
26/04/2024 07:16

An Approach to Balance Maintenance Costs and Electricity Consumption in Cloud Data Centers /
Chiaraviglio, Luca; D'Andreagiovanni, Fabio; Lancellotti, Riccardo; Shojafar, Mohammad; Blefari Melazzi,
Nicola; Canali, Claudia. - In: IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING. - ISSN 2377-3782. -
3:4(2018), pp. 274-288. [10.1109/TSUSC.2018.2838338]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is a pre print version of the following article:

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING 16

APPENDIX A
LINEARIZATION OF THE CONSTRAINTS

The product xsm(t) · xσn(t) appearing in the constraint (13) can
be linearized through the variable psσmn(t) according to a standard
approach adopted in mathematical optimization (see e.g., [55]). To
this end, we introduce the following linear constraints:

psσmn(t) ≤ xsm(t), ∀s,σ ∈ S, ∀m,n ∈ M (21)

psσmn(t) ≤ xσn(t), ∀s,σ ∈ S, ∀m,n ∈ M (22)

psσmn(t) ≥ xsm(t)+xσn(t)−1, ∀s,σ ∈ S, ∀m,n ∈ M (23)

psσmn(t) ≥ 0, ∀s,σ ∈ S, ∀m,n ∈ M (24)

In a similar way, the product xsm(t−1)·xσm(t), which appears in
the constraint (14), can be linearized through the variable qsσmn(t):

qsσmn(t) ≤ xsm(t− 1), ∀s,σ ∈ S, ∀m,n ∈ M (25)

qsσmn(t) ≤ xσn(t), ∀s,σ ∈ S, ∀m,n ∈ M (26)

qsσmn(t) ≥ xsm(t− 1) + xσn(t)− 1, ∀s,σ ∈ S, ∀m,n ∈ M
(27)

qsσmn(t) ≥ 0, ∀s,σ ∈ S, ∀m,n ∈ M (28)

APPENDIX B
PROOF OF NP-HARDNESS

Proposition 2. The OMEC problem is NP-Hard.

Proof. The proof is based on showing that OMEC is a variant
of the Bin Packing Problem, a well-known NP-Hard problem in
combinatorial optimization (see e.g., [44]). More in depth, we
show that OMEC is a generalization of the Bin Packing with
Usage Cost (BPUC) problem, originally introduced in [56], which
additionally includes 2 types of bin capacities and considers a
multiperiod time horizon.

In the BPUC, we are given i) a set I of items and each item
has a weight wi with i ∈ I ; ii) a set J of bins and each bin j ∈ J
has a capacity Cj . A bin is used when at least one item is put
into it; when a bin j is used, we face a fixed non-negative cost fj
and a variable cost, namely a non-negative cost cj for each unit
of used capacity of j. The BPUC consists of assigning each item
to exactly one bin so that the bin capacity is not exceeded and
the total cost of using the bins is minimized. If we introduce 1) a
binary variable yj ∈ {0, 1} for every j ∈ J that is equal to 1 if
bin j is used and 0 otherwise, 2) a binary variable xij ∈ {0, 1}
for every i ∈ I , j ∈ J that is equal to 1 if item i is put in bin j
and 0 otherwise, then the BPUC can be modelled as the following
Binary Linear Program:

min
�

j∈J

�
fj · yj + cj ·

��

i∈I

wi · xij

��
(29)

�

j∈J

xij = 1 ∀i ∈ I (30)

�

i∈I

wi · xij ≤ Cj · yj ∀j ∈ J (31)

yj ∈ {0, 1} ∀j ∈ J (32)

xij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (33)

Algorithm 3 Pseudo-Code of the FFD algorithm
Input: γm(t),µm(t)
Output: xsm(t), flag bin

1: VM sorted=sort VM(γm(t),’descend’);
2: curr s index=1;
3: curr VM index=1;
4: curr VM assignment=init array(|M |);
5: flag bin=-1;
6: while flag bin == -1 do
7: curr VM assignment[VM sorted[curr VM index]]=curr s index;
8: if (check CPU mem(curr VM assignment,curr s index,
9: γm(t),µm(t))==true) then

10: curr VM index++;
11: if curr VM index==|M |+1 then
12: flag bin=1;
13: end if
14: else
15: curr s index++;
16: if (curr s index==|S|+1) then
17: flag bin=0;
18: end if
19: end if
20: end while
21: xsm(t)=write conf(curr VM assignment);

where the objective function (29) pursues the minimization of the
total costs, the constraints (30) impose that each item is assigned
exactly to one bin and the constraints (31) impose the capacity of
used bins. We refer the reader to [56] for an exhaustive description
of the Binary Linear Program used to model BPUC.

We establish a correspondence between the elements of
OMEC and those of the generalized BPUC with multiple time
periods and 2 type of bin capacities noticing that in OMEC:

1) the set of PSs S corresponds to the set of bins J of BPUC
and each PS has a memory and a CPU capacity;

2) the set of VMs M corresponds to the set of items I and
each VM requests an amount of memory and CPU that
can be interpreted as two distinct types of weights of an
item in BPUC;

3) each VM must be assigned to exactly one PS (this is like
the single assignment of an item to a bin expressed by
(30));

4) a PS must be powered-on to host a VM and the sum
of memory and CPU requested by VMs assigned to
the PS must not exceed the capacity of the PS - these
two conditions correspond with having two distinct bin
capacity constraints in (31), one for each type of capacity;

5) the objective function of BPUC contains a fixed cost part
due to power-on PSs and a variable cost part that depend
upon the capacity of the PSs that is consumed by the VMs
(this is like the objective function of BPUC that include
usage costs).

Given these correspondences, we can interpret BPUC as a special
single-period and single-capacity type case of OMEC and since
BPUC is NP-Hard also OMEC is NP-Hard.

APPENDIX C
FIRST-FIT DECREASING DESCRIPTION

We briefly describe the main steps of the First-Fit Decreasing
(FFD) [44], an algorithm generally exploited to solve the Bin
Packing Problem. The main goal of FFD is to pack as much items
as possible in the bins, in order to reduce the number of bins that

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING 17

are used. In our context, the items are the VMs and the bins are
the PSs. As a result, the FFD aims to always limit the number of
PSs powered on, and therefore to reduce the processing costs.

Alg. 3 reports the FFD pseudo code. The algorithm requires
as input the CPU requirements (γm(t)) as well as the memory
ones (µm(t)), for the current TS. FFD then produces as output
the VM to PS assignment (xsm(t)), from which it is also possible
to infer the number of PSs in AM. Moreover, a flag, denoted
with flag_bin, is introduced. This flag is set to a value larger
than zero if the algorithm is able to find an admissible VM to PS
assignment. Otherwise, if the flag is set to zero or a value lower
than zero, FFD has not been able to find a feasible solution.

The key idea of FFD is to analyze sequentially the CPU
requests in each TS, and to allocate accordingly the VM to PSs
in order to satisfy the CPU and the memory requirements. In
particular, the VMs are initially sorted considering the amount
of requested CPU in decreasing order (line 1). Then, the current
PS index and the current VM index are initialized to 1 (line 2-3).
In addition, the array storing the current VM to PS assignment is
initialized to zero values (line 4). This array, which has size |M |,
reports for each VM the index of the assigned PS. Moreover, the
algorithm flag is initialized to a negative value (line 5).

The core of the algorithm (lines 6-20) is a while cycle, which is
terminated if: i) all the VMs are assigned to the PSs, or ii) it is not
possible to assign all the VMs to the PSs. In particular, the current
VM (considering the VM index in the array of ordered VMs) is
assigned to the current PS (line 7). Then, a check on the CPU and
on the memory requested by the current set of VMs assigned to
the current PS is performed (line 8). If the total amount of CPU
and memory in each PS is below the maximum values, then the
current VM is kept on the PS, and the following VM is analyzed
(line 10). Clearly, if all the VMs have been analyzed and assigned
(line 11-12), the flag is set to 1 and the while cycle is stopped. On
the other hand, if the CPU and memory check fails, the algorithm
considers the next PS (line 15) as candidate one to allocate the
current VM. Note that, if all the PSs have been analyzed (without
finding a feasible assignment), the flag is set to 0 (line 17) and the
while cycle is ended. Finally, the algorithm copies the array of the
current assignment in the matrix xsm(t), ∀s ∈ S, ∀m ∈ M .

Focusing on the time complexity, the initial VM sorting (line
1) can be done in O(|M | log |M |) time. Moreover, the initia-
lization of the variables (lines 2-5) can be done in O(|M |). In
addition, the check on CPU and memory is done in O(|M |) for
the current PS. The external while cycle (lines 6-20) requires at
most O(|M | · |S|) iterations. Finally, the xsm(t) assignment can
be done in O(|M | · |S|) time. Overall, the FFD algorithm has a
time complexity in the order of O(|M |2 · |S|).

Focusing on the space complexity, both the VM sorted (line 1)
and the current VM assignment (line 7) are stored in two arrays of
size |M |. Moreover, the VM to PS assignment (line 21) is stored in
a matrix of size |M | · |S|. Therefore, the overall space complexity
is in the order of O(|S| · |M |).

APPENDIX D
NEXT-FIT DECREASING DESCRIPTION

We then consider a modified version of the Next-Fit Decreasing
(NFD) algorithm [44], with the goal of providing a solution able
to distribute the CPU requests across the VMs. In contrast to FFD,
in fact, the main goal of NFD is keep the PSs generally powered
on, in order to reduce the CPU load on each PS.

Alg. 4 reports the NFD pseudo code. The input parameters of
the algorithm are the CPU γm(t) and the memory µm(t) requests
by the VMs. The output is the VMs to PSs assignment xsm(t),
as well a flag reporting the algorithm status. Initially, the VM are
sorted, based on the decreasing amount of requested CPU (line 1).
In addition, the total number of served VMs is set to zero (line
2), and the current PS and VM indexes are set to 1 (lines 3-4).
Moreover, also the current VM to PS assignment is initialized
to zero values (line 5). In addition, an array, used to store the
number of PSs considered during the allocation of each VM, is
also initialized (line 6). Finally, the algorithm flag is initially set
to a negative value (line 7). Similarly to FFD, the core of the
algorithm is a while cycle, which continuously checks the flag
value (line 8-28). In particular, the current VM (taken from the
ordered array of VMs) is assigned to the current PS (line 9). Then
the CPU and memory requirements are checked for the current PS
(line 10). If the total CPU and the total memory are higher than the
maximum values, the current VM is deallocated from the current
PS (line 12), and the number of PSs considered for the current VM
is increased (line 13). On the other hand, if the current PS can host
the current VM, the VM index is increased (line 15), as well as the
total number of VM served (line 16). Clearly, if all the VMs have
been successfully assigned, the flag is set to 1, and the while cycle
ends (lines 17-19). In any case, the current PS index is increased
(line 21). Differently from other classical implementations of the
NFD algorithm, we reset the current number of PSs (lines 22-24)
to check if the current VM can be assigned to PSs considered
in the assignment of the previous VMs. In case there is at least
one VM that cannot be assigned to any PS, its total number of
considered PSs is equal to |S|+ 1. We therefore perform a check
on this condition, and eventually stop the algorithm (lines 25-27)
if it is not possible to assign all the VMs to the PSs. Finally, the
output matrix xsm(t)∀s ∈ S, ∀m ∈ M is built (line 29).

In the following, we analyze the time complexity of the
NFD algorithm. The sorting of the VMs (line 1) can be done
in O(|M | log(|M |)) time. In addition, the initialization of the
variables is performed in O(|M |) (lines 2-7). The check on the
CPU and memory (line 10), as well as the check on the number
of considered PSs for each VM (line 25), require at most O(|M |)
iterations. In the worst case, the while cycle (line 8-28) is repeated
for each VM and each PS, thus requiring O(|M | · |S|) iterations.
Finally, the construction of the output matrix xsm(t) is done in
O(|M | · |S|). Therefore, the overall complexity of NFD is in the
order of O(|M |2 · |S|).

Finally, we analyze the space complexity of NFD. The sorting
of the VMs (line 1), the current VM assignment (line 5), and the
number of PSs for each VMs (line 6) require arrays of size |M |.
Moreover, the VM to PS assignment (line 29) is stored in a matrix
of size |M | · |S|. Therefore, the overall space complexity is in the
order of O(|S| · |M |).

APPENDIX E
LOWER BOUND DESCRIPTION

The goal of the Lower Bound (LB) is to provide a methodology
to easily compute the minimum values of processing and mainte-
nance costs. Intuitively, the LB aims at maximizing the number of
PSs in SM at each TS, in order to: i) reduce the processing costs,
ii) reduce the maintenance costs (when the number of transitions is
neglected). Moreover, we do not consider the impact of migrations
costs, as well as the costs due to data transferring.

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING 18

Algorithm 4 Pseudo-Code of the NFD algorithm
Input: γm(t),µm(t)
Output: xsm(t), flag bin

1: VM sorted=sort VM(γm(t),’descend’);
2: VM served=0;
3: curr s index=1;
4: curr VM index=1;
5: curr VM assignment=init array(|M |);
6: s considered=init array(|M |);
7: flag bin=-1;
8: while flag bin == -1 do
9: curr VM assignment[VM sorted[curr VM index]]=curr s index;

10: if (check CPU mem(curr VM assignment,curr s index,
11: γm(t),µm(t))==false) then
12: curr VM assignment[VM sorted[curr VM index]]=0;
13: s considered(VM sorted[curr VM index])++;
14: else
15: curr VM index++;
16: VM served++;
17: if VM served==|M | then
18: flag bin=1;
19: end if
20: end if
21: curr s index++;
22: if curr s index == |S| + 1 then
23: curr s index=1;
24: end if
25: if (check s cons(s considered,|S|) == false) then
26: flag bin=0;
27: end if
28: end while
29: xsm(t)=write conf(curr VM assignment);

More formally, we initially store the maximum value of
available CPU from the PSs:

γ̂MAX = max
s∈S

γMAX
s (34)

We then denote with N̂AM (t) the minimum number of PSs to be
powered on at a given TS t. N̂AM (t) is defined as:

N̂AM (t) =

��
m∈M γm(t)

|S| · γ̂MAX

�
(35)

In the following, we compute the average PS utilization (denoted
with û(t)) as:

û(t) =

�
m∈M γm(t)

N̂AM (t) · γ̂MAX
(36)

We then store the minimum value of PMAX
s from the PSs:

P̂MAX = min
s∈S

PMAX
s (37)

Similarly, we store the minimum value of P IDLE
s from the PSs:

P̂ IDLE = min
s∈S

P IDLE
s (38)

We then introduce the variable P̂ (t) to store the average power
consumption. P̂ (t) is computed as:

P̂ (t) =
�
û(t)

�
P̂MAX − P̂ IDLE

�
+ P̂ IDLE

�
(39)

Finally, the LB for the processing costs is then computed by
considering the contribution up to previous TS (t − 1) plus the
contribution at current TS:

C
PROC−LB
E (t) = C

PROC−LB
E (t − 1) + KE · δ(t) · N̂AM (t) · P̂ (t) (40)

Focusing then on the maintenance costs, we initially store in
the variable φ̂AM the minimum PS FR:

φ̂AM = min
s

φAM
s (41)

Similarly, we store in the variable ÂF
SM

the minimum AF
experienced by a PS always in SM:

ÂF
SM

= min
s

AFSM
s (42)

We then compute the number of PSs in SM as:

N̂SM (t) = |S|− N̂AM (t) (43)

In the following, we compute the total AF as:

ÂF
TOT

(t) = 1−
�
1− ÂF

SM
�
·
�t

t�=1 N̂SM (t�) · δ(t�)
|S| · τALL(t)

(44)

The LB of the maintenance costs is then expressed with the
following formula:

C
TOT−LB
M (t) = C

TOT−LB
M (t−1)+KR ·δ(t) · |S| · ÂF

TOT
(t) · φ̂AM (45)

Finally, the LB of the total costs is computed as the summation of
processing plus maintenance costs:

CTOT−LB(t) = CPROC−LB
E (t) + CTOT−LB

M (t) (46)

Three considerations hold for this LB. First, we assume that
the most impacting effect on the PS consolidation is driven
by CPU requirements, and not by memory ones.7 Second, we
compute the minimum number of PSs which could theoretically
satisfy the CPU requirements. However, in a real environment,
the actual values of the single CPU requests may impose to use a
larger number of PSs in AM. Third, in the maintenance costs we
consider only the impact of SM duration, which always introduces
a positive effect. The number of transitions, which tends to notably
increase the maintenance costs, is not taken into account in the LB
computation.

APPENDIX F
IMPACT OF VM DELAY CONSTRAINTS

Let us denote with θ(s1,s2) the experienced delay of a single VM
when it is migrated from PS s1 ∈ S to PS s2 ∈ S. In addition, let
us denote with θMAX

m the maximum delay that can be tolerated
by VM m ∈ M , which we assume does not change across the set
of TSs.

We first analyze the impact of delay on MECDC. To this end,
we assume that a set of VMs, denoted with Υ, has a stringent delay
constraint, i.e., θ(s1,s2) > θMAX

m , ∀m ∈ Υ, ∀s1, s2 ∈ S, s1 �=
s2. In particular, the VMs belonging to the Υ set, shall not be
migrated across the PSs, in order to ensure the delay constraint.
On the other hand, we assume that the set of Υ = M \ Υ
VMs has a loose delay constraint, i.e., θ(s1,s2) ≤ θMAX

m , ∀m ∈
Υ, ∀s1, s2 ∈ S, s1 �= s2. In other words, such VMs can be
safely moved across the set of PSs, without violating their delay
constraint.

In the following, we run MECDC by considering the Tot-CPU
VM subset, 15 VMs, 4 PSs, and 5 years of lifetime. The remaining
parameters are kept the same as in Sec. 8.1. Moreover, we consider

7. Even though the memory requirements are not considered in our com-
putation, they could be potentially added as an additional term. We leave this
aspect as future work.

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING 19

TABLE 9
Impact of Delay on the MECDC algorithm.

|Υ| 0 5 10 12 15
Energy [Wh] 22833 22833 22833 22833 22833

Tot. Migrations 2065 2065 2065 2065 2065
Migrations with Penalty 0 534 1437 1706 2065

different cardinalities of the Υ set, i.e., |Υ| = {0, 5, 10, 12, 15}.
In particular, when |Υ| = 0 all the VMs can be safely migrated
across the set of PSs. On the other hand, when |Υ| = 15 all the
VMs have stringent delay constraints. For the intermediate values,
we instead randomly assign the VMs to Υ, until reaching the
required cardinality |Υ|.

We point out that, even in the case in which all the PSs are
always powered on, there might be the need of migrating VMs
across the set of PSs, due to the fact that: i) the CPU and memory
requirements have to be satisfied in each TS, ii) the future requests
in terms of CPU and memory are supposed to be not known in
advance. Consequently, we keep track of: i) the total number of
migrations, and ii) the number of migrations not satisfying the VM
delay constraint, which we denote as migrations with penalty.

Tab. 9 reports the obtained results. Several consideration hold
in this case. First, the migrations of VMs are a pretty rare
event, i.e., a migration occurs on average every 13.25 [days]
for each VM. Second, the variation of |Υ| impacts the number
of migrations with penalty. The larger is |Υ|, the higher is the
number of migrations with penalty. Third, the energy consumption
does not vary, due to the fact that |Υ| is not explicitly considered
by MECDC.

Overall, these numbers already prove that the impact on
migration delay is rather limited, due to the fact that MECDC
tends to keep a stable solution in terms of VM allocation and in
terms of PSs powered on vs. time. However, we have designed a
delay-aware version of the MECDC algorithm (called MECDC-
DA), by introducing the following changes:

• in the Adaptive Bin Packing function, we check if the
delay for moving the current VM from the current PS to
the destination PS is lower than θMAX

m after line 12 of the
function. If the constraint is not satisfied, the current VM
is not assigned to the destination PS;

• lines 9-24 of phase 1 of the MECDC algorithm are re-
peated twice: in the first iteration, the algorithm considers
only the VMs belonging to the Υ subset; in the second
iteration, if the CPU and memory constraints are still not
satisfied, all the VMs are considered as candidate ones to
be migrated.

Tab. 10 reports the obtained results. Interestingly, MECDC-
DA is able to reduce the number of migrations, as well as the
migrations with penalty, for all the values of |Υ| > 0. In the
worst case (|Υ| = 15), the number of migrations with penalty
decrease from 2065 with MECDC to 1309 with MECDC-DA,
thus reaching a 37% of reduction. Moreover, the results with lower
values of |Υ| are even more promising. For example, when |Υ| =
10, a total number of 7 migrations with penalty is experienced
across the whole set of VMs, meaning that such event is extremely
rare. Finally, we can also note that a minor impact on the energy
consumption is experienced.

Summarizing, we have provided a demonstration of how the
MECDC algorithm can consider the delay. In any case, the consid-

TABLE 10
Impact of Delay on the MECDC-DA algorithm.

|Υ| 0 5 10 12 15
Energy [Wh] 22833 22607 22623 22604 22605

Tot. Migrations 2065 1179 434 626 1309
Migrations with Penalty 0 3 7 266 1309

Algorithm 5 Pseudo-Code of the TS Variation Function

Input: γORIG
m (t),µORIG

m (t),DORIG
mn (t),κ

Output: γMOD
m (t),µMOD

m (t),DORIG
mn (t)

1: for m=1:|M| do
2: curr index=1;
3: for t=1:|T | do
4: if curr index==κ then
5: γMOD

m (t)=max(t−κ+1:t) γ
ORIG
m (t);

6: µMOD
m (t)=max(t−κ+1:t) µ

ORIG
m (t);

7: for n=1:|M| do
8: DMOD

mn (t)=max(t−κ+1:t) D
ORIG
mn (t);

9: end for
10: curr index=1;
11: else
12: curr index++;
13: end if
14: end for
15: end for

ered scenario assumes that live migrations can be performed for
most of VMs without impacting their delay requirements (i.e., we
assume that we are in the cases |Υ| ≤ 10). This can be achieved
for example by reserving an amount of network bandwidth to
perform the live migrations [22], [57]. However, we believe that
future work can be done in the cases when |Υ| > 10, which
are representative e.g. when VMs are used for mission critical
purposes.

APPENDIX G
IMPACT OF TS DURATION

In the last part of our work, we have analyzed the impact of
varying the TS duration on the obtained results. To this aim, we
have considered the original input data from the Materna-3 trace,
which we recall has a TS granularity of δ(t) = 5 [minutes]. We
have then applied the TS variation function reported in Alg. 5 to
obtain the modified input data for each value of TS duration. In
particular, the function requires as input the original CPU request
γORIG
m (t), the original memory request µORIG

m (t), the original
amount of exchanged data between VMs DORIG

mn (t) (which is
computed with the procedure reported in Sec. 7), and the TS
reduction factor, which is denoted by κ. The function is then able
to produce as output the modified CPU request γMOD

m (t), the
modified memory request µMOD

m (t) and the modified amount of
exchanged data between VMs DMOD

mn (t). Specifically, the new
data is computed as the maximum value between the current TS
and the last κ TSs (lines 2-13). In this way, we always ensure that
the SLAs are met by the owner of the CDC.

We have then considered the Tot-CPU VM subset. Fig. 8
reports the variation of the total amount of requested CPU by
the VMs vs. the TS index, for different TS duration δ(t). Clearly,
the δ(t) = 15 [minutes] and the δ(t) = 60 [minutes] curves are
obtained by setting κ = 3 and κ = 12, respectively. Interestingly,
we can note that there is always a strong variability in the total
requested CPU. In addition, as δ(t) increases, the total CPU also

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING 20

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

Time Slot Index

T
o
ta

l
C

P
U

 R
e
q
u
e
s
te

d
 [
%

]

δ(t)=5 [minutes]

δ(t)=15 [minutes]

δ(t)=60 [minutes]

Fig. 8. Total Variation of CPU vs. the TS index for different TS duration
δ(t)(Tot-CPU subset).

TABLE 11
Total costs vs. the variation of the TS duration δ(t) for the different

strategies (Tot-CPU subset).

FFD NFD MECDC LB
δ(t) = 5 [minutes] 97230 [$] 27379 [$] 22833 [$] 14800 [$]
δ(t) = 15 [minutes] 150560 [$] 24643 [$] 22910 [$] 15434 [$]
δ(t) = 60 [minutes] 198560 [$] 24009 [$] 23532 [$] 16271 [$]

increases, as a result from the composition of the different terms
coming from the single VMs.

We have then run the MECDC, NFD, FFD, and LB algorithms
for the different values of TS duration δ(t), considering a total
period of time equal to 5 [years]. Tab. 11 reports the obtained
results in terms of total costs. As expected, the LB costs tend to
increase when δ(t) is increased, due to the increase in the total
request of CPU by the VMs (shown in Fig. 8). On the other hand,
NFD is able to reduce the costs when the TS duration increases.
By further investigating this issue, we have found that the main
contribution to the reduction of the costs in this case is due to
the migration costs, which tend to decrease. This is due to the
fact that, by increasing the TS duration, the VMs tend to have
requests that are more constant over time, resulting in a lower
number of migrations. On the other hand, a large increase in the
total costs is experienced by FFD. In this case, we have found
that there are two servers which are frequently powered on / off,
resulting then in large maintenance costs. Finally, the MECDC
algorithm is able to achieve the lowest costs compared to NFD
and FFD. Eventually, a slight increase is experienced when δ(t) is
increased. Therefore, we can conclude that our solution is robust
against the TS variation.

