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Abstract 1 

Recently, a huge number of studies have confirmed the important role of chocolate polyphenols in 2 

human health, underlining its beneficial effects especially in the treatment of cardiovascular 3 

diseases. However, a thorough evaluation of chocolate phenolic profile is still lacking. This study 4 

aimed at a comprehensive characterisation of dark chocolate phenolic profile, using non-targeted 5 

mass spectrometry identification. This approach allowed a tentative identification of 158 individual 6 

phenolic compounds: 67 were newly detected in dark chocolate, among these 38 were observed for 7 

the first time in chocolate as well as in cocoa beans or products. Ellagitannins, which have never 8 

been reported in cocoa or chocolate, represented about the 10% of the phenolic profile of dark 9 

chocolate. The enrichment of dark chocolate with Sakura green tea leaves or turmeric powder 10 

influenced and modified the phenolic profile, resulting in a phenolic concentration increase. In this 11 

way, this functional chocolate might maximize the beneficial effect of chocolate consumption, 12 

combining the positive health effects of chocolate, turmeric and green tea and, at the same time, 13 

reducing the amount of sugars and calories introduced with chocolate. 14 

 15 

Keywords: epicatechin, curcuminoids, ellagitannins, mass spectrometry, polyphenols, 16 

metabolomics, functional foods17 
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1. Introduction 18 

Western lifestyle built-around a highly refined diet rich in saturated fat and sugars but low in 19 

complex plant carbohydrates, phytochemicals and vitamins is a hot research topic in the field of 20 

nutrition. It is widely known that diet is the cause of many pathogenic age-related conditions. The 21 

intake of certain dietary components is plays an essential role in the prevention or management of 22 

these diseases (Del Rio et al., 2013). Increasing interest has pointed to naturally occurring 23 

compounds, which have been considered non-nutritive for a long time. Polyphenols are a 24 

representative class of these compounds and can be summarised into several groups, i.e. 25 

hydroxybenzoic acids, hydroxycinnamic acids, flavan-3-ols, flavonols, flavones, flavanones, 26 

isoflavones, anthocyanins, ellagitannins, stilbenes, and lignan. They occur in all fruits, vegetables, 27 

nuts, seeds, flowers, bark, beverages and processed food. As reviewed by Wollgast, & Anklam 28 

(2000a; 2000b) polyphenols are characterised by several beneficial effects including anti-29 

carcinogenic, anti-atherogenic, anti-inflammatory, immunomodulating and vasodilatory activities. 30 

They can exert their protective effects through several mechanisms such as plasma cholesterol 31 

reduction, modulation of lipid and lipoprotein metabolism, modulation of enzymes (phase I and 32 

phase II) and apoptosis as well as their activity against reactive oxygen species (Del Rio et al., 33 

2013).  34 

Cocoa (Theobroma cacao) is known as a rich source of dietary phenolic compounds. Cocoa-derived 35 

products such as dark chocolate are widely studied for their beneficial effects ascribed to 36 

polyphenols. There is good evidence to suggest that cocoa derived polyphenols may have beneficial 37 

effects on cardiovascular disease risk factors (Del Rio et al., 2013). Short-term dark chocolate 38 

intake has been shown to reduce blood pressure in hypertensive subjects, to improve endothelial 39 

function and insulin resistance as well as to inhibit platelet activation (Del Rio et al., 2013). As 40 

reported by Rusconi, & Conti (2010), cocoa beans are characterised by phenolic compounds of the 41 

flavan-3-ol group (catechin, epicatechin, gallocatechin and epigallocatechin) comprising oligomeric 42 
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procyanidins, anthocyanins (cyanidin glycosides) and flavonol glycosides such as quercetin-3-O-43 

rutinoside, quercetin-3-O-arabinoside, quercetin-3-O-glucoside, quercetin-3-O-glucuronide and 44 

quercetin (Sanbongi et al., 1998). So far, only few studies have investigated the phenolic 45 

composition of dark chocolate, focusing on flavan-3-ols as the major class in chocolate phenolic 46 

profile (Ortega et al., 2008; Wollgast, & Anklam, 2000a). This lack of information is also due to the 47 

great interest addressed to the study of phenolic profile of cocoa, intended as raw material in 48 

chocolate production, without considering the impact of processing temperature, microbial 49 

fermentation or oxidative phenomena on the phenolics structure during cocoa processing in 50 

chocolate production. The majority of published researches were aimed at analyzing the impact of 51 

processing on the polyphenol content and antioxidant properties of cocoa more than that of 52 

chocolate (Di Mattia, Sacchetti, Mastrocola, & Serafini, 2017; Dorota, Oracz, Sosnowska, & 53 

Nebesny, 2016). Concerning this, it was considered purposeful to investigate the comprehensive 54 

phenolic profile of commercial dark chocolate (70%), using an un-targeted mass spectrometry 55 

approach, in order to fill the gap of information about dark chocolate phenolic composition. Finally, 56 

the last task was to evaluate a possible polyphenolic enrichment of dark chocolate recipe, by adding 57 

widely studied polyphenol-rich ingredients (Sakura green tea leaves and turmeric powder) in order 58 

to obtain potential functional food, which can combine the above-mentioned chocolate properties 59 

and those of green tea leaves and turmeric powder (Del Rio et al., 2013; Kunnumakkara et al., 60 

2017).  61 

Therefore, the aim of the present study was to identify, quantify and compare phenolic compounds 62 

from three different types of dark chocolate using liquid chromatography-electrospray ionization 63 

mass spectrometry (LC-ESI-QTOF-MS/MS).   64 
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2. Materials and methods 65 

2.1. Materials  66 

Phenolic compounds standard, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox), 67 

2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,4,6-tri(2-pyridyl)-S-triazine 68 

(TPTZ), Folin-Ciocalteau phenol reagent were purchased from Sigma (Milan, Italy). Methanol and 69 

formic acid were obtained from Carlo Erba (Milan, Italy). Three different types of chocolate (dark 70 

70% cocoa (DC), dark 70% cocoa and 8% turmeric (TDC), dark 70% cocoa and 2% Sakura green 71 

tea (GTDC)) were bought from a local shop in Modena (Italy).  72 

 73 

2.2. Extraction of phenolic compounds 74 

Polyphenols were extracted as reported in Martini, Conte, & Tagliazucchi (2017) with minor 75 

modifications. Ten grams of chocolate were melted at 50°C for 10 minutes and homogenized with 76 

20 mL of water/methanol/formic acid solution (28:70:2, v/v/v). The mixtures were stirred and 77 

maintained at 37°C for 30 minutes. The homogenates were centrifuged (5000 rpm, 10 min, 4°C), 78 

after that the floating cocoa butter layers were removed and the supernatants collected. Pellets were 79 

then used for a second extraction step with acetone. Each pellet was added with 20 mL of acetone, 80 

kept in agitation at 37°C, for 30 minutes and then centrifuged for 20 minutes at 5000 rpm, 4°C. The 81 

supernatants were collected. Both methanol and acetone extractions were performed twice. The 82 

methanolic and acetone extracts were diluted 8 and 2 times, respectively, using MilliQ water and 83 

further used for the MS analysis. 84 

 85 

2.3. Identification and quantification of phenolic compounds by liquid chromatography mass 86 

spectrometry (LC-ESI-QTOF-MS/MS) 87 

Chocolate methanolic and acetone extracts were analysed on Agilent HPLC 1200 Infinity (Agilent 88 

Technologies, Santa Clara, CA) equipped with a C18 column (HxSil C18 Reversed phase, 250×4.6 89 
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mm, 5 μm particle size, Hamilton Company, Reno, Nevada, USA). The mobile phase consisted of 90 

(A) H2O/formic acid (99:1, v/v) and (B) acetonitrile/formic acid (99:1, v/v). The gradient started at 91 

4% B for 0.5 min then linearly ramped up to 30% B in 60 min. The mobile phase composition was 92 

raised up to 100% B in 1 min and maintained for 5 min in order to wash the column before 93 

returning to the initial condition. The flow rate was set at 1 mL/min. The chocolate extracts were 94 

injected in the amount of 20 µL. After passing to the column, the eluate was split, and 0.3 mL/min 95 

was direct to a 6520 accurate-mass Q-TOF mass spectrometer (Agilent Technologies, Santa Clara, 96 

CA). Identification of phenolic compounds in all samples was carried out using full scan, data-97 

dependent MS2 scanning from m/z 100 to 1700 and selected reaction monitoring. MS operating 98 

conditions (negative mode) were: a capillary temperature of 350°C, a dry gas flow rate of 10 L/min, 99 

a nebulizer pressure of 35 psi, potential of the ESI source, 3.5 kV.  100 

The quantification of single phenolic compounds was carried out by integrating the area under the 101 

peak from the extracted ion chromatograms (EICs). To obtain an accurate quantification the EICs 102 

were obtained by centering a narrow mass window (± 5 ppm) on the theoretical m/z value of each 103 

phenolic compound. For each standard compound, the calibration curve was built using seven 104 

concentration points in the range of 0.2-50 ng. Hydroxycinnamic acids, hydroxybenzoic acids, 105 

flavan-3-ols and ellagitannins were quantified as p-coumaric or ferulic acid, protocatechuic acid, (-106 

)-epicatechin and ellagic acid equivalents, respectively. Flavonols and flavones were quantified as 107 

quercetin-3-rutinoside equivalents. Finally, curcuminoids were quantified as curcumin equivalent. 108 

Quantitative results were expressed as mg of compounds per 100 g of chocolate. Calibration curve 109 

equations, linearity ranges and limit of quantification (LOQ) for the different standards are given in 110 

supplementary materials (Table S1). Folin-Ciocalteau assay was also performed to quantify the 111 

total phenolic compounds as reported by Singleton, Orthofer, & Lamuela-Raventós (1999). The 112 

results were expressed as mg of gallic acid per 100 g of chocolate. 113 

 114 
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2.4. Antioxidant activity assays 115 

The antioxidant properties of chocolate were evaluated performing two different assays. The ABTS 116 

(2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and ferric reducing power (FRAP) assays 117 

were performed according to the protocols described by Re et al. (1999) and Benzie, & Strain 118 

(1996), respectively. The ABTS scavenging capacity and FRAP value were expressed as mmol of 119 

trolox equivalent per 100 g of chocolate, by means of a calibration curve obtained with Trolox 50-120 

500 µmol/L, in the same assay conditions. The absorbances were read using a Jasco V-550 UV/Vis 121 

spectrophotometer (Orlando, FL, USA). 122 

 123 

2.5. Statistic 124 

 All data are presented as mean ± SD for three replicates for each prepared sample. One-way 125 

analysis of variance (one-way ANOVA) with Tukey’s post-hoc test was applied using Graph Pad 126 

prism 6.0 (GraphPad software, San Diego, CA, U.S.A.). The differences were considered 127 

significant with P<0.05.128 
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3. Result and discussion 129 

3.1. Non-targeted LC-MS profiling of phenolic compounds in different types of dark chocolate  130 

This study aimed to identify and quantify the phenolic profile and content of three different types of 131 

dark chocolate (dark chocolate 70% cocoa, dark chocolate 70% cocoa and 8% turmeric, dark 132 

chocolate 70% cocoa and 2% Sakura green tea). The phytochemical composition focused on the 133 

phenolic fraction, was investigated using a non-targeted procedure through LC-ESI-MS/MS 134 

experiments, representative base peak chromatograms (BPCs) are shown in Figure 1. Within the 37 135 

resolved peaks, 158 individual phenolic compounds were tentatively identified. Among them, 67 136 

were firstly identified in dark chocolate and of these 38 were identified for the first time in 137 

chocolate, cocoa beans and cocoa products. The structure of the newly identified phenolic 138 

compounds is depicted in Figure 2. Peaks annotated with letters from a to g in Figure 1 did not 139 

contain phenolic compounds and were not further investigated in this study. Two additional non-140 

phenolic compounds were recognised in peaks 28 and 30 and identified as 12-hydroxy jasmonic 141 

acid sulphate as already described in raw fermented cocoa beans by Patras, Milev, Vrancken, & 142 

Kuhnert (2014). The description of the non-phenolic compounds is reported in supplementary 143 

material (Table S2). Table 1, instead, shows mass spectrum data along with peak assignments and 144 

retention time for the identified phenolic compounds. A total of 16 compounds were identified by 145 

comparison with authentic standards. The remaining compounds were tentatively identified based 146 

on the interpretation of their fragmentation patterns obtained from MS2 experiments and by 147 

comparison with literature. The description of the MS fragmentation pattern of phenolic compounds 148 

already identified in cocoa beans or products will not be further described. All identified 149 

compounds were found in the methanol extract. The subsequent extraction of the pellet with 150 

acetone did not resulted in the recovery of new compounds. The acetone extract just contained low 151 

amount of the same compounds found in methanol extract (data not shown). 152 

 153 
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 154 

3.1.1. Flavan-3-ols and derivatives 155 

The high-resolution mass-spectrometry method used in this study enabled the characterization of 72 156 

flavan-3-ol derivatives. According to their chemical structures, this group may be divided into 157 

monomeric forms, A-type, and B-type oligomeric forms.  158 

Among the monomeric flavan-3-ols, four compounds had been already reported in dark chocolate 159 

(compounds 9.1, 13.2, 15.2 and 19.9) (Wollgast, 2004), seven compounds had been detected in 160 

cocoa beans or products but not in dark chocolate (compounds 13.1, 14.1, 15.1, 16.2 , 21.4, 22.6 161 

and 25.3) (D’Souza et al., 2017; Patras et al., 2014), whereas seven compounds were newly 162 

identified in both dark chocolate and cocoa beans or products. Gallocatechin-3-O-hexoside (m/z 163 

467.1270; compound 10.1) and epigallocatechin-3-O-hexoside (m/z 467.1270; compound 11.1) 164 

were tentatively identified since they gave MS2 major product ion at m/z 305, displaying typical 165 

hexosyl group loss (162 amu) (Jiang et al., 2013). Otherwise, (epi)catechin-C-pentoside isomer 166 

(compound 20.3) has been ascribed to the deprotonated ion [M−H]- ion at m/z 421.1223, yielding 167 

major MS2 fragment ions at m/z 361 and m/z 331, corresponding to the loss of 60 and 90 amu (i.e. 168 

C-pentosyl moiety) (Hvattum, & Ekeberg, 2003).  Compounds 23.6, 26.2 and 27.5, m/z 415.1111, 169 

were speculated to be isomers of (epi)catechin trihydroxybenzene, since the difference between the 170 

precursor ion (m/z 415) and its major product ion (m/z 289, i.e. (epi)catechin-aglycone) was 126 171 

amu, indicating the typical loss of a trihydroxybenzene moiety and the MS2 fragmentation spectra 172 

showed typical (epi)catechin fragmentation pattern (Table 1) with MS2 fragment ions at m/z 245, 173 

205 and 125. The presence of distinctive MS2 product ions at m/z 259 (compounds 23.6 and 26.2; 174 

deprotonated aglycone -30 amu, [Y0-2H-CO]-) and m/z 261 (compound 27.5; deprotonated 175 

aglycone-28 amu, [Y0-CO]-) were observed, distinguishing the two different O-binding sites, 3-O 176 

and 7-O, respectively (Hvattum, & Ekeberg, 2003).  Compounds 27.6 and 34.6 with negative 177 

charged [M-H]- ion at m/z 617.1413 gave product ions in the MS2 spectra at m/z 465 ([M-H]- -152 178 
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amu, detailing the loss of a galloyl group), 289 ((epi)catechin-aglycone and 465-176 amu; i.e. the 179 

loss of a glucuronic acid moiety), 435 (gallate group 3-O-binding site) and 261 (glucuronide 7-O-180 

binding site), and were tentatively identified as (epi)catechin-3-O-gallate-7-O-glucuronide 181 

(Shrestha et al., 2012). Compounds 18.5 and 28.1 had the same precursor ion [M-H]- at m/z 182 

613.1138 and their main MS2 fragment ions at m/z 289 ((epi)catechin aglycone), m/z 451 ([M-H]- -183 

162 amu, i.e. hexosyl moiety loss) and m/z 433 revealing that one sugar is attached to another and 184 

not directly to the aglycone describing two hexose sequential losses, as suggested by Hvattum, & 185 

Ekeberg (2003). Moreover, the presence of MS2 product ion at m/z 259 identified 3-O-glycosylation 186 

site. Regarding this, they were tentatively identified as two isomers of (epi)catechin-3-O-187 

dihexoside. Finally, three compounds (compounds 28.3, 29.5, 20.6) with deprotonated ions at m/z 188 

441.0892 and 457.0829 were only detected in dark chocolate with added Sakura green tea leaves 189 

(Table 1). They had been classified as catechin-3-O-gallate, epicatechin-3-O-gallate and 190 

epigallocatechin-3-O-gallate in comparison with authentic standards (Table 1). 191 

Procyanidins are mostly flavan-3,4-diols, found as dimers, trimers or oligomers with epicatechin as 192 

the main extension sub-unit. Table 1 shows six B-type procyanidin dimers (compounds 12.1, 17.1, 193 

18.3, 18.9, 23.1 and 29.3) and four derivative forms (compounds 18.10, 16.3, 18.2 and 18.7). 194 

Among these, three glycosidic dimers of procyanidin B-type were newly identified in dark 195 

chocolate but already reported in cocoa beans (D’Souza et al., 2017). As reported by Gu, House, 196 

Wu, Ou, & Prior (2006) chocolate and cocoa products were also characterized by polymeric 197 

procyanidins. Trimers (compounds 13.5, 18.1, 18.8, 20.7, 21.2, 22.5, 23.3 and 29.2), tetramers 198 

(compounds 16.1, 19.5, 19.7 and 22.8), pentamers (compounds 19.13, 23.2 and 24.2) and hexamers 199 

(compounds 23.8, 24.7 and 26.1) of B-type procyanidins were also found. Compound 12.2 (Table 200 

1) with precursor ion at m/z 593.1345 was only detected in Sakura green tea dark chocolate and 201 

tentatively identified as (epi)catechin-(epi)gallocatechin in accordance to Jiang et al. (2013). A-type 202 

linkage is a less common feature in procyanidins, however A-type procyanidins and their 203 
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glycosides have been already isolated from chocolate and cocoa (Hatano et al. 2002). Dimeric 204 

(compounds 21.3, 22.2, 23.7, 24.3, 30.2, 31.1, 31.5, 32.2 and 34.1), trimeric (compounds 20.8, 24.4 205 

and 24.9), tetrameric (compounds 19.6, 22.1, 22.7 and 24.1) and hexameric (compound 22.9) 206 

structures of A-type procyanidins were also found and listed in Table 1.  207 

 208 

3.1.2 Hydroxycinnamic acids 209 

A total of 25 hydroxycinnamic acids were tentatively identified. Among these, three compounds 210 

(compounds 2.1, 23.4 and 27.2) had never been identified in dark chocolate and cocoa beans or 211 

products, whereas compound 20.4 had been already detected in cocoa but never in dark chocolate 212 

(Stark, & Hofmann, 2005). According to Bauer, Harbaum-Piayda, & Schwarz (2012), the precursor 213 

ion at m/z 325.1004 can be tentatively classified as ferulic acid-4-O-pentoside, which MS2 yielded a 214 

major fragment ion at m/z 193, corresponding to the loss of pentose ([M-H] – 132 amu). Using the 215 

fragmentation pattern and literature comparison, di-hydro-caffeic acid (compound 2.1) and di-216 

hydro-coumaric acid (compound 23.4) were tentatively ascribed to deprotonated ions 181.0575 and 217 

165.0470, respectively (Bresciani et al., 2017). These two compounds can be originated from the 218 

microbial metabolism during cocoa beans fermentation. Finally, compounds 12.3, 14.3, 19.4 and 219 

20.2 (Table 1), with negative charged ion ([M-H]-) at m/z 337.1006, were only detected in 220 

chocolate with added Sakura green tea leaves (Table 1). Based on their fragmentation pattern, 221 

elution profile and in comparison with the scheme proposed by Clifford, Johnston, Knight, & 222 

Kuhnert (2003), they had been tentatively classified as coumaroyl-quinic acids (Martini et al., 223 

2017).   224 

 225 

3.1.3. Flavonols, flavones and other phenolics 226 
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A tentatively characterization of 22 flavonols, 6 flavones and 7 other phenolics has been enabled 227 

thanks to LC-ESI-MS/MS experiments. Among these, 15 compounds were identified for the first 228 

time in chocolate and cocoa beans or products. 229 

 230 

3.1.3.1. Flavonols and derivative forms 231 

According to MS and MS/MS data, the elution profile and literature (Andres-Lacueva et al., 2008; 232 

Counet, Callemien, & Collin 2006; Ortega et al., 2008; Sanbongi et al., 1998; Wollgast, 2004), four 233 

flavonols already reported in chocolate and cocoa beans or products were identified as quercetin at 234 

m/z 301.0423 (compound 35.1) and its pentoside at m/z 433.0832 (compound 33.2) and hexoside at 235 

m/z 463.0950 (compounds 30.1 and 31.3) derivatives. Concerning flavonols O-glycosides, 236 

compounds 32.4, 34.3 and 34.5 had been already detected in cocoa but never in dark chocolate 237 

(Ortega et al., 2008; Sánchez-Rabaneda et al., 2003) and were tentatively ascribed to kaempferol-3-238 

O-hexoside isomers and quercetin-3-O-rhamnoside. Two quercetin derivatives, quercetin-7-O-239 

rhamnoside-3-O-rutinoside and quercetin-7-O-hexoside-3-O-rutinoside isomers (m/z 755.2103 and 240 

771.2042, respectively; compounds 27.4, 25.2 and 26.3) were detected for the first time in dark 241 

chocolate and cocoa beans or products by tentatively identification, screening the fragmentation 242 

pattern (Table 1) (Guimarães et al., 2013; Lin, Chen, & Harnly, 2008). Compound 27.4 with a [M–243 

H]− deprotonated ion at m/z 755.2103 and MS2 fragment ions at m/z 609 (quercetin-3-O-rutinoside, 244 

by loss of rhamnose moiety, 146 amu), 301 (quercetin-aglycone, underlining the loss of a rutinose 245 

moiety, 308 amu) was tentatively identified as quercetin-7-O-rhamnoside-3-O-rutinoside (Lin et al., 246 

2008). Compound 25.2 and 26.3 with a [M−H]− precursor ion at m/z 771.2042, producing product 247 

ions at m/z 609 (loss of 162 mass units, a hexosyl-moiety), 463 (quercetin-3-O-glucoside, loss of 248 

308 amu, a rutinose moiety) and 301 (quercetin-aglycone), and according to Martini et al. (2017), 249 

were tentatively identified as quercetin-7-O-hexoside-3-O-rutinoside. As far as we know, also 250 

compounds 31.4, 18.6, 32.1, 28.2, 31.2, 22.3 and 22.4 have been described for the first time in dark 251 
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chocolate and cocoa in general. Compound 31.4 was speculated to be kaempferol-7-O-hexoside, 252 

since the difference between the precursor ion (m/z 447.1028) and its major fragment ion (m/z 285, 253 

i.e. kaempferol-aglycone) was 162 amu detailing the loss of a hexosyl-moiety; the presence of the 254 

MS2 ion at m/z 257 identified 7-O-glycosylation site (Hvattum, & Ekeberg, 2003). According to 255 

Mena et al. (2012), compound 18.6 (m/z 449.1182) was tentatively identified as dihydrokaempferol-256 

7-O-hexoside, borne out by the presence of MS2 major fragment ions at m/z 287 ([M-H]-– 162 amu; 257 

characteristic loss of O-hexoside) and m/z 259, confirming 7-O-glycosylation site (Hvattum, & 258 

Ekeberg, 2003). Compounds 32.1, 28.2 and 31.2 had deprotonated ions at m/z 739.2182 and m/z 259 

755.2103 and gave product ions in the MS2 spectra at m/z 593 and 285 characteristic of kaempferol-260 

3-O-rutinoside and kaempferol-aglycone (Sánchez-Rabaneda et al., 2003). The negative product ion 261 

at m/z 593 was formed by the loss of rhamnose, glucose or galactose moiety from the glycosides. 262 

The presence of the product ion in MS2 spectra at m/z 257 identified 7-O-glycosylation site 263 

(Hvattum, & Ekeberg, 2003). The loss of 308 amu is typical of a rutinose moiety, and therefore 264 

these compounds were tentatively identified as kaempferol-7-O-rhamnoside-3-O-rutinoside 265 

(compound 32.1) and kaempferol-7-O-hexoside-3-O-rutinoside isomers (compounds 28.2 and 266 

31.2). Finally, peaks 22.3, 22.4, 23.9, 24.5 and 24.8 were tentatively identified as myricetin-267 

derivative-compounds. All of the compounds gave MS2 product ion at m/z 317, corresponding to 268 

myricetin aglycone. Compounds 24.5 and 24.8, identified as myricetin-3-O-hexosides, had already 269 

been detected in cocoa but never in dark chocolate (Lin et al., 2008). Two myricetin-derivatives 270 

(compounds 22.3 and 22.4) have been described for the first time in dark chocolate and cocoa beans 271 

or products in this study. The MS2 spectra of the compound 22.3 (m/z 631.1039) was characterized 272 

by fragment ions at m/z 479 and 317, depicting losses of 152 and 162 amu (i.e. galloyl and hexosyl 273 

moiety). This behaviour is indicative of myricetin-3-O-(O-galloyl)-hexoside (Saldanha, Vilegas, & 274 

Dokkedal, 2013). Compound 22.4 showed a deprotonated ion at m/z 787.2050, which fragmented in 275 

the MS2 experiments giving product ions at m/z 625 and 317, suggesting the presence of a myricetin 276 
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aglycone, through the loss of 308 amu (rutinose moiety) and the loss of 162 amu (hexose group). 277 

Concerning this, the compound was therefore tentatively identified as myricetin-7-O-hexoside-3-O-278 

rutinoside (Lin et al., 2008). Finally, compound 23.9 (Table 1), with negative precursor ion ([M-H]-279 

) at m/z 625.1455, was only detected in chocolate with added Sakura green tea leaves (Table 1). 280 

Basing on its fragmentation pattern (Table 1) and according to Lin et al. (2008) it had been 281 

tentatively classified as myricetin-3-O-rutinoside.  282 

 283 

3.1.3.2. Flavones 284 

Six glycosylated apigenins were detected in dark chocolate (Table 1); among these, five apigenins 285 

(compounds 19.8, 19.12, 22.10, 25.1 and 27.3) were newly detected in this study. Compound 27.3 286 

was tentatively associated to apigenin-C-hexoside-2′′-O-rhamnoside isomer, m/z 577.1617, whose 287 

MS2 spectrum gave main fragment ions at m/z 457, 413 and 293, arising from the loss of 120 amu 288 

(suggesting 1-2 linking between rhamnosyl-glucosyl group), 164 amu (rhamnosyl group), and 284 289 

amu (164 plus 120 amu, i.e. rhamnose-glucosyl residue) (Dou, Lee, Tzen, & Lee, 2007; Hvattum, & 290 

Ekeberg, 2003; Waridel et al., 2001). The next two isomers (compounds 19.8 and 19.12) at m/z 291 

593.1591 were tentatively identified as C-diglycosylated apigenins; according to Jiang et al. (2013) 292 

they were pinpointed as apigenin-6,8-di-C-glucoside isomers. Compound 25.1 generated the same 293 

deprotonated ion at m/z 593.1591 and MS2 fragment ions at m/z 473, 413 and 293 corresponding to 294 

the loss of 120 amu (suggesting 1-2 linking between two glucosyl groups), 180 amu (glucosyl 295 

moiety) and 300 amu (a glucose-glucosyl residue). Thus, compound 25.1 was speculated to be 296 

apigenin-C-hexoside-2′′-O-hexoside isomer (Hvattum, & Ekeberg, 2003; Dou et al., 2007). Finally, 297 

following the scheme proposed by Lin et al. (2008) for the negative precursor ion [M-H]- m/z 298 

563.1462 and considering the losses of 90 amu (MS2 fragment at m/z 473) and 120 amu (MS2 299 

fragment at m/z 443) proving the existence of C-pentosyl- and C-hexosyl groups, compound 22.10 300 

was tentatively identified as apigenin-C-hexoside-C-pentoside isomer. 301 
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 302 

3.1.3.3. Other phenolics 303 

Compounds 29.1 and 34.2, showing the same negative precursor ion [M-H]- at m/z 451.1103, were 304 

tentatively ascribed to cinchonain isomers, already detected in cocoa powder (Cádiz-Gurrea et al., 305 

2014) but never before in dark chocolate. Four glycosidic forms of naringenin (compound 19.3), 306 

eriodictyol (compounds 18.4 and 19.2) and phloretin (compound 32.3) were tentatively identified 307 

for the first time in dark chocolate and cocoa products and listed in Table 1. Compound 19.3 at m/z 308 

593.1591, was tentatively identified as naringeni-C-hexoside-7-O-hexoside isomer, confirmed by 309 

the characteristic loss of 120 amu (C-glycosylation site) and 162 amu (O-glycosylation site) 310 

from m/z 473 and 413, respectively, which pinpointed the presence of two hexose units attached to 311 

the flavonoid aglycone in different positions (Hvattum, & Ekeberg, 2003; Waridel et al., 2001). The 312 

7-O-glycosylation site was proved by the presence of MS2 fragment ion at m/z 283. Compound 18.4 313 

displayed deprotonated ion at m/z of 449.1169 and showed MS2 major fragment ions at m/z 287 314 

([M−H]- -162; i.e. hexose moiety loss) and m/z 259, confirming 7-O-glycosylation site presence. 315 

Based on these data, compound 18.4 was tentatively identified as eriodictyol-7-O-hexoside (De 316 

Beer at al. 2012). Compound 19.2, characterized by the deprotonated ion at m/z 611.1662, gave 317 

MS2 major fragment ions at m/z 449, 329 (corresponding to the loss of 120 amu (C-hexoside) and 318 

162 amu (O-hexoside), respectively), 287 (eriodyctiol-aglycone) and 259 (7-O-glycosylation site). 319 

Therefore, compound 19.2 was speculated to be eriodictiol-C-hexoside-7-O-hexoside isomer (De 320 

Beer at al. 2012; Hvattum, & Ekeberg, 2003). The negative ionization mode of compound 32.3 321 

exhibited a [M-H]- precursor ion at m/z 435.1376, with MS2 product ions at m/z 345 and 315, losing 322 

90 and 120 amu, respectively. This fragmentation pattern has been previously described for 323 

phloretin-C-hexoside isomer (Kazuno, Yanagida, Shindo, & Murayama, 2005).  324 

 325 

3.1.4. Ellagitannins 326 
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Ellagitannins are known as polymeric structures including different numbers of galloyl and 327 

hexahydroxydiphenoyl (HHDP) units esterified with glucose. Three ellagitannins were detected for 328 

the first time in cocoa. They were distinguished by their characteristic fragment ion spectra yielding 329 

sequential losses of galloyl (152 amu), gallate (170 amu), and HHDP residues (301 amu). 330 

Following the ellagitannins fragmentation scheme pattern proposed by Mena et al. (2012), 331 

compounds 16.5 (m/z 633.0796) and 37.1 (m/z 301.0054) can be tentatively identified as HHDP-332 

galloyl-hexose and ellagic acid, respectively. The ellagic acid was also confirmed by comparison 333 

with the retention time of the standard and the MS2 spectrum. Compound 27.1, characterized by the 334 

deprotonated ion at m/z 615.0723 and MS2 fragment ions at m/z 463, due to the loss of a galloyl 335 

group from ([M–H]--152) and at m/z 301, due to the loss of one hexose moiety (162 amu), was 336 

tentatively identified as ellagic acid-galloyl-hexoside (Teixeira, Bertoldi, Lajolo, Mariko, & 337 

Hassimotto, 2015) 338 

 339 

3.1.5. Hydroxybenzoic acids 340 

A total of twenty hydroxybenzoic acids and derivatives were detected in this study. Three of these 341 

(compounds 8.4, 9.2 and 9.3) were tentatively identified for the first time in dark chocolate and 342 

cocoa beans and products. Whereas 11 compounds (compounds 2.2, 5.1, 7.1, 8.1, 8.3, 9.4, 11.2, 343 

13.4, 16.6, 16.7, 19.11) had been already identified in cocoa but never in dark chocolate (Ortega et 344 

al., 2008). Compound 8.4 (m/z 315.0793) yielded MS2 fragment ions at m/z 153 and 109, displaying 345 

the hexose moiety loss and the presence of protocatechuic-aglycone. It was tentatively identified as 346 

protocatechuic acid-4-O-hexoside (Martini et al., 2017). Compounds 9.2 and 9.3, m/z 359.1073, 347 

fragmented in the MS2 experiments giving major product ions at m/z 197, 182 and 153, suggesting 348 

the presence of a syringic acid residue. The loss of 162 amu, proved by MS2 fragment ion at m/z 349 

197, prompt us to tentatively identify this compound as syringic acid-4-O-hexoside. 350 

 351 
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3.1.6. Curcuminoids 352 

From the extracts of turmeric dark chocolate sample, we detected the [M–H]- precursor ions at m/z 353 

307.1043, 337.1164, and 367.1257 (compounds 36.1, 36.2 and 36.3).  As reported by Jiang, 354 

Somogyi, Jacobsen, Timmermann, & Gang (2006), product ions at m/z 187 or 217 were the typical 355 

fragment ions in the MS2 spectra of deprotonated [M–H]- curcuminoids. In comparison to 356 

fragmentation pattern proposed, compounds 36.1, 36.2 and 36.3 were tentatively identified as 357 

bisdemethoxycurcumin, demethoxycurcumin and curcumin, respectively (Table 1). 358 

 359 

3.2. Phenolic compounds in chocolate  360 

Table 2 provides information about the amount of the 158 tentatively identified phenolic 361 

compounds in the different types of chocolate. In order to quantify the amount of total phenolic 362 

compounds in chocolates, seven calibration curves were prepared with the available authentic 363 

standards: epicatechin, coumaric and ferulic acids, quercetin-3-O-rutinoside, ellagic acid, 364 

protocatechuic acid and curcumin. In all cases, the linearity was better than 0.99. The other 365 

compounds, for which no commercial standards were available, were tentatively quantified using 366 

the standards with similar structural characteristics and considering the functional groups that may 367 

affect the ionisation properties. As shown in Figure 3, even if flavan-3-ols were the most 368 

representative class in each type of chocolate, the phenolic profile is thoroughly influenced by the 369 

addition of Sakura green tea or turmeric powder.  370 

 371 

3.2.1. Dark chocolate (DC) phenolic profile 372 

As determined by LC-MS/MS experiments, the total phenolic concentration in DC was 787.63 ± 373 

10.90 mg/100 g of chocolate, representing about 30.0% of total phenolic compounds determined 374 

with the Folin-Ciocalteau assay (2624.15 ± 112.36 mg/100 g of chocolate). The ABTS radical 375 

scavenging and Fe3+-reducing ability of DC (Figure 4) were tested (11.00 ± 0.26 and 6.29 ± 0.13 376 
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mmol trolox equivalents/100 g of chocolate, respectively) resulting in line with the findings 377 

proposed by Batista et al. (2016). As reported by Wollgast & Anklam (2000a), catechins and 378 

procyanidins represent more than 90% of phenolic profile of cocoa beans and cocoa-products. We 379 

found out that total flavan-3-ols amount in DC was 503.76 ± 8.98 mg/100 g of chocolate 380 

representing the 64.0% of total polyphenols identified by MS experiments. Considering monomeric 381 

structures, epicatechin and catechin were the major represented flavan-3-ols, whose estimated 382 

concentrations were higher than those reported so far (Gu et al., 2006). Epicatechin alone 383 

represented the 40.4 % of total flavan-3-ols and the 25.8% of total phenolic identified by MS 384 

experiments, resulting the most present compounds in DC. Large amounts of oligomeric structures 385 

were also found, displaying a total concentration value of 166.28± 4.13 mg/100 g of chocolate and 386 

reaching approximately 33.0% of flavan-3-ols class.  Epicatechin has been causally linked to the 387 

reported cardiovascular effects observed after the consumption of cocoa (Schroeter et al., 2006). 388 

The ingestion of flavanol-rich cocoa in healthy adult males was associated with acute elevations in 389 

levels of circulating nitric oxide, an enhanced flow-mediated dilation response of conduit arteries, 390 

and an augmented microcirculation in humans and the results were repeatable with pure epicatechin 391 

intake (70 mg/day; equivalent to 35-40 g of DC). Indeed, elderly men with a median epicatechin 392 

intake of 22 mg/day (equivalent to 10-15 g of DC) had a 38% lower risk of cardiovascular disease 393 

mortality than that of subjects with a median intake of 8 mg/day (Dower, Geleijnse, 394 

Hollman, Soedamah-Muthu, & Kromhout, 2016).  395 

The hydroxycinnamic acids made up about 20.6% of DC phenolic profile, among these ferulic acid, 396 

di-hydroxycinnamic aspartate and coumaroyl aspartate were the main hydroxycinnamic acids 397 

detected in DC. The largest contribution was given by ferulic acid, with a concentration of 61.23 ± 398 

3.74 mg/100 g of chocolate. Among the N-phenylpropenoyl-L-amino acids, clovamide or caffeoyl-399 

tyrosine, described for the first time in cocoa by Sanbongi et al. (1998), was the main representative 400 

with total concentration of its two isomers of 9.54 ± 0.54 mg/100 g of chocolate. Previous studies 401 
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found that clovamide exhibited antiradical properties (Locatelli et al., 2013; Sanbongi et al., 1998), 402 

neuroprotective effects (Fallarini et al., 2009) and anti-inflammatory properties (Zeng et al., 2011). 403 

Ellagitannins, which were identified for the first time in dark chocolate and cocoa in this study, 404 

made up about 10% of DC phenolic profile. The higher amount was ascribed to ellagic acid (56.16 405 

± 3.58 mg/100 g of chocolate), followed by HHDP-galloyl-hexoside (15.79 ± 1.20 mg/100 g of 406 

chocolate). Ellagic acid and ellagitannins can be metabolized by human microbiota in urolithins, 407 

which are responsible for the health effects attributed to the consumption of ellagic acid and 408 

ellagitannins-rich food (Tomás-Barberán et al., 2017). 409 

 410 

3.2.2. Sakura green tea dark chocolate (GTDC) phenolic profile 411 

The content of total polyphenolic compounds in GTDC displayed a significant increase (P value 412 

<0.001) in respect to that of DC, recording a total concentration value of 1035.45 ± 14.81 mg/100 g 413 

of chocolate (Figure 3). This value represented the 30.3% of total phenolic compounds determined 414 

with the Folin-Ciocalteau assay (3417.81 ± 229.45 mg/100 g of chocolate). The increased phenolic 415 

concentration resulted in increased antioxidant properties in comparison with DC, which gave rise 416 

to 40% and 144% enhancements of GTDC ABTS radical scavenging and ferric-reducing power, 417 

respectively (Figure 4). The major phenolics in GTDC were still flavan-3-ols accounting for about 418 

70.1% of total phenolic compounds, displaying a concentration value of 726.03 ± 14.53 mg/100 g 419 

of chocolate, significantly different from DC flavan-3-ols content (503.76 ± 8.98 mg/100 g of 420 

chocolate, P value <0.001). This flavan-3-ols increase was related to the Sakura green tea leaves 421 

enrichment of dark chocolate formulation and was clearly reflected in the significant increase in 422 

epicatechin (303.69 ± 11.65 mg/100 g of chocolate, P value <0.001, detailing about 30% of GTDC 423 

phenolic profile), epigallocatechin (29.76 ± 1.74 mg/100 g of chocolate, P value <0.001) and total 424 

procyanidins (230.76 ± 15.73 mg/100 g of chocolate, P value <0.001). The Sakura green tea 425 

contribution was also confirmed by the presence of typical green tea gallate flavan-3-ols, especially 426 
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epigallocatechin gallate, showing a remarkable concentration value of 33.54 ± 2.16 mg/100 g of 427 

chocolate. The hydroxycinnamic acids were still the second most representative class of phenolic 428 

profile in GTDC, explaining about 15.3% of GTDC phenolic profile (Figure 2). Ellagitannins 429 

showed a significant content increasing in GTDC respect to DC (89.12 ± 1.50 mg/100 g of 430 

chocolate, P value <0.001) with an incidence rate of 8.6%. These results may confirm a possible 431 

polyphenols enrichment of dark chocolate profile which can lead to a potential combination of the 432 

positive health effects and properties derived from both chocolate and green tea. LC-MS 433 

experiments showed that GTDC contained 49% more epicatechin and 43% more flavan-3-ols than 434 

DC. This can result in a lower intake to achieve the same biological effects. This seems a promising 435 

way to maximise the potential beneficial effect of epicatechin consumption, contemporaneously 436 

reducing the amount of sugars and calories introduced with chocolate. 437 

 438 

3.2.3. Turmeric dark chocolate (TDC) phenolic profile 439 

The TDC phenolic amount showed a significant increase (P value <0.001) respect to that of DC 440 

which recorded a total concentration value of 1094.03 ± 10.15 mg/100 g of chocolate (Figure 3), 441 

representing about 36% of total phenolic compounds assayed with the Folin-Ciocalteau method 442 

(3043.81 ± 294.64 mg/100 g of chocolate). Despite that, single phenolic classes did not show a 443 

significant and remarkable increase respect to those of DC. This higher concentration can be 444 

ascribed to turmeric powder contribution as well as the related curcuminoids, which accounted for 445 

about 25% of TDC total phenolic profile, displaying a concentration value of 272.73 ± 2.58 mg/100 446 

g of chocolate (Figure 3). ABTS radical scavenging ability and ferric-reducing power were tested, 447 

resulting in 12.30 ± 0.27 and 10.57 ± 0.2 mmol trolox equivalents/100 g of chocolate, respectively 448 

(Figure 4). Bisdemethoxycurcumin was the most concentrated curcuminoid (115.55 ± 2.16 mg/100 449 

g of chocolate), followed by demethoxycurcumin (82.64 ± 1.33 mg/100 g of chocolate) which are 450 

considered to be curcumin natural analogues and were reported to have a similar biological activity 451 
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to curcumin itself (Kocaadam, & Şanlier, 2017). Curcumin was found at the lowest concentration of 452 

74.55 ± 0.47 mg/100 g of chocolate. Normally, curcumin is present at a concentration higher or 453 

similar to the demethoxylated analogue (Jayaprakasha, Rhao, & Sakariah, 2002). Since the phenolic 454 

composition of spices (and of vegetable food in general) is greatly variable depending on the 455 

cultivar and agro-climatic factors (such as growing, harvesting time, seasonal variability) as well as 456 

technological processes, it is plausible that different turmeric powder preparation had different 457 

phenolic composition. Moreover, in the case of dark chocolate enriched with turmeric powder a 458 

possible food matrix effect should be considered since some macromolecules such as proteins and 459 

polysaccharide may interact with curcuminoids reducing their extractability. It is important also to 460 

note that only free and extractable phenolic compounds were considered and analysed in this study. 461 

Curcuminoids are widely known for their healthy properties such as anti-inflammatory, antioxidant, 462 

antimicrobial, anticoagulant, anticancer and antimutagenic properties (Kocaadam, & Şanlier, 2017; 463 

Kunnumakkara et al., 2017). To date, over 100 different clinical trials have been successfully 464 

carried out, showing their safety, tolerability and effectiveness against several chronic diseases in 465 

humans such as various types of cancers, diabetes, obesity, cardiovascular and neurological diseases 466 

(Kunnumakkara et al., 2017). Finally, the synergistic behaviour displayed by curcuminoids with 467 

other nutraceuticals such as catechins and quercetin, resulting an increased effect against oxidative 468 

stress in normal healthy adults, was demonstrated (Dominiak, McKinney, Heilbrun, & Sarkar, 469 

2010). Therefore, an enhanced and strengthened health effect because of the union of polyphenol-470 

rich sources, combining the positive effects of dark chocolate phenolics and turmeric curcuminoids, 471 

can be speculated. 472 

 473 

4. Conclusions 474 

Literature provides a lot of information about cocoa polyphenols and properties, but there is still a 475 

big gap about the phenolic composition of chocolate. Few studies investigated the phenolic 476 
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composition of dark chocolate, focusing on flavan-3-ols as the major class in chocolate phenolic 477 

profile. The purpose of this study was to overcome this lack of information, providing an accurate 478 

and comprehensive characterisation of the phenolic profile of dark chocolate (70%). The 479 

quantitative metabolomics approach used in this study allowed a tentative identification of 158 480 

individual phenolic compounds in dark chocolate. Among the detected compounds, 67 have been 481 

reported for the first time in dark chocolate, 38 of whom were identified for the first time in 482 

chocolate, cocoa beans and cocoa products. This characterization extends the current knowledge on 483 

the phytochemistry of dark chocolate and is, to our knowledge, the broadest profiling of its phenolic 484 

compounds to date.  485 

Results reported in this study also showed that the addition of Sakura green tea leaves or turmeric 486 

powder influenced and modified the phenolic profile of dark chocolate, resulting in a phenolic 487 

concentration increase. Mass spectrometry confirmed that this increase was strictly connected to the 488 

food matrix, showing typical compounds belonging to green tea and turmeric. In this way, this 489 

functional chocolate might maximize the potential beneficial effect of polyphenols-rich food 490 

consumption and, at the same time, reducing the amount of sugars and calories introduced with 491 

chocolate, resulting in a lower intake to achieve the same biological effects. This work may revise 492 

the concept of “optimal” dose of chocolate in the context of a balanced diet, which optimizes the 493 

functional properties by avoiding potential side effects, such as high-calorie intake. 494 
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Figure captions 

Figure 1. Representative negative ion mode base peak chromatograms (BPCs) of dark 

chocolate (A) green tea dark chocolate (B) and turmeric dark chocolate (C). The shown BPCs 

are representative of three independent experiments and represent the profile of the methanol 

extracts. 

Figure 2. Structures of newly identified dark chocolate phenolic compounds. Examples of 

some newly identified phenolic structures belonging to flavan-3-ols (A), flavonols (B), 

hydroxybenzoic and hydroxycinnamic acids (C), flavones (D), flavanones (E) and dihydrochalcones 

(F). Gall: galloyl; gluc: glucuronide; hex: hexoside; pent: pentoside; rham: rhamnoside; rut: 

rutinoside; trihydroxy: trihydroxybenzene. 

Figure 3. Occurrence of phenolic classes in dark chocolates. Global percentage of flavan-3-ols, 

flavonols, hydroxybenzoic and hydroxycinnamic acids, ellagitannins, flavones and other phenolics 

in dark chocolate and dark chocolate enriched with Sakura green tea leaves or turmeric powder. In 

brackets are reported the total amounts of phenolic compounds quantified with mass spectrometry. 

70% means the total percentage of cocoa in the dark chocolates. 

Figure 4. Antioxidant properties of dark chocolates. Antioxidant capacity (expressed as mmol 

trolox/100g of chocolate), measured by ABTS (A) and FRAP (B) assays. DC: dark chocolate; 

GTDC: dark chocolate enriched with Sakura green tea leaves; TDC: dark chocolate enriched with 

turmeric powder. Each sample was run in triplicate and results are reported as mean values ± SD. 

Values in the same graph with different lowercase letter are significantly different (P < 0.05). 

 











  Table 1. Mass spectral data of phenolic compounds identified in different dark chocolates.  
 

Peak  Compound Formula 
Calc. 
(m/z) 

Exp. 
(m/z) 

Error  
(ppm) 

MS2 ion fragments (m/z) 
(relative abundance in %) 

    1 1.1 Coumaric acids C9H8O3 163.0473 163.0466 4.54 119.0492 (100), 93.0435 (5) 

2 2.1 Di-hydro-caffeic acid C9H10O4 181.0579 181.0575 2.25 137.0234 (100) 

 2.2 Hydroxybenzoic acid isomer C7H6O3 137.0317 137.0316 0.09 93.0315 (100) 

3 3.1 Gallic acida,s C7H6O5 169.0215 169.0221 -3.39 125.0287 (100) 

 3.2 Galloyl glucose isomera C13H16O10 331.0744 331.0756 -3.77 169.0194 (100), 125.0252 (29) 

4 4.1 Galloylquinic acid isomera C14H16O10 343.0744 343.0730 3.91 191.0731 (100), 169.0275 (5) 

5 5.1 Vanillic acid-4-O-hexoside 
isomer 

C14H18O9 329.0951 329.0967 -4.90 167.0403 (100) 

6 6.1 Galloylquinic acid isomera C14H16O10 343.0744 343.0730 3.91 191.0676 (100), 169.0213 (5) 

7 7.1 Hydroxybenzoic acid isomer C7H6O3 137.0317 137.0316 0.09 93.0390 (100) 

8 8.1 Vanillic acid-4-O-hexoside 
isomer 

C14H18O9 329.0951 329.0967 -4.90 167.0341 (100), 123.0494 (25) 

 8.2 Vanillic acid derivative C15H14N2O9 365.0699 365.0690 2.54 167.0319 (100), 123.0463 (14) 

 8.3 Vanillic acid isomer C8H8O4 167.0423 167.0417 3.33 151.0067 (100), 123.0479 (24) 

 8.4 Protocatechuic acid-4-O-

hexoside 
C13H16O9 315.0794 315.0793 0.42 153.0183, 109.0270 

 8.5 Di-hydroxycinnamic acid 
isomer 

C9H8O4 179.0423 179.0431 -4.67 163.0253 (5), 135.0475 (100) 

 8.6 Protocatechuic acids C7H6O4 153.0266 153.0267 -0.09 109.0313 (100) 

9 9.1 Gallocatechins C15H14O7 305.0740 305.0733 2.13 261.0800 (14), 221.0471 (28), 
219.0695 (19), 179.0373 (35), 

125.0225 (100) 

 9.2 Syringic acid-4-O-hexoside 
isomer 

C15H20O10 359.1056 359.1073 -4.59 197.0574 (100), 182.0310 (28), 
153.0619 (51) 

 9.3 Syringic acid-4-O-hexoside 
isomer 

C15H20O10 359.1056 359.1073 -4.59 197.0463 (100), 182.0212 (18), 
153.0541 (22) 

 9.4 Syringic acid C9H10O5 197.0528 197.0532 -0.38 182.0320 (100), 167.0073 (30), 
153.0246 (13) 

10 10.1 Gallocatechin-3-O-hexoside C21H24O12 467.1268 467.1270 -0.48 357.0558 (23), 305.0858 (100), 
287.0436 (71), 125.0215 (79) 

 10.2 Di-hydroxycinnamic 
aspartate isomer 

C13H13NO7 294.0692 294.0692 0.00 276.0682 (13), 250.0946 (3), 
232.0868 (5), 206.0683 (3), 

179.0190 (16), 132.0395 (100) 

 10.3 Di-hydroxycinnamic acid 
isomer 

C9H8O4 179.0423 179.0431 -4.67 163.0348 (10), 135.0426 (100) 

11 11.1 Epigallocatechin-3-O-

hexoside 
C21H24O12 467.1268 467.1270 -0.48 357.0588 (19), 305.0885 (100), 

287.0722 (75), 125.0232 (83) 

 11.2 Hydroxybenzoic acid isomer C7H6O3 137.0317 137.0316 0.09 93.0351 (100) 

12 12.1 Procyanidin dimer B type 
isomer 

C30H26O12 577.1424 577.1411 2.29 425.0822 (11), 407.0788 (75), 
289.0717 (100), 245.0784 (17), 

205.0476 (6), 125.0279 (66) 

 12.2 (Epi)catechin-
(Epi)gallocatechina 

C30H26O13 593.1373 593.1345 4.78 425.1001 (33), 407.0958 (21), 
305.0739 (74), 289.0857 (100), 

205.0563 (26), 125.0238 (80) 

 12.3 3-O-Coumaroylquinic acid 
cisa 

C16H18O8 337.1002 337.1006 -1.28 191.0642 (40), 163.0460 (100), 
119.0504 (27)  

13 13.1 (Epi)catechin-3-O-hexoside 
isomer 

C21H24O11 451.1319 451.1320 -0.31 289.0797 (100), 259.1312 (3), 
245.0956 (23), 205.0748 (11), 

179.0377 (5) 

 13.2 Epigallocatechins C15H14O7 305.0740 305.0733 2.13 261.0883 (19), 221.0467 (19), 
219.0688 (28), 179.0355 (42), 

125.0219 (100) 

 13.3 Caffeic acids C9H8O4 179.0423 179.0431 -4.67 163.0244 (8), 135.0398 (100) 

 13.4 Hydroxybenzoic acid isomer C7H6O3 137.0317 137.0316 0.09 93.0328 (100) 



 13.5 Procyanidin trimer B type 
isomer 

C45H38O18 865.2058 865.2044 1.63 577.1764 (5), 425.0757 (10), 
407.0839 (42), 289.0634 (64), 
287.0617 (38), 245.0573 (14), 

125.0264 (100) 

14 14.1 (Epi)catechin-C-hexoside 
isomer 

C21H24O11 451.1319 451.1320 -0.31 361.0988 (25), 331.0879 (100) 

 14.2 Di-hydroxycinnamic 
aspartate isomer 

C13H13NO7 294.0692 294.0692 0.00 276.0573 (2), 250.0744 (2), 
232.0617 (1), 206.0771 (2), 

179.0318 (7), 132.0256 (100) 

 14.3 3-O-Coumaroylquinic acid 
transa 

C16H18O8 337.1002 337.1006 -1.28 191.0453 (4), 163.0307 (100), 
119.0409 (15) 

15 15.1 (Epi)catechin-7-O-hexoside C21H24O11 451.1319 451.1320 -0.31 289.0942 (100), 261.1150 (3), 
245.1104 (42), 205.0561 (9), 

179.0365 (3) 

 15.2 Catechins C15H14O6 289.0790 289.0791 -0.21 245.0878 (100), 205.0554 (38), 
179.0372 (31), 125.0247 (40) 

16 16.1 Procyanidin tetramer B type 
isomer 

C60H50O24 576.1346 576.1342 (2-) 0.69 425.1088 (5), 407.0948 (15), 
289.0840 (100), 287.0653 (6), 
245.1158 (43), 125.0282 (77) 

 16.2 (Epi)catechin-C-hexoside 
isomer 

C21H24O11 451.1319 451.1320 -0.31 361.0843 (16), 331.0787 (100) 

 16.3 Procyanidin dimer B type 
hexoside isomer 

C36H36O17 739.1952 739.1915 5.00 449.1175 (11), 407.0840 (8), 
289.0595 (100), 245.0629 (16), 

125.0197 (42) 

 16.4 Vanillin C8H8O3 151.0473 151.0481 -4.97 136.0181 (28), 123.0487 (100), 
121.0315 (20), 109.0296 (24), 

108.0201 (97) 

 16.5 HHDP-galloyl-hexoside C27H22O18 633.0806 633.0796 1.60 463.0687 (18), 301.0102 (100), 
275.0315 (11), 257.0196 (4), 

229.0331 (4) 

 16.6 Vanillic acid isomer C8H8O4 167.0423 167.0417 3.33 151.0050 (30), 123.0471 (100) 

 16.7 Vanillic acid-4-O-hexoside 
isomer 

C14H18O9 329.0951 329.0967 -4.90 167.0473 (100), 123.0524 (6) 

 16.8 5-O-Caffeoylquinic acid C16H18O9 353.0951 353.0952 -0.12 191.0133 (100), 173.0049 (36) 

17 17.1 Procyanidin dimer B type 
isomer 

C30H26O12 577.1424 577.1411 2.29 425.0867 (30), 407.0750 (61), 
289.0641 (100), 245.0792 (20), 

205.0497 (25), 125.0158 (72) 

 17.2 3-O-Caffeoylquinic acids C16H18O9 353.0951 353.0952 -0.12 191.0667 (38), 179.0433 (100), 
173.0504 (43), 135.0459 (8) 

18 18.1 Procyanidin trimer B type 
isomer 

C45H38O18 865.2058 865.2044 1.63 577.1838 (8), 425.1135 (18), 
407.1065 (48), 289.0844 (69), 
287.0773 (73), 245.0947 (9), 

125.0187 (100) 

 18.2 Procyanidin dimer B type 
hexoside isomer 

C36H36O17 739.1952 739.1915 5.00 449.1328 (86), 407.1113 (11), 
289.0963 (100), 287.0829 (54), 

245.0728 (10), 125.0276 (6) 

 18.3 Procyanidin dimer B type 
isomer 

C30H26O12 577.1424 577.1411 2.29 425.0945 (21), 407.0855 (72), 
289.0800 (86), 245.0870 (11), 
205.0547 (5), 125.0239 (100) 

 18.4 Eriodictyol-7-O-hexoside C21H22O11 449.1162 449.1169 -1.56 287.0722 (100), 269.0834 (69), 
235.0379 (11), 167.0364 (10), 

125.0268 (9) 

 18.5 (Epi)catechin-3-O-

dihexoside isomer 
C25H26O18 613.1119 613.1138 -3.07 451.1279 (10), 433.0719 (19), 

407.0998 (23), 289.0900 (100), 
259.0581 (4), 245.0959 (6), 

125.0317 (30) 

 18.6 Dihydro-kaempferol-7-O-

hexoside 
C21H22O11 449.1162 449.1182 -4.42 287.0816 (43), 269.0714 (100), 

259.0884 (57), 135.0554 (25) 

 18.7 Procyanidin dimer B type 
hexoside isomer 

C36H36O17 739.1952 739.1915 5.00 449.1097 (37), 289.0608 (48), 
287.0725 (55), 245.0713 (25), 

125.0129 (100) 

 18.8 Procyanidin trimer B type C45H38O18 865.2058 865.2044 1.63 577.1811 (8), 425.1213 (16), 



isomer 407.1120 (34), 289.0958 (50), 
287.0598 (26), 245.0738 (16), 

125.0292 (100) 

 18.9 Procyanidin dimer B type 
isomer 

C30H26O12 577.1424 577.1411 2.29 425.1060 (8), 407.0974 (55), 
289.0850 (100), 245.0920 (10), 

205.0600 (3), 125.0251 (45) 

 18.10 Procyanidin dimer B type 
derivative  

C50H35NO13 856.2108 856.2104 0.51 577.1265 (10), 425.0996 (45), 
407.0922 (40), 289.0847 (79), 

278.0775 (100), 125.0281 (16) 

 18.11 Coumaroyl aspartate C13H13NO6 278.0743 278.0730 4.61 260.2382 (2), 234.0819 (14), 
216.0670 (11), 190.0861 (10), 
172.0810 (2), 163.0414 (56), 

119.0481 (100) 

19 19.1 Di-hydroxycinnamic acid 
isomer 

C9H8O4 179.0423 179.0431 -4.67 163.0337 (11), 135.0453 (100) 

 19.2 Eriodictyol-C-hexoside-7-O-

hexoside isomer 
C27H32O16 611.1690 611.1662 4.63 449.1540 (41), 329.0991 (92), 

287.0956 (17), 269.0810 (10), 
235.0310 (5), 167.0427 (59), 

149.0208 (100), 125.0245 (10)  

 19.3 Naringenin-C-hexoside-7-O-

hexoside isomer 
C27H30O15 593.1585 593.1591 -1.86 473.0960 (100), 413.0732 (9), 

383.0630 (46), 353.0540 (94), 
311.0533 (8), 283.0433 (2) 

 19.4 4-O-Coumaroylquinic acid 
cisa 

C16H18O8 337.1002 337.1006 -1.28 191.0663 (10), 173.0557 (100), 
163.0486 (34), 119.0476 (17) 

 19.5 Procyanidin tetramer B type 
isomer 

C60H50O24 576.1346 576.1342 (2-) 0.69 425.1141 (6), 407.0929 (11), 
289.0732 (27), 287.0653 (17), 
245.1158 (7), 125.0282 (100) 

 19.6 Procyanidin tetramer A type 
isomer 

C60H48O24 1151.2559 1151.2548 0.97 695.2148 (16), 575.1237 (21), 
449.0797 (11), 425.0865 (64), 
407.0734 (11), 289.0723 (61), 

287.0585 (49), 125.0187 (100) 

 19.7 Procyanidin tetramer B type 
isomer 

C60H50O24 576.1346 576.1342 (2-) 0.69 425.0893 (37), 407.0788 (30), 
289.0752 (100), 287.0605 (55), 

245.0874 (5), 125.0205 (95) 

 19.8 Apigenin-6,8-di-C-hexoside 
isomer 

C27H30O15 593.1585 593.1591 -1.06 473.1283 (100), 383.0977 (46), 
353.0818 (94), 149.0312 (9) 

 19.9 Epicatechins C15H14O6 289.0790 289.0791 -0.21 245.0877 (100), 205.0549 (34), 
179.0368 (26), 125.0255 (34) 

 19.10 Di-hydroxycinnamic acid 
isomer 

C9H8O4 179.0423 179.0431 -4.67 163.0277 (10), 135.0421 (100) 

 19.11 Hydroxybenzoic acid isomer C7H6O3 137.0317 137.0316 0.09 93.0336 (100) 

 19.12 Apigenin-6,8-di-C-hexoside 
isomer 

C27H30O15 593.1585 593.1591 -1.06 473.0960 (100), 383.0630 (61), 
353.0540 (54), 149.0.316 (6) 

 19.13 Procyanidin pentamer B 
type isomer 

C75H62O30 720.1663 720.1659 (2-) 0.56 449.0819 (10), 407.0718 (20), 
289.0783 (100), 287.0583 (67), 

245.0482 (28), 125.0230 (85) 

20 20.1 Clovamide (caffeoyl-
tyrosine) isomer 

C18H17NO7 358.1005 358.0996 2.51 222.0459 (69), 178.0540 (64), 
161.0272 (61), 135.0441 (100) 

 20.2 4-O-Coumaroylquinic acid 
transa 

C16H18O8 337.1002 337.1006 -1.28 191.0553 (6), 173.0441 (100), 
163.0369 (23), 119.0478 (2) 

 20.3 (Epi)catechin-C-pentoside 
isomer 

C20H22O10 421.1213 421.1223 -2.38 361.1138 (24), 331.1001 (100), 
205.0614 (18), 123.0368 (11) 

 20.4 Feruloyl aspartate C14H15NO7 308.0849 308.0842 2.11 290.2986 (9), 264.1033 (74), 
246.0733 (17), 220.1030 (9), 

193.0557 (100), 149.0587 (65) 

 20.5 (Epi)catechin derivative 
isomer 

C43H28O10 703.1682 703.1676 0.92 533.1280 (14), 407.0992 (13), 
289.0827 (100), 251.0643 (44), 

125.0253 (48) 

 20.6 Epigallocatechin-3-O-

gallatea,s 
C22H18O11 457.0849 457.0829 4.39 331.0620 (2), 305.0823 (9), 

169.0315 (100), 125.0396 (24) 

 20.7 Procyanidin trimer B type 
isomer 

C45H38O18 865.2058 865.2044 1.63 577.1985 (33), 425.1465 (10), 
407.1269 (35), 289.1131 (47), 



287.0623 (51), 245.0887 (10), 
125.0209 (100) 

 20.8 Procyanidin trimer A type C45H36O18 863.1902 863.1907 -0.62 407.0783 (20), 289.0767 (100), 
287.0515 (24), 205.0193 (20), 

125.0262 (67) 

21 21.1 (Epi)catechin derivative 
isomer 

C43H28O10 703.1682 703.1676 0.92 533.1227 (15), 407.1080 (69), 
289.0865 (99), 251.0703 (38), 

245.0918 (32), 125.0245 (100) 

 21.2 Procyanidin trimer B type 
isomer 

C45H38O18 865.2058 865.2044 1.63 577.1513 (11), 425.0959 (26), 
407.0869 (49), 289.0776 (71), 
287.0667 (89), 245.0511 (9), 

125.0209 (100) 

 21.3 Procyanidin dimer A type 
hexoside isomer 

C36H34O17 737.1796 737.1769 3.66 611.1895 (44), 539.1341 (67), 
449.1191 (100), 407.1020 (13), 

289.0952 (28), 287.0778 (4) 

 21.4 (Epi)catechin-3-O-hexoside 
isomer 

C21H24O11 451.1319 451.1320 -0.31 289.0709 (100), 245.0731 (21), 
205.0599 (36), 179.0374 (3) 

22 22.1 Procyanidin tetramer A type 
isomer 

C60H48O24 1151.2559 1151.2548 0.97 695.1732 (16), 575.1251 (67), 
449.1017 (46), 425.0889 (59), 

407.1007 (6), 289.0880 (9), 
287.0664 (100), 125.0238 (13) 

 22.2 Procyanidin dimer A type 
hexoside isomer 

C36H34O17 737.1796 737.1769 3.66 611.2053 (61), 539.1105 (67), 
449.1017 (100), 407.1065 (6), 
289.0750 (18), 287.0661 (28) 

 22.3 Myricetin-3-O-(O-galloyl)-
hexoside 

C28H24O17 631.1013 631.1039 -4.04 479.1152 (100), 317.0449 (20), 
316.0441 (73), 271.0510 (10), 

179.0122 (5) 

 22.4 Myricetin-7-O-hexoside-3-

O-rutinoside 
C33H40O22 787.2011 787.2050 -4.92 625.1547 (8), 317.0379 (53), 

316.0323 (100), 289.0464 (6), 
287.0273 (4), 273.0646 (4), 
271.0269 (4), 179.0066 (7) 

 22.5 Procyanidin trimer B type 
isomer 

C45H38O18 865.2058 865.2044 1.63 577.1857 (6), 425.1225 (18), 
407.1117 (39), 289.0980 (49), 
287.0489 (35), 245.0673 (16), 

125.0291 (100) 

 22.6 (Epi)catechin-O-sulphate 
isomer 

C15H14O9S 369.0359 369.0361 -0.67 289.0763 (100), 245.0704 (53), 
205.0674 (8), 137.0302 (16), 

125.0271 (3), 79.9372 (2) 

 22.7 Procyanidin tetramer A type 
isomer 

C60H48O24 1151.2559 1151.2548 0.97 695.1376 (8), 575.1350 (21), 
449.0887 (6), 425.1031 (51), 
407.0806 (4), 289.0758 (44), 

287.0622 (22), 125.0218 (100) 

 22.8 Procyanidin tetramer B type 
isomer 

C60H50O24 576.1346 576.1342 (2-) 0.69 425.1090 (3), 407.1229 (10), 
289.0954 (63), 287.0800 (7), 

245.0898 (10), 125.0276 (100) 

 22.9 Procyanidin hexamer A type C90H72O36 863.1900 863.1921 (2-) -2.43 449.1176 (22), 407.1026 (16), 
289.1016 (85), 245.0984 (44), 

125.0351 (100) 

 22.10 Apigenin-C-hexoside-C-

pentoside isomer 
C26H28O14 563.1479 563.1462 3.02 503.1285 (25), 473.1501 (32), 

443.1347 (84), 383.1096 (78), 
353.0940 (100), 149.0467 (13) 

23 23.1 Procyanidin dimer B type 
isomer 

C30H26O12 577.1424 577.1411 2.29 425.0943 (10), 407.0812 (53), 
289.0761 (100), 245.0856 (64), 

205.0536 (5), 125.0237 (33) 

 23.2 Procyanidin pentamer B 
type isomer 

C75H62O30 720.1663 720.1659 (2-) 0.56 449.0877 (12), 407.0726 (12), 
289.0769 (49), 287.0730 (14), 
245.0567 (5), 125.0234 (100) 

 23.3 Procyanidin trimer B type 
isomer 

C45H38O18 865.2058 865.2044 1.63 577.1938 (20), 425.1202 (18), 
407.1051 (52), 289.0944 (35), 
287.0653 (66), 245.0623 (14), 

125.0276 (100) 

 23.4 Di-hydro-coumaric acid C9H10O3 165.0477 165.0470 4.45 147.0355 (100), 119.0399 (31) 

 23.5 Clovamide (caffeoyl- C18H17NO7 358.1005 358.0996 2.51 222.0593 (53), 178.0637 (100), 



tyrosine) isomer 161.0339 (43), 135.0517 (54) 

 23.6 (Epi)catechin-3-O-

trihydroxybenzene 
C21H20O9 415.1107 415.1111 -0.88 289.0775 (100), 259.0863 (3), 

245.0961 (15), 205.0639 (32), 
125.0295 (9) 

 23.7 Procyanidin dimer A type 
pentoside isomer 

C35H32O16 707.1690 707.1681 1.32 581.1333 (21), 539.1166 (67), 
449.1031 (100), 407.0918 (8), 

289.0797 (13), 287.0638 (7) 

 23.8 Procyanidin hexamer B type 
isomer 

C90H74O36 864.1980 864.1963 (2-) 1.97 449.0875 (14), 407.0865 (37), 
289.0800 (63), 287.0566 (41), 
245.0443 (13), 205.0100 (6), 

125.0197 (100) 

 23.9 Myricetin-3-O-rutinosidea C27H30O17 625.1483 625.1455 4.47 317.0572 (28), 316.0519 (100), 
287.0203 (5) 

24 24.1 Procyanidin tetramer A type 
isomer 

C60H48O24 1151.2559 1151.2548 0.97 695.2385 (2), 575.1613 (34), 
449.1279 (19), 425.1263 (12), 
407.1210 (14), 289.0922 (42), 

287.0837 (71), 125.0338 (100) 

 24.2 Procyanidin pentamer B 
type isomer 

C75H62O30 720.1663 720.1659 (2-) 0.56 449.1237 (8), 407.1024 (24), 
289.0892 (53), 287.0730 (35), 

245.0953 (18), 125.0266 (100) 

 24.3 Procyanidin dimer A type 
pentoside isomer 

C35H32O16 707.1690 707.1681 1.32 581.1413 (48), 539.0950 (30), 
449.0884 (100), 407.0789 (16), 

289.0629 (21), 287.0685 (5) 

 24.4 Procyanidin trimer A type 
hexoside isomer 

C51H48O23 1025.2430 1025.2416 1.35 407.0897 (16), 289.0675 (100), 
285.0442 (22), 125.0300 (6) 

 24.5 Myricetin-3-O-galattoside C21H20O13 479.0904 479.0885 3.94 317.0394 (27), 316.0316 (100), 
287.0228 (5) 

 24.6 Mono-deoxyclovamide 
(caffeoyl-DOPA / 
coumaroyl-tyrosine) isomer 

C18H17NO6 342.1056 342.1057 -0.33 222.0368 (18), 206.0630 (82), 
178.1359 (14), 145.1558 (13), 

135.0378 (100), 119.0446 (23) 

 24.7 Procyanidin hexamer B type 
isomer 

C90H74O36 864.1980 864.1963 (2-) 1.97 449.0767 (17), 407.0874 (24), 
289.0824 (40), 287.0663 (19), 
245.0553 (39), 205.0097 (8), 

125.0255 (100) 

 24.8 Myricetin-3-O-glucoside C21H20O13 479.0904 479.0885 3.94 317.0736 (23), 316.0615 (100), 
287.0571 (7) 

 24.9 Procyanidin trimer A type 
hexoside isomer 

C51H48O23 1025.2430 1025.2416 1.35 407.1011 (8), 289.0869 (100), 
285.0645 (33), 245.1007 (16), 

125.0224 (35) 

25 25.1 Apigenin-C-hexoside-2'’-O-

hexoside isomer 
C27H30O15 593.1585 593.1591 -1.06 473.0871 (10), 413.0978 (63), 

311.0682 (12), 293.0528 (100), 
149.0416 (4) 

 25.2 Quercetin-7-O-hexoside-3-

O-rutinoside isomer 
C33H40O21 771.2062 771.2042 2.60 609.1837 (4), 463.1192 (3), 

301.0584 (100), 300.0492 (60), 
273.0559 (3), 271.0419 (8), 
255.0513 (3), 179.0098 (5), 

151.0028 (3) 

 25.3 (Epi)catechin-O-sulphate 
isomer 

C15H14O9S 369.0359 369.0361 -0.67 289.0755 (100), 245.0713 (33), 
205.0686 (10), 137.0321 (58), 

125.0288 (7), 79.9361 (11) 

26 26.1 Procyanidin hexamer B type 
isomer 

C90H74O36 864.1980 864.1963 (2-) 1.97 449.0645 (12), 407.0668 (12), 
289.0651 (70), 287.0580 (33), 
245.0514 (43), 205.0494 (11), 

125.0306 (100) 

 26.2 (Epi)catechin-3-O-

trihydroxybenzene 
C21H20O9 415.1107 415.1111 -0.88 289.0705 (100), 259.0918 (2), 

245.0913 (25), 205.0421 (21), 
125.0283 (8) 

 26.3 Quercetin-7-O-hexoside-3-

O-rutinoside isomer 
C33H40O21 771.2062 771.2042 2.60 609.1579 (6), 463.0993 (6), 

301.0353 (100), 300.0283 (57), 
273.0427 (3), 271.0222 (7), 

255.0339 (4), 179.0062 (14), 
151.0007 (9) 

27 27.1 Ellagic acid-galloyl- C27H20O17 615.0700 615.0723 2.04 463.0607 (100), 301.0147 (37), 



hexoside 300.0047 (46), 229.0317 (11) 

 27.2 Ferulic acid-4-O-pentoside C15H18O8 325.1002 325.1004 -0.71 221.1495 (21), 193.1510 (100), 
178.1361 (68) 

 27.3 Apigenin-C-hexoside-2''-O-

rhamnoside isomer 
C27H30O14 577.1636 577.1617 3.21 457.1107 (10), 413.0843 (45), 

341.0690 (17), 311.0552 (25), 
293.0441 (100), 149.0494 (5) 

 27.4 Quercetin-7-O-rhamnoside-
3-O-rutinoside 

C33H40O20 755.2113 755.2103 1.31 609.1224 (10), 301.0486 (100), 
300.0360 (87), 273.0601 (6), 

271.0473 (5), 179.0037 (3), 
151.0093 (3) 

 27.5 (Epi)catechin-7-O-

trihydroxybenzene 
C21H20O9 415.1107 415.1111 -0.88 289.0802 (100), 261.0909 (4), 

245.0993 (60), 205.0656 (17), 
125.0213 (51) 

 27.6 (Epi)catechin-3-O-gallate-7-

O-glucuronide isomer 
C25H30O18 617.1432 617.1413 3.10 465.0846 (11), 435.1642 (18), 

327.0688 (100), 289.0852 (29), 
261.0610 (3), 245.0965 (9), 

205.0306 (21), 165.0270 (34), 
125.0294 (6) 

 27.7 Apigenin-C-hexoside 
isomer 

C21H20O10 431.1056 431.1058 -0.35 341.0904 (26), 311.0739 (100), 
283.0892 (40), 149.0201 (5), 

117.0540 (3) 

28 28.1 (Epi)catechin-3-O-

dihexoside isomer 
C25H26O18 613.1119 613.1138 -3.07 451.1227 (11), 433.0755 (5), 

407.1000 (56), 289.0864 (71), 
259.0650 (3), 245.0938 (10), 

125.0257 (100) 

 28.2 Kaempferol-7-O-hexoside-
3-O-rutinoside isomer 

C33H40O20 755.2113 755.2103 1.31 593.1490 (11), 285.0417 (100), 
284.0356 (11), 257.0578 (9), 

255.0186 (7), 151.0018 (2) 

 28.3 Catechin-3-O-gallatea,s C22H18O10 441.0900 441.0892 1.80 331.0496 (4), 289.0773 (42), 
259.0667 (6), 245.0862 (10), 

169.0148 (100), 125.0227 (19) 

 28.4 Quercetin-3-O-rutinosidea,s C27H30O16 609.1534 609.1536 -0.35 301.0422 (41), 300.0324 (55), 
271.0281 (5), 179.0023 (8), 

167.0391 (100), 151.0038 (7) 

29 29.1 Cinchonain isomer C24H20O9 451.1107 451.1103 0.96 341.0565 (100), 217.0327 (21) 

 29.2 Procyanidin trimer B type 
isomer 

C45H38O18 865.2058 865.2044 1.63 577.1742 (11), 425.1189 (13), 
407.1076 (64), 289.0963 (45), 
287.0541 (28), 245.0653 (43), 

125.0266 (100) 

 29.3 Procyanidin dimer B type 
isomer 

C30H26O12 577.1424 577.1411 2.29 425.0964 (18), 407.0861 (100), 
289.0787 (97), 245.0527 (15), 

205.0527 (6), 125.0234 (79) 

 29.4 Mono-deoxyclovamide 
(caffeoyl-DOPA / 
coumaroyl-tyrosine) isomer 

C18H17NO6 342.1056 342.1057 -0.33 222.0469 (35), 206.0538 (36), 
178.0531 (78), 145.0297 (27), 

135.0478 (100), 119.0507 (14) 

 29.5 Epicatechin-3-O-gallatea,s C22H18O10 441.0900 441.0892 1.80 331.0689 (2), 289.0930 (38), 
259.0807 (3), 245.0673 (6), 

169.0290 (100), 125.0351 (22) 

30 30.1 Quercetin-3-O-galactoside C21H20O12 463.0955 463.0950 1.03 301.0508 (52), 300.0424 (100), 
271.0377 (6), 255.0400 (3), 
179.0056 (4), 151.0124 (3) 

 30.2 Procyanidin dimer A type 
hexoside isomer 

C36H34O17 737.1796 737.1769 3.66 611.1715 (50), 539.1170 (49), 
449.1112 (100), 407.0973 (12), 

289.0811 (33), 287.0649 (19) 

 30.3 Ferulic acids C10H10O4 193.0579 193.0573 3.14 178.0336 (100), 149.0597 (38) 

31 31.1 Procyanidin dimer A type 
hexoside isomer 

C36H34O17 737.1796 737.1769 3.66 611.1492 (29), 539.0970 (32), 
449.0885 (100), 407.0748 (16), 

289.0705 (24), 287.0577 (31) 

 31.2 Kaempferol-7-O-hexoside-
3-O-rutinoside isomer 

C33H40O20 755.2113 755.2103 1.31 593.1553 (13), 285.0433 (100), 
284.0385 (12), 257.0661 (6), 

255.0492 (3), 151.0002 (2) 

 31.3 Quercetin-3-O-glucosides C21H20O12 463.0955 463.0950 1.03 301.0525 (56), 300.0461 (100), 
271.0392 (8), 255.0425 (3), 



179.0048 (5), 151.0086 (5) 

 31.4 Kaempferol-7-O-hexoside C21H20O11 447.1006 447.1028 5.00 285.0122 (100), 257.0463 (10)  

 31.5 Procyanidin dimer A type 
pentoside isomer 

C35H32O16 707.1690 707.1681 1.32 581.1482 (49), 539.1210 (86), 
449.1154 (100), 407.0421 (12), 

289.0778 (30), 287.0569 (13) 

32 32.1 Kaempferol-7-O-

rhamnoside-3-O-rutinoside 
C33H40O19 739.2164 739.2182 -2.46 593.1482 (14), 285.0483 (100), 

257.0806 (11), 255.0809 (8) 

 32.2 Procyanidin dimer A type 
pentoside isomer 

C35H32O16 707.1690 707.1681 1.32 581.1394 (18), 539.1030 (39), 
449.0942 (100), 407.0812 (9), 
289.0800 (14), 287.0605 (13) 

 32.3 Phloretin-C-hexoside 
isomer 

C21H24O10 435.1369 435.1376 -1.50 345.1005 (24), 315.0928 (100), 
285.0967 (25), 167.0404 (14), 

137.0580 (14) 

 32.4 Kaempferol-3-O-galactoside C21H20O11 447.1006 447.1028 5.00 285.0517 (19), 284.0473 (100), 
255.0328 (7), 179.0122 (16), 

151.0080 (9) 

33 33.1 Kaempferol-3-O-rutinoside C27H30O15 593.1585 593.1591 -1.06 285.0483 (100), 284.0386 (49), 
255.0421 (5), 179.0336 (4), 

151.0446 (4) 

 33.2 Quercetin-3-O-pentoside C20H18O11 433.0849 433.0832 3.94 301.0474 (21), 300.0406 (100), 
271.0364 (6), 255.0390 (2), 
179.0059 (2), 151.0101 (3) 

34 34.1 Procyanidin dimer A type C30H24O12 575.1268 575.1274 -1.08 449.1241 (15), 407.1091 (42), 
289.0966 (39), 287.0755 (14), 
285.0567 (100), 125.0234 (7) 

 34.2 Cinchonain isomer C24H20O9 451.1107 451.1103 0.96 341.0921 (100), 217.0270 (18) 

 34.3 Kaempferol-3-O-glucoside C21H20O11 447.1006 447.1028 5.00 285.0462 (51), 284.0395 (100), 
255.0390 (4), 179.0704 (12), 

151.0920 (11) 

 34.4 Di-deoxyclovamide 
(coumaroyl-DOPA) 

C18H17NO5 326.1107 326.1109 -0.70 282.1414 (100), 206.0625 (28), 
163.0502 (32), 147.0530 (22), 

134.0671 (4), 119.0536 (63) 

 34.5 Quercetin-3-O-rhamnoside C21H20O11 447.1006 447.1028 5.00 301.0206 (90), 300.0135 (100), 
271.0102 (10) 

 34.6 (Epi)catechin-3-O-gallate-7-

O-glucuronide isomer 
C25H30O18 617.1432 617.1413 3.10 465.1064 (5), 435.1628 (11), 

327.0704 (100), 289.0874 (25), 
261.0623 (3), 245.0900 (26), 

205.0379 (17), 165.0285 (78), 
125.0294 (14) 

35 35.1 Quercetins C15H10O7 301.0427 301.0423 1.17 179.0118 (100), 151.0087 (65) 

36 36.1 Bisdemethoxycurcuminb C19H16O4 307.1049 307.1043 1.81 187.0351 (36), 145.0249 (14), 
143.0462 (65), 119.0470 (100) 

 36.2 Demethoxycurcuminb C20H18O5 337.1154 337.1164 -2.89 217.0450 (33), 173.0556 (42), 
149.0563 (32), 119.0466 (100) 

 36.3 Curcuminb,s C21H20O6 367.1260 367.1257 0.78 217.0426 (38), 175.0331 (50), 
173.0540 (57), 149.0547 (100), 

134.0316 (48) 

37 37.1 Ellagic acids C14H6O8 301.0063 301.0054 2.87 257.0162 (100), 229.0307 (61) 

         

a and b are referred to the compounds detected only in Sakura green tea dark chocolate or turmeric dark chocolate, 

respectively, whereas s means identification by comparison with authentic standard. s is referred to the compounds 

detected with authentic standards. 
 



Table 2. Quantitative results (mg/100 g of chocolate) for phenolic compounds identified in the 

different types of chocolate. Values represent means ± standard deviation of triplicate 

determination.  
 

Compound Dark chocolate 
Green tea dark 

chocolate 
Turmeric dark 

chocolate 

     
  Flavan-3-ols   

15.2 Catechin 66.20 ± 1.99 a 69.62 ± 5.28 a 71.13 ± 2.15 a 

19.9 Epicatechin 203.29 ± 10.68 a 303.69 ± 11.65 b 218.43 ± 8.08 a 

9.1 Gallocatechin 1.88 ± 0.10 a 2.09 ± 0.14 a < l.o.q. b 

13.2 Epigallocatechin 15.93 ± 0.10 a 29.76 ± 1.74 b 15.11 ± 0.08 a 

22.6 (Epi)catechin-O-sulphate isomer 2.06 ± 0.13 a 1.73 ± 0.20 a 3.07 ± 0.31 b 

25.3 (Epi)catechin-O-sulphate isomer 7.15 ± 0.35 a 7.16 ± 0.12 a 10.23 ± 0.83 b 

23.6 (Epi)catechin-3-O-trihydroxybenzene 4.92 ± 0.50 a 4.66 ± 0.10 b 5.94 ± 0.56 ab 

26.2 (Epi)catechin-3-O- trihydroxybenzene 3.61 ± 0.06 a 4.58 ± 0.26 b 4.84 ± 0.42 b 

27.5 (Epi)catechin-7-O-trihydroxybenzene 2.60 ± 0.15 a 3.83 ± 0.56 b 3.39 ± 0.14 ab 

20.3 (Epi)catechin-C-pentoside isomer 0.42 ± 0.05 a 0.30 ± 0.07 a 0.83 ± 0.11 a 

28.3 Catechin-3-O-gallate* n.d. < l.o.q. a n.d. 

29.5 Epicatechin-3-O-gallate * n.d. 9.12 ± 0.13 a n.d. 

13.1 (Epi)catechin-3-O-hexoside isomer 12.64 ± 0.20 a 9.78 ± 1.44 a 13.51 ± 0.82 a 

14.1 (Epi)catechin-C-hexoside isomer 1.91 ± 0.04 a 1.62 ± 0.10 a 1.32 ± 0.19 a 

15.1 (Epi)catechin-7-O-hexoside 4.11 ± 0.29 a 4.26 ± 0.30 a 5.24 ± 0.43 a 

16.2 (Epi)catechin-C-hexoside isomer 4.09 ± 0.21 a 3.48 ± 0.80 a 3.72 ± 0.01 a 

21.4 (Epi)catechin-3-O-hexoside isomer 1.36 ± 0.21 a 1.81 ± 0.22 a 1.48 ± 0.08 a 

20.6 Epigallocatechin-3-O-gallate * n.d. 33.54 ± 2.16 a n.d. 

10.1 Gallocatechin-3-O-hexoside 0.09 ± 0.01 a 0.06 ± 0.01 a 0.15 ± 0.01 a 

11.1 Epigallocatechin-3-O-hexoside 0.09 ± 0.01 a 0.07 ± 0.01 a 0.17 ± 0.01 a 

34.1 Procyanidin dimer A type 1.10 ± 0.06 a 1.31 ± 0.08 a 1.21 ± 0.07 a 

12.1 Procyanidin dimer B type isomer 8.65 ± 0.84 a 8.39 ± 0.34 a 10.59 ± 1.48 a 

17.1 Procyanidin dimer B type isomer 3.05 ± 0.22 a 2.69 ± 0.14 a 3.62 ± 0.19 a 

18.3 Procyanidin dimer B type isomer 37.23 ± 3.44 a 52.45 ± 5.44 b 35.12 ± 0.04 a 

18.9 Procyanidin dimer B type isomer 34.08 ± 1.98 a 44.99 ± 1.15 b 38.25 ± 2.76 a 

23.1 Procyanidin dimer B type isomer 5.32 ± 0.30 a 6.66 ± 0.64 a 6.93 ± 0.74 a 

23.3 Procyanidin dimer B type isomer 10.17 ± 0.13 a 12.35 ± 0.35 a 13.12 ± 0.89 a 

12.2 (Epi)catechin-(Epi)gallocatechin * n.d. 0.12 ± 0.01 a n.d. 

18.5 (Epi)catechin-3-O-dihexoside isomer 0.66 ± 0.04 a 0.73 ± 0.09 a 0.44 ± 0.03 a 

28.1 (Epi)catechin-3-O-dihexoside isomer 1.65 ± 0.02 a 1.04 ± 0.51 a 1.34 ± 0.03 a 

27.6 (Epi)catechin-3-O-gallate-7-O- 
glucuronide isomer 

0.33 ± 0.01 a 0.18 ± 0.01 a 0.24 ± 0.03 a 

34.6 (Epi)catechin-3-O- gallate-7-O-

glucuronide isomer 
0.31 ± 0.02 a 0.14 ± 0.01 a 0.23 ± 0.02 a 

20.5 (Epi)catechin derivative isomer 1.16 ± 0.04 a 0.93 ± 0.10 a 1.30 ± 0.14 a 

21.1 (Epi)catechin derivative isomer 1.02 ± 0.04 a 1.06 ± 0.04 a 0.77 ± 0.05 a 

23.7 Procyanidin dimer A type pentoside 
isomer 

1.42 ± 0.01 a 1.29 ± 0.24 a 1.68 ± 0.04 a 

24.3 Procyanidin dimer A type pentoside 
isomer 

1.09 ± 0.01 a 1.17 ± 0.08 a 1.04 ± 0.04 a 

31.5 Procyanidin dimer A type pentoside 
isomer 

1.75 ± 0.03 a 2.24 ± 0.21 b 1.82 ± 0.11 ab 

32.2 Procyanidin dimer A type pentoside 1.47 ± 0.11 a 2.74 ± 0.11 b 1.20 ± 0.06 a 



isomer 

21.3 Procyanidin dimer A type hexoside 
isomer 

1.48 ± 0.06 a 1.52 ± 0.23 a 1.91 ± 0.07 a 

22.2 Procyanidin dimer A type hexoside 
isomer 

1.01 ± 0.09 a 1.24 ± 0.13 a 1.58 ± 0.18 a 

30.2 Procyanidin dimer A type hexoside 
isomer 

2.06 ± 0.09 a 3.09 ± 0.37 b 2.33 ± 0.05 a 

31.1 Procyanidin dimer A type hexoside 
isomer 

1.47 ± 0.03 a 2.58 ± 0.15 b 2.06 ± 0.03 a 

16.3 Procyanidin dimer B type hexoside 
isomer 

0.80 ± 0.04 a 0.89 ± 0.07 a 1.02 ± 0.10 a 

18.2 Procyanidin dimer B type hexoside 
isomer 

1.04 ± 0.02 a 1.06 ± 0.04 a 1.22 ± 0.04 a 

18.7 Procyanidin dimer B type hexoside 
isomer 

0.51 ± 0.08 a 0.55 ± 0.03 a 0.54 ± 0.04 a 

18.10 Procyanidin dimer B type derivative 1.86 ± 0.13 a 1.88 ± 0.47 a 2.27 ± 0.13 a 

20.8 Procyanidin trimer A type 0.70 ± 0.05 a 0.67 ± 0.04 a 0.97 ± 0.04 a 

13.5 Procyanidin trimer B type isomer 0.93 ± 0.05 a 0.92 ± 0.03 a 1.11 ± 0.11 a 

18.1 Procyanidin trimer B type isomer 4.30 ± 0.31 a 7.13 ± 0.51 b 4.96 ± 0.41 a 

18.8 Procyanidin trimer B type isomer 3.21 ± 0.17 a 4.20 ± 0.25 b 3.65 ± 0.21 a 

20.7 Procyanidin trimer B type isomer 11.02 ± 0.45 a 15.16 ± 0.90 b 11.60 ± 0.64 a 

21.2 Procyanidin trimer B type isomer 8.90 ± 0.17 a 17.49 ± 1.34 b 9.64 ± 0.25 a 

22.5 Procyanidin trimer B type isomer 3.60 ± 0.19 a 3.67 ± 0.18 a 3.50 ± 0.22 a 

23.3 Procyanidin trimer B type isomer 2.05 ± 0.08 a 2.15 ± 0.07 a 2.91 ± 0.15 a 

29.2 Procyanidin trimer B type isomer 1.11 ± 0.03 a 1.68 ± 0.08 a 1.38 ± 0.02 a 

24.4 Procyanidin trimer A type hexoside 
isomer 

0.70 ± 0.06 a 0.99 ± 0.03 a 0.84 ± 0.07 a 

24.9 Procyanidin trimer A type hexoside 
isomer 

0.54 ± 0.02 a 0.97 ± 0.08 a 0.70 ± 0.04 a 

19.6 Procyanidin tetramer A type isomer 1.44 ± 0.01 a 1.38 ± 0.07 a 1.42 ± 0.08 a 

22.1 Procyanidin tetramer A type isomer 2.02 ± 0.13 a 3.68 ± 0.57 b 2.04 ± 0.16 a 

22.7 Procyanidin tetramer A type isomer 2.02 ± 0.03 a 4.04 ± 0.82 b 2.83 ± 0.08 a 

24.1 Procyanidin tetramer A type isomer 0.79 ± 0.07 ab 1.11 ± 0.29 a 0.66 ± 0.06 b 

16.1 Procyanidin tetramer B type isomer 0.37 ± 0.01 a 0.37 ± 0.05 a 0.37 ± 0.05 a 

19.5 Procyanidin tetramer B type isomer 1.34 ± 0.04 a 1.81 ± 0.22 a 1.85 ± 0.05 a 

19.7 Procyanidin tetramer B type isomer 0.93 ± 0.03 a 1.82 ± 0.07 a 1.71 ± 0.16 a 

22.8 Procyanidin tetramer B type isomer 1.19 ± 0.08 a 2.58 ± 0.03 b 1.65 ± 0.07 a 

19.13 Procyanidin pentamer B type isomer 0.60 ± 0.02 a 0.55 ± 0.04 a 0.67 ± 0.02 a 

23.2 Procyanidin pentamer B type isomer 0.82 ± 0.04 a 1.55 ± 0.14 b 0.99 ± 0.01 a 

24.2 Procyanidin pentamer B type isomer 1.17 ± 0.08 a 3.47 ± 0.28 b 1.75 ± 0.14 a 

22.9 Procyanidin hexamer A type < l.o.q. < l.o.q. < l.o.q. 

23.8 Procyanidin hexamer B type isomer 0.31 ± 0.01 a 0.98 ± 0.02 b 0.37 ± 0.02 a 

24.7 Procyanidin hexamer B type isomer 0.43 ± 0.04 a 1.35 ± 0.04 b 0.29 ± 0.01 a 

26.1 Procyanidin hexamer B type isomer 0.22 ± 0.02 a 1.85 ± 0.20 b 0.46 ± 0.04 a 

Total flavan-3-ols 503.76 ± 8.98 a 726.03 ± 14.53 b 538.71 ± 8.99 c 

 
Hydroxycinnamic acids 

1.1 Coumaric acid 0.34 ± 0.01 a 0.37 ± 0.05 a 0.55 ± 0.01 b 

23.4 Di-hydro-coumaric acid 8.13 ± 0.14 a 4.57 ± 0.08 b 11.18 ± 0.41 c 

8.5 Di-hydroxycinnamic acid isomer 0.92 ± 0.06 ab 1.14 ± 0.07 a 2.33 ± 0.03 b 

10.3 Di-hydroxycinnamic acid isomer 0.48 ± 0.02 a 0.36 ± 0.01 a 0.57 ± 0.01 b 

13.3 Caffeic acid 1.08 ± 0.01 a 1.68 ± 0.02 b 1.09 ± 0.02 a 



19.1 Di-hydroxycinnamic acid isomer 0.48 ± 0.05 a 0.34 ± 0.06 a 0.60 ± 0.04 b 

19.10 Di-hydroxycinnamic acid isomer 0.58 ± 0.04 a 0.63 ± 0.03 a 0.58 ± 0.07 a 

2.1 Di-hydro-caffeic acid 1.88 ± 0.16 a 0.24 ± 0.01 b 0.88 ± 0.04 c 

30.3 Ferulic acid 61.23 ± 3.74 a 58.09 ± 2.33 a 55.30 ± 2.36 a 

18.11 Coumaroyl aspartate 15.72 ± 0.23 a 14.07 ± 0.45 a 16.83 ± 0.17 a 

10.2 Di-hydroxycinnamic aspartate isomer 8.59 ± 0.52 a 6.86 ± 0.16 b 6.92 ± 0.04 b 

14.2 Di-hydroxycinnamic aspartate isomer 35.88 ± 2.89 a 33.48 ± 0.75 a 33.12 ± 1.58 a 

20.4 Feruloyl aspartate 8.18 ± 0.26 a 9.11 ± 0.17 a 8.96 ± 0.41 a 

27.2 Ferulic acid-4-O-pentoside 0.40 ± 0.06 a 0.48 ± 0.01 a 0.47 ± 0.02 a 

34.4 Di-deoxyclovamide (Coumaroyl-DOPA) 4.66 ± 0.21 a 4.75 ± 0.02 a 4.57 ± 0.24 a 

12.3 3-Coumaroylquinic acid cis * n.d. 1.51 ± 0.01 a n.d. 

14.3 3-Coumaroylquinic acid trans * n.d. 0.68 ± 0.01 a n.d. 

19.4 4-Coumaroylquinic acid cis * n.d. 2.05 ± 0.10 a n.d. 

20.2 4-Coumaroylquinic acid trans * n.d. 3.52 ± 0.09 a n.d. 

24.6 Mono-deoxyclovamide (Caffeoyl-DOPA / 
Coumaroyl-tyrosine) isomer 

0.58 ± 0.02 a 0.48 ± 0.04 a 0.50 ± 0.01 a 

29.4 Mono-deoxyclovamide (Caffeoyl-DOPA / 
Coumaroyl-tyrosine) isomer 

2.93 ± 0.02 a 2.25 ± 0.10 a 2.11 ± 0.13 a 

16.8 5-Caffeoylquinic acid 0.23 ± 0.02 a 0.65 ± 0.02 b 0.25 ± 0.03 a 

17.2 3-Caffeoylquinic acid 0.12 ± 0.02 a 0.31 ± 0.02 b 0.21 ± 0.01 c 

20.1 Clovamide (caffeoyl-tyrosine) isomer 1.81 ± 0.05 a 1.42 ± 0.02 a 1.18 ± 0.07 a 

23.5 Clovamide (caffeoyl-tyrosine) isomer 7.73 ± 0.54 a 8.94 ± 0.36 b 8.31 ± 0.01 b 

Total hydroxycinnamic acids 161.95 ± 4.80 a 157.98 ± 2.38 a 156.51 ± 1.62 a 

 
Flavonols 

35.1 Quercetin 1.08 ± 0.01 a 1.62 ± 0.03 b 1.37 ± 0.01 a 

33.2 Quercetin-3-O-pentoside 3.31 ± 0.21 a 2.80 ± 0.14 a 4.15 ± 0.40 b 

31.4 Kaempferol-7-O-hexoside 0.14 ± 0.01 a 0.24 ± 0.01 b 0.15 ± 0.01 a 

32.4 Kaempferol-3-O-galactoside 0.04 ± 0.01 a 0.28 ± 0.01 b < l.o.q. c 

34.3 Kaempferol-3-O-glucoside 0.05 ± 0.01 a 0.37 ± 0.03 b < l.o.q. c 

34.5 Quercetin-3-O-rhamnoside 0.05 ± 0.01 a 0.50 ± 0.02 b < l.o.q. c 

18.6 Dihydro-kaempferol-7-O-hexoside 0.25 ± 0.01 a 0.21 ± 0.01 a 0.23 ± 0.01 a 

30.1 Quercetin-3-O-galactoside 0.49 ± 0.01 a 1.67 ± 0.01 b 2.44 ± 0.04 c 

31.3 Quercetin-3-O-glucoside 1.96 ± 0.02 a 2.29 ± 0.07 a 3.05 ± 0.27 b 

24.5 Myricetin-3-O-galattoside 0.30 ± 0.01 a 2.35 ± 0.04 b < l.o.q. c 

24.8 Myricetin-3-O-glucoside 0.46 ± 0.01 a 1.84 ± 0.14 b < l.o.q. c 

33.1 Kaempferol-3-O-rutinoside 0.26 ± 0.01 a 0.65 ± 0.02 b < l.o.q. c 

28.4 Quercetin-3-O-rutinoside * n.d. 4.20 ± 0.19 a n.d. 

23.9 Myricetin-3-O-rutinoside * n.d. 0.58 ± 0.01 a n.d. 

22.3 Myricetin-3-O-(O-galloyl) hexoside 0.11 ± 0.01 a 0.62 ± 0.02 b < l.o.q. c 

31.1 Kaempferol-7-O-rhamnoside-3-O-
rutinoside 

0.03 ± 0.01 a 0.09 ± 0.01 a < l.o.q. c 

27.4 Quercetin-7-O-rhamnoside-3-O-
rutinoside 

0.14 ± 0.01 a 0.20 ± 0.02 a < l.o.q. b 

28.2 Kaempferol-7-O-hexoside-3-O-rutinoside 
isomer 

0.57 ± 0.01 a 1.27 ± 0.02 b < l.o.q. c 

31.2 Kaempferol-7-O-hexoside-3-O-rutinoside 
isomer 

0.44 ± 0.01 a 1.38 ± 0.01 b < l.o.q. c 

25.2 Quercetin-7-O-hexoside-3-O-rutinoside 
isomer 

1.12 ± 0.01 a 2.24 ± 0.01 b < l.o.q. c 

26.3 Quercetin-7-O-hexoside-3-O-rutinoside 2.09 ± 0.01 a 3.65 ± 0.26 b < l.o.q. c 



isomer 

22.4 Myricetin-7-O-hexoside-3-O-rutinoside 0.12 ± 0.01 a 0.23 ± 0.02 b < l.o.q. c 

Total flavonols 13.01 ± 0.21 a 29.28 ± 0.39 b 11.40 ± 0.48 a 

 
Other phenolics 

16.4 Vanillin 1.33 ± 0.05 a 1.81 ± 0.11 b 1.85 ± 0.08 b 

32.3 Phloretin-C-hexoside isomer 0.15 ± 0.01 a 0.16 ± 0.01 a 0.63 ± 0.03 b 

18.4 Eriodictyol-7-O-hexoside 0.10 ± 0.01 a 0.19 ± 0.01 b 0.53 ± 0.03 c 

29.1 Cinchonain isomer 1.81 ± 0.20 a 1.13 ± 0.01 a 2.09 ± 0.03 b 

34.2 Cinchonain isomer 0.77 ± 0.66 a 0.79 ± 0.02 a 0.75 ± 0.02 a 

19.3 Naringenin-C-hexoside-7-O-hexoside 
isomer 

0.23 ± 0.01 a 0.63 ± 0.02 b < l.o.q. c 

19.2 Eriodictyol-C-hexoside-7-O-hexoside 
isomer 

0.15 ± 0.01 a 0.28 ± 0.01 b n.d. 

Total other phenolics 4.54 ± 0.69 a 4.99 ± 0.11 a 5.85 ± 0.10 b 

 
Flavones 

27.7 Apigenin-C-hexoside isomer 0.10 ± 0.01 a 0.42 ± 0.01 b 0.19 ± 0.01 a 

22.10 Apigenin-C-hexoside-C-pentoside 
isomer 

0.95 ± 0.01 a 2.11 ± 0.07 b 0.83 ± 0.03 a 

27.3 Apigenin-C-hexoside-2''-O-rhamnoside 
isomer 

1.31 ± 0.32 ab 0.89 ± 0.13 a 1.71 ± 0.43 b 

19.8 Apigenin-6,8-di-C-hexoside isomer 0.17 ± 0.01 a 0.47 ± 0.01 b 0.23 ± 0.01 a 

19.12 Apigenin-6,8-di-C-hexoside isomer 0.20 ± 0.01 a 0.54 ± 0.01 b 0.33 ± 0.01 a 

25.1 Apigenin-C-hexoside-2’'-O-hexoside 
isomer 

0.25 ± 0.01 a 0.47 ± 0.01 b n.d. 

Total flavones 2.98 ± 0.32 a 4.90 ± 0.15 b 3.29 ± 0.43 a 

 
Ellagitannins 

37.1 Ellagic acid 56.16 ± 3.58 a 53.44 ± 1.02 a 50.50 ± 3.30 a 

27.1 Ellagic acid-galloyl-hexoside 4.65 ± 0.27 a 11.13 ± 0.43 b 4.09 ± 0.15 a 

16.5 HHDP-galloyl-hexose 15.79 ± 1.20 a 24.65 ± 1.01 b 14.11 ± 0.69 a 

Total ellagitannins 76.60 ± 3.78 a 89.12 ± 1.50 b 68.70 ± 3.37 a 

 
Hydroxybenzoic acids 

2.2 Hydroxybenzoic acid isomer  0.21 ± 0.03 a 0.20 ± 0.04 a 0.27 ± 0.02 a 

7.1 Hydroxybenzoic acid isomer 0.13 ± 0.01 a 0.11 ± 0.01 a 0.41 ± 0.02 b 

11.2 Hydroxybenzoic acid isomer 5.47 ± 0.03 a 6.46 ± 0.06 ab 7.50 ± 0.47 b 

13.4 Hydroxybenzoic acid isomer 0.31 ± 0.01 a 1.32 ± 0.02 b 0.33 ± 0.02 a 

19.11 Hydroxybenzoic acid isomer 0.62 ± 0.04 a 0.94 ± 0.11 b 0.77 ± 0.03 a 

8.6 Protocatechuic acid 10.76 ± 0.30 a 9.11 ± 0.09 a 18.31 ± 0.97 b 

8.3 Vanillic acid isomer 0.39 ± 0.04 a 0.37 ± 0.01 a 0.45 ± 0.02 a 

16.6 Vanillic acid isomer 0.75 ± 0.13 a 0.55 ± 0.15 a 1.12 ± 0.01 b 

3.1 Gallic acid * n.d. 0.14 ± 0.01 a n.d. 

9.4 Syringic acid  0.13 ± 0.02 a 0.26 ± 0.03 a 0.14 ± 0.02 a 

8.4 Protocatechuic acid-4-O-hexoside 0.10 ± 0.01 a 0.31 ± 0.03 b 0.19 ± 0.01 a 

5.1 Vanillic acid-4-O-hexoside isomer 0.25 ± 0.01 a 0.20 ± 0.02 a 0.30 ± 0.01 a 

8.1 Vanillic acid-4-O-hexoside isomer 1.77 ± 0.06 a 1.67 ± 0.04 a 2.63 ± 0.01 b 

16.7 Vanillic acid-4-O-hexoside isomer 1.92 ± 0.07 a 1.81 ± 0.03 a 1.73 ± 0.09 a 

3.2 Galloyl glucose isomer * n.d. 0.29 ± 0.01 a n.d. 

4.1 Galloylquinic acid isomer * n.d. 1.84 ± 0.08 a n.d. 

6.1 Galloylquinic acid isomer * n.d. 2.09 ± 0.05 a n.d. 



9.2 Syringic acid-4-O-hexoside isomer 0.94 ± 0.08 a 0.81 ± 0.04 a 1.07 ± 0.11 a 

9.3 Syringic acid-4-O-hexoside isomer 0.74 ± 0.02 a 0.71 ± 0.04 a 1.04 ± 0.11 b 

8.2 Vanillic acid derivative 0.31 ± 0.01 a 0.49 ± 0.03 b 0.56 ± 0.04 b 

Total hydroxybenzoic acids 24.80 ± 0.33 a 23.05 ± 0.20 a 36.82 ± 1.08 b 

 
Curcuminoids 

36.1 Bisdemethoxycurcumin ** n.d. n.d. 115.55 ± 2.16 a 

36.2 Demethoxycurcumin ** n.d. n.d. 82.64 ± 1.33 a 

36.3 Curcumin ** n.d. n.d. 74.55 ± 0.47 a 

Total curcuminoids n.d. n.d. 272.73 ± 2.58 a 

    
Total phenolic compounds 787.63 ± 10.90 a 1035.45 ± 14.81 b 1094.03 ± 10.15 c 

n.d. means not detected; <l.o.q. means the compound was detected but it was below the limit of quantification; * and 

** mean the compounds were detected only in green tea dark chocolate or turmeric dark chocolate, respectively.  

The data represent the sum of the quantities of a specific compound found in the methanol extract and in the subsequent 

acetone extract. 

Different superscript letters within the same row indicate that the values are significantly different (P<0.05). 

Flavan-3-ols as well as compounds 29.1 and 34.2 were quantified as epicatechin equivalent. 

Hydroxycinnamic acids were quantified as coumaric acid equivalent except compounds 20.4, 27.2 and 30.3 which were 

quantified as ferulic acid equivalent. 

Flavonols, flavones as well as compounds 18.4, 19.2, 19.3 and 32.3 were quantified as quercetin-3-O-rutinoside 

equivalent. 

Ellagitannins were quantified as ellagic acid equivalent. 

Hydroxybenzoic acids as well as compound 16.4 were quantified as protocatechuic acid equivalent. 

Curcuminoids were quantified as curcumin equivalent. 

The numbering of the compounds is referred to that used in Table 1. 


