleration time is negative. In the fourth case
(Ta > T ), the acceleration time is higher than the motion task of the system,
the inputs of the jog instruction are defined as follows:

vjog =
pf − p0
Tt

(17)

ajog =
vf − v0
Tt

(18)

This approximation involves a position error and a velocity error (Fig.9).
To understand if the approximation error is bounded and small enough

to allow the application of the algorithm, the position error and the velocity
error are computed in the following three cases:

• vf < v0

ep = ∆p− vf + v0
2

T (19)

ev = 0 (20)

• vf = v0,

ep = ∆p− vf + v0
2

T (21)

ev = 0 (22)

• vf > v0

ep =
v20

2∆v
T +

∆p2

2T∆v
− v0

∆p

∆v
(23)

ev = vf −
∆p

T
(24)

15



Figure 9: Position error due to the approximation in the cases (vf < v0),(vf = v0),(vf >
v0)

Figure 10: Surface of the synchronization error

16



Different simulations have been carried out in order to evaluate the posi-
tion error with respect to Delta position (pf − p0) and the final velocity vf .
The function is computed in the neighbourhood of the work point with a
velocity of about 133,33 deg/sec(Fig.10).

It presents a saddle point in the working point with a position error of
about zero, in the other parts the position error is close to zero. The highest
position errors can be achieved only if Delta velocity and Delta position are
not congruent to each other, consequently only if the kinematic values of the
MotM axes received by the MotS are corrupted.
Another possible problem can be present if the extrapolated velocity is per-
fectly equal to the actual velocity. In this case the algorithm does not correct
any velocity error and the two axes have the same velocity but a very high
position error.
In order to solve this problem a very little reduction of velocity is imposed
with an acceleration equal to 1% of the actual acceleration of the system.
In this way a difference between the extrapolated velocity and the actual
velocity of the axes appears in the next motion task. This solution does not
produce a high position error if the system has a short motion task time.
Fig.11 represents the complete algorithm.

This algorithm has to be computed at each motion task time for each axis
to be synchronized. Not all PLCs have a good performance with complex
calculations, therefore a simplified algorithm has been developed.

7.2. Linear approximation

The target of this algorithm is to reduce the complexity of computation
maintaining good synchronization performances. For each task time this al-
gorithm computes the time difference (Di), it extrapolates pf ,vf and af and
it calculates, by means of eq.17 and eq.18, the input velocity and acceleration
to be given to the jog instruction.
The algorithm corrects the position error and the velocity error existing be-
tween the actual kinematic values and the extrapolated kinematic values in
order to synchronize with the master axis.
However, the algorithm does not distinguish the different kinematic scenarios
consequently there is always an approximation error. But, as seen before, the
position error is very small if Delta position and Delta velocity are congruent
and the computational effort is reduced. This algorithm can be a good trade
off between the synchronization performances and the computational efforts
if the computational power of the CPU is not too high.

17



Figure 11: Discrete approximation algorithm flow chart

18



Figure 12: Linear approximation algorithm flow chart

19



8. Experimental results

The tests have been performed only with PLCs and iPCs that cannot
control the kinematics of the axes point-by-point. This choice is due to the
fact that in the case of point-by-point control it is possible to synchronize
the axes by directly imposing the extrapolated position and velocity of the
MotM axes. In the case taken into consideration by this study, the time dif-
ference between the two systems has to be computed in order to extrapolate
pf ,vf and af and to use the Discrete Approximation Algorithm or the Linear
Approximation Algorithm required to compute the input velocity (vjog) and
the input acceleration (ajog) for the jog instruction and to synchronize the
axes.
The tests have been run on virtual and real axes.
The tests on real axes have been conducted in order to understand if the
synchronization error can influence the position error or produce vibrations
on real motors.
The tests on virtual axes have been performed in order to evaluate the syn-
chronization position error and the velocity position error with respect to
different motion profiles. Other tests on virtual axes have been run in order
to determine how the variation of the task time of the two CPUs can influ-
ence the performances of the algorithms.
It is not possible to show the names of the vendors of PLCs and iPCs used
in the tests because of the NDA.

8.1. Tests on real motors

In order to understand if the algorithms can generate noise on real motors,
the position error and the velocity error of the distributed hybrid system have
been evaluated by comparing them with the position error and the velocity
error of the same motor commanded only by one CPU. The motion profile
chosen for the test is shown in Fig.13; it consists of a hard dynamics with
several parts of accelerating zones and constant velocity zones.

The position error and the velocity error are the same both in the normal
case and in the hybrid case.

8.2. Tests on position and velocity synchronization errors

In order to evaluate the synchronization performances of the two algo-
rithms at different velocities and with virtual axes, two motion profiles have
been used: the first one is represented in Fig.13, while the second one is

20



Figure 13: First motion profile

Figure 14: Position error and velocity error in the normal and hybrid configuration

21



represented in Fig.17.
For the sake of brevity, Fig.15 and Fig.16 show only one test; the variables
represent the position synchronization error and the velocity synchronization
error. However, the data of all the tests are listed in Tab 1.

• First motion profile

Figure 15: Synchronization error with the Discrete Approximation Algorithm for the first
motion profile

Figure 16: Synchronization error with the Linear Approximation Algorithm for the first
motion profile

• Second motion profile

22



Figure 17: Second motion profile

Figure 18: Synchronization error with the Discrete Approximation Algorithm for the
second motion profile

Figure 19: Synchronization error with the Linear Approximation Algorithm for the second
motion profile

23



8.3. Influence of the task time

An important factor for the motion control is the task time of the motion
planner of CPUs. The following experiments have been conducted in order
to understand if the variation of the task time influences the performances of
the algorithms. The tests have been performed for three different task times
of the motion planner of the MotS:

• 8ms

• 4ms

• 2ms

The task time of the MotM is always half of the task time of the MotS. The
profile used is the same as in Fig.13 at three different velocities:

• 67deg/sec

• 133.33 deg/sec

• 200 deg/sec

The data of all the tests are shown in Tab.2.

9. Discussion

To solve the synchronization problem two possible cases have been taken
into account:

• point-by-point control

• axis control by means of motion instructions

In the first case it is possible to synchronize the axes by means of a sim-
ple compensation of the time delay between the time in which the MotM
commands its axes and the time in which the MotS performs the same oper-
ation. In the second case a trapezoidal velocity profile called jog instruction
has been chosen in order to control the MotS axes and to synchronize them
with the MotM axes. This choice has been made because in any PLC or
iPC used for the motion control it is possible to define a trapezoidal velocity
trajectory by imposing on the axis the velocity and the acceleration to be

24



reached.
Therefore, two different algorithms have been developed for the solution of
the synchronization problem. The main difference between the two algo-
rithms depends on the fact that the Discrete Approximation Algorithm takes
into account all the possible kinematic cases of the axes, but it involves a
higher computational effort.
On the contrary, even if the Linear Approximation Algorithm has the same
behavior in any kinematic case, it requires a lower computational effort.
In order to optimize the algorithms, some tests have been conducted with
different task times of the motion planner as the task time is an important
factor for the synchronization accuracy. De facto, the shorter the motion
task time is, the faster the generation of the command values sent to the
axes is. Consequently, the system is more reactive to the correction of the
synchronization error and the decrease of the task time reduces the mean
and especially the standard deviation of the synchronization error.
These tests have brought to light another parameter that influences the per-
formances. It is the jitter of the motion task of the MotS; in order to evaluate
its influence, several tests have been conducted on virtual axes following the
profile of Fig.13. The data are shown in Fig.20.

Actually a high variation of the jitter involves a higher synchronization
error. Even the magnitude of the jitter influences the system: for a high
magnitude of the jitter there is an increase of the synchronization error. The
problem is that it is not possible to forecast the jitter and to compensate it
because it has a randomic behavior. Therefore, in order to reduce its effects,
there are two possibilities:

• to choose a CPU with a very low jitter

• to reduce the task time of the motion planner of the Mots so that the
magnitude of the jitter can be reduced.

10. Conclusions

The first step of this work has involved a wide research on the most
used systems of real-time communication and synchronization. For the time
synchronization of different CPUs it has been necessary to individualize the
hardware and software tools adopted by most vendors of programmable con-
trollers.

25



Figure 20: Comparison between the synchronization error and the jitter of the MotS
motion task

26



The second step has regarded a research aimed at defining the communica-
tion method to be used for the exchange of the kinematic data of the axes
between two CPUs.
Two synchronization algorithms have been developed in order to solve the
synchronization problem.
Several simulations have been carried out with a defined trajectory of the axes
in order to evaluate the synchronization performances of the system.They
have shown a position error close to zero along the working point.
Subsequently, the two algorithms have been tested with real and virtual axes.
As regards real axes, it emerges that the use of synchronization algorithms
do not influence the position error and the velocity error of the real motors.
As regards virtual axes, several synchronization tests have been run with
different motion profiles and at different velocities in order to evaluate the
flexibility of the algorithms. They show that the synchronization error is
bounded; it depends on the velocity of the axes and on the motion profile;
it is one or two orders of magnitude lower than a common position error
of a real motor and it has a tight standard deviation. It means that the
algorithms reach good performances and in case of real motors the synchro-
nization error is neglectable.
In the tests conducted with the second trajectory, the synchronization po-
sition error of the axes is close to the synchronization position error of the
simulations performed with the same profile. Furthermore, a good model of
the system has been made.

Compliance with Ethical Standard

Conflict of Interest: The authors declare that they have no conflict of
interest.

References

[1] R. Anderl, Industrie 4.0 - advanced engineering of smart products and
smart production, in: 19th International Seminar on High Technology.

[2] H. Kopetz, Real-time Systems, Design Principles for Distributed Em-
bedded Application, Kluwer Accademic Pubblication, 2002.

[3] P. Antsaklis, J. Baillieul, Special issue on technology of networked con-
trol systems, IEEE, 2007.

27



T
ab

le
1
:

S
y
n

ch
ro

n
iz

a
ti

o
n

p
er

fo
rm

a
n

ce
s

D
is

cr
e
te

a
p
p
ro

x
im

a
ti

o
n

L
in

e
a
r

a
p
p
ro

x
im

a
ti

o
n

P
V

P
V

M
e
a
n

S
td

.
D

e
v
.

M
e
a
n

S
td

.
D

e
v
.

M
e
a
n

S
td

.
D

e
v
.

M
e
a
n

S
td

.
D

e
v
.

P
ro

fi
le

1
5
0

d
e
g
/
s

0.
00

1
0.

00
23

-5
E

-0
6

0.
01

6
0.

00
03

0.
00

21
9E

-0
6

0.
01

26
1
3
3

d
e
g
/
s

8E
-0

5
0.

00
65

9E
-0

6
0.

03
0.

00
19

0.
00

73
2E

-0
6

0.
03

2
0
0

d
e
g
/
s

2E
-0

5
0.

00
83

3E
-0

6
0.

03
32

0.
00

23
0.

00
97

1E
-0

6
0.

03
24

P
ro

fi
le

2
5
0

d
e
g
/
s

0.
00

03
0.

02
49

2E
-0

4
1.

37
4

0.
00

19
0.

02
3

5E
-0

5
1.

12
1

1
3
3

d
e
g
/
s

4E
-0

4
0.

06
52

0.
00

6
7.

44
21

5E
-0

4
0.

07
69

-6
E

-0
4

7.
63

79
2
0
0

d
e
g
/
s

0.
00

15
0.

07
16

4E
-0

4
15

.6
41

-0
.0

03
0.

27
7

0.
00

53
16

.6
58

28



Table 2: Influence of the task time in the motion synchronization

Discrete approx. Linear approx.
Mean Std. Dev. Mean Std. Dev.

2 ms
67 deg/s 4.329E-2 4.140E-2 4.885E-2 4.939E-2
133 deg/s -2.00E-3 4.068E-2 9.372E-2 1.001E-1
200 deg/s -9.905E-4 6.273E-2 7.839E-2 1.255E-1

4 ms
67 deg/s 1.289E-2 4.029E-2 1.860E-2 4.353E-2
133 deg/s 2.437E-2 8.316E-2 3.337E-2 9.599E-2
200 deg/s 3.397E-2 1.318E-1 4.562E-2 1.644E-1

8 ms
67 deg/s -1.057E-4 3.135E-2 -6.308E-3 5.928E-2
133 deg/s -4.168E-2 2.342E-1 -3.671E-2 2.321E-1
200 deg/s -1.064E-2 5.615E-1 3.634E-2 6.542E-1

[4] E. R. Alphonsus, M. O. Abdullah, A review on the applications of pro-
grammable logic controllers (PLCs), Renewable and Sustainable Energy
Reviews 60 (2016) 1185–1205.

[5] J. P. Thomesse, Fieldbus technology in industrial automation, Proceed-
ings of the IEEE 93 (2005) 1073–1101.

[6] S. Vitturi, L. Peretti, L. Seno, M. Zigliotto, C. Zunino, Real-time eth-
ernet networks for motion control, Computer Standards and Interfaces
33 (2011) 465–476.

[7] J. D. Decotignie, Analysis and design of integrated control for multi-axis
motion systems, Proceedings of the IEEE 93 (2005) 1102–1117.

[8] IEEE-8023.3, Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications, stan-
dard by IEEE, 2000.

[9] ODVA, Technology Overview Series: ControlNet, ODVA.org, 2015.

[10] K. Bender, PROFIBUS, the Fieldbus for Industrial Automation,
Prentice-Hall, 1993.

[11] M. Knezic, B. Dokic, Z. Ivanovic, Topology aspects in etherCAT net-
works, in: Power Electronics and Motion Control Conference, pp. T1–
1–T1–6.

29



[12] E. Alessandria, L. Seno, S. Vitturi, Performance analysis of ethernet/IP
networks, in: IFAC Proceedings Volumes, volume 40, pp. 391–398.

[13] C. Dripke, A. Verl, Challenges in distributed interpolation with multi-
components systems in future-oriented manufacturing units, in: Pro-
ceedings of the 47th International Conference on Computers and Indus-
trial Engineering, pp. 215–222.

[14] UA specification, 2008.

[15] OPC UA part 1 - concepts 1.00 specification, 2006.

[16] IEEE std 802.1qbu, 2016.

[17] IEEE std 802.1qbv, 2015.

[18] IEEE std 802.1qca, 2015.

[19] M. Schleipen, OPC UA supporting the automated engineering of pro-
duction monitoring and control systems, in: 2008 IEEE International
Conference on Emerging Technologies and Factory Automation, pp.
640–647.

[20] M. Wang, H. Luo, M. Li, J. Dong, R. Mao, T. Zhao, The application of
OPC UA technology in motion control system (2014) 93–95.

[21] M. Gutierrez, R. Dobrin, Synchronization quality of IEEE 802.1AS in
large-scale industrial automation networks, in: 2017 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pp.
273–282.

[22] National Instruments, Designing distributed TSN ethernet-based mea-
surement systems, 2018.

[23] F. F. Perez-Pinal, C. Nunez, R. Alvarez, I. Cervantes, Comparison of
multi-motor synchronization techniques, in: Proceedings of the IEEE
Industrial Electronics Society, pp. 1670–1675.

[24] Y. Xue, J. Wang, Design of an ethernet/IP-based two-axis servo system,
in: IFAC Proceedings Volumes, volume 37, pp. 403–406.

30



[25] D. Sun, X. Shao, G. Feng, A model-free cross-coupled control for po-
sition synchronization of multi-axis motions: Theory and experiments,
in: IFAC Proceedings Volumes, volume 38, pp. 1–6.

[26] S. K. Jeong, S. S. You, Precise position synchronous control of multi-axis
servo system, Mechatronics 18 (2008) 129–140.

[27] S. S. Yeh, P. L. Hsu, Analysis and design of integrated control for multi-
axis motion systems, IEEE Transactions on Control Systems Technology
11 (2003) 375–382.

[28] Y. Xiao, K. Y. Zhu, Optimal synchronization control of high-precision
motion systems, IEEE Transactions on Industrial Electronics 53 (2006)
1160–1169.

[29] D. Kolberg, D. Zuhlke, Lean automation enabled by Industry 4.0 tech-
nologies, in: IFAC Papers On Line, volume 48, pp. 1870–1875.

[30] H. Li, F. Zhang, J. Zhang, N. Zhang, L. Wang, X. Yang, Research
and realization of a spinning machine control and monitoring system by
industrial ethernet communication between IPC and OMRON PLC, in:
Proceedings of the IEEE International Conference on Information and
Automation, pp. 1901–1906.

[31] X. Xu, G. Y. Gu, Z. Xiong, X. Sheng, X. Zhu, Development of a decen-
tralized multi-axis synchronous control approach for real-time networks,
ISA Transactions 68 (2017) 116–126.

[32] I. Furstner, L. Gogolak, Synchronizing the motion of multiple elec-
tric motors new possibilities for smart motion control, in: IEEE 14th
International Symposium on Intelligent Systems and Informatics, pp.
105–110.

[33] C. Pang, J. Yan, S. Jennings, Distributed IEC 61499 material han-
dling control based on time synchronization with IEEE 1588, in: 2011
IEEE International Symposium on Precision Clock Synchronization for
Measurement, Control and Communication, pp. 126–131.

[34] X. Liu, J. Cao, W. Yu, Q. Song, Nonsmooth finite-time synchroniza-
tion of switched coupled neural networks, Sci China Inf Sci, 61:5(2018)
art.no.052203; IEEE Transactions on Cybernetics 46 (2016) 2360–2371.

31



[35] S. He, L. Huang, J. Shen, G. Gao, G. Wang, X. Chen, L. Zhu, Time
synchronization network for EAST poloidal field power supply control
system based on IEEE 1588, IEEE Transactions on Plasma Science
(2018) 1–5.

[36] IEEE-1588-2008, IEEE Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control Systems, standard by
IEEE, 2008.

[37] J. C. Eidson, Measurement, Control, and Communication Using IEEE
1588, Springer, 2006.

[38] V. Shiffer, The CIP family of fieldbus protocols and its newest mem-
berethernet/IP, in: Proceedings of the Emerging Technologies and Fac-
tory Automation Conference, pp. 377–384.

32


