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Abstract—In this manuscript the fixed-lag smoothing problem
for conditionally linear Gaussian state-space models is investi-
gated from a factor graph perspective. More specifically, after
formulating Bayesian smoothing for an arbitrary state-space
model as forward-backward message passing over a factor graph,
we focus on the above mentioned class of models and derive two
novel particle smoothers for it. Both the proposed techniques
are based on the well known two-filter smoothing approach and
employ marginalized particle filtering in their forward pass.
However, on the one hand, the first smoothing technique can
only be employed to improve the accuracy of state estimates with
respect to that achieved by forward filtering. On the other hand,
the second method, that belongs to the class of Rao-Blackwellized
particle smoothers, provides also a point mass approximation of
the so called joint smoothing distribution. Finally, our smoothing
algorithms are compared, in terms of estimation accuracy and
computational requirements, with a Rao-Blackwellized particle
smoother recently proposed by Lindsten et al. in [20].

Index terms— State Space Representation, Hidden Markov
Model, Filtering, Smoothing, Marginalized Particle Filter, Be-
lief Propagation.

I. INTRODUCTION

Bayesian filtering and Bayesian smoothing for state space
models (SSMs) are two interrelated problems that have re-
ceived significant attention for a number of years [1]. Bayesian
filtering allows to recursively estimate, through a predic-
tion/update mechanism, the probability density function (pdf)
of the current state of any SSM, given the history of some
observed data up to the current time. Unluckily, the general
formulas describing the Bayesian filtering recursion (e.g.,
see [2, eqs. (4)-(5)]) admit closed form solutions for linear
Gaussian and linear Gaussian mixture SSMs [1] only. On
the contrary, approximate solutions are available for general
nonlinear models; these are based on sequential Monte Carlo
(SMC) techniques (also known as particle filtering methods)
which represent a powerful tool for numerical approximations
[3]-[5].

Bayesian smoothing, instead, exploits an entire batch of
measurements to generate a significantly better estimate of the
pdf (i.e., a smoothed or smoothing pdf) of a SSM state over a
given observation interval. Two general methods are available
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in the literature for recursively calculating smoothing densities,
namely the forward filtering-backward smoothing recursion
[4], [7] and the method based on the two-filter smoothing
formula [8]-[10]. In both cases the computation of smoothing
densities requires combining the predicted and/or filtered den-
sities generated by a standard Bayesian filtering method with
those produced by a recursive backward technique (known
as backward information filtering, BIF, in the case of two-
filter smoothing). Similarly as filtering, closed form solutions
for Bayesian smoothing are available for linear Gaussian and
linear Gaussian mixture models [1], [11]. This has motivated
the development of various SMC approximations (also known
as particle smoothers) for the above mentioned two methods
in the case of nonlinear SSMs (e.g., see [4], [6], [8], [9], [12]-
[15] and references therein).

While SMC methods can be directly applied to an arbitrary
nonlinear SSM for both filtering and smoothing, it has been
recognized that their estimation accuracy can be improved in
the case of conditionally linear Gaussian (CLG) SSMs. In fact,
the linear substructure of such models can be marginalised, so
reducing the dimension of their sample space [16], [17]. This
idea has led to the development of important SMC techniques
for filtering and smoothing, known as Rao-Blackwellized parti-
cle filtering (also dubbed marginalized particle filtering, MPF)
[17], [18] and Rao-Blackwellized particle smoothing (RBPS)
[13], [14], [20], respectively.

Recently, the filtering problem for CLG SSMs has been
investigated from a factor graph (FG) perspective in [21],
where a novel interpretation of MPF as a forward only message
passing algorithm over a specific FG has been provided
and a novel extension of it, dubbed turbo filtering (TF),
has been derived. In this manuscript, the same conceptual
approach is employed to provide new insights in the fixed-
interval smoothing problem [13] and to develop novel solu-
tions for it. The proposed solutions are represented by two
novel particle smoothing methods, the first one dubbed serial
particle smoothing (SPS), the second one Rao-Blackwellized
serial smoothing (RBSS). These methods share the following
relevant features: a) they are based on the two-filter smoothing
formula and employ MPF in their forward pass; b) they can be
derived applying the well known sum-product algorithm (SPA)
[23], [24], together with a specific scheduling procedure, to
the same FG developed in [21] and [22] for a CLG SSM;
c) unlike the RBPS methods devised in [13] and [14], they
can be employed for a SSM in which both the linear and
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nonlinear state components influence each other. Moreover,
the computational requirements of the SPS technique are
comparable with that of MPF, since a single estimate of
the nonlinear state trajectory is generated in its backward
pass; consequently, it is substantially simpler than the RBPS
methods illustrated in [13], [14] and [20]. On the contrary, the
computational load of the RBPS method is significantly higher,
being close to that of the method developed in [20]; in fact,
these methods employ similar procedures to generate a joint
smoothing distribution over the entire observation interval.

It is worth mentioning that the application of FG methods to
Bayesian smoothing is not new. However, as far as we know,
the few results available in the technical literature about this
topic refer to the case of linear Gaussian SSMs only [23], [25],
[26], whereas we exclusively focus on the case in which the
mathematical laws expressing state dynamics and/or available
observations are nonlinear.

The remaining part of this manuscript is organized as
follows. The model of the considered CLG SSM is briefly
illustrated in Section II. A representation of the smoothing
problem through Forney-style FGs for both an arbitrary SSM
and a CLG SSM is provided in Section III. In Section IV
the SPS and the RBSS techniques are developed for a CLG
SSM, and are compared with that of other particle smoothing
methods. Section V is devoted to comparing, in terms of
accuracy and computational effort, our FG-based smoothing
algorithms with the RBPS method developed in [20]. Finally,
some conclusions are offered in Section VI.

Notations: The probability density function (pdf) of a
random vector R evaluated at point r is denoted f(r);
N (r; ηr,Cr) represents the pdf of a Gaussian random vector
R characterized by the mean ηr and covariance matrix Cr

evaluated at point r; the precision (or weight) matrix associated
with the covariance matrix Cr is denoted Wr, whereas the
transformed mean vector Wrηr is denoted wr.

II. SYSTEM MODEL

In the following we focus on the discrete-time CLG SSM
described in [21], [22]. In brief, the SSM hidden state
in the l-th interval is represented by the D-dimensional
real vector xl , [x0,l, x1,l, ..., xD−1,l]

T ; this is parti-
tioned in a) its DL-dimensional linear component x

(L)
l ,

[x
(L)
0,l , x

(L)
1,l , ..., x

(L)
DL−1,l]

T and b) its DN -dimensional non-
linear component x

(N)
l , [x

(N)
0,l , x

(N)
1,l , ..., x

(L)
DN−1,l]

T (with
DL < D and DN = D − DL). The update equations of
the linear and nonlinear components are given by

x
(L)
l+1 = A

(L)
l

(
x
(N)
l

)
x
(L)
l + f

(L)
l

(
x
(N)
l

)
+ w

(L)
l , (1)

and

x
(N)
l+1 = A

(N)
l

(
x
(N)
l

)
x
(L)
l + f

(N)
l

(
x
(N)
l

)
+ w

(N)
l , (2)

respectively; here, f (L)
l (x) (f (N)

l (x)) is a time-varying DL-
dimensional (DN -dimensional) real function, A

(L)
l (x

(N)
l )

(A(N)
l (x

(N)
l )) is a time-varying DL × DL (DN × DL) real

matrix and w
(L)
l (w(N)

l ) is the l-th element of the process
noise sequence {w(L)

k } ({w(N)
k }), which consists of DL-

dimensional (DN -dimensional) independent and identically
distributed (iid) noise vectors (statistical independence be-
tween {w(L)

k } and {w(N)
k } is also assumed for simplicity).

In the following Section we mainly focus on the so-called
fixed-interval smoothing problem [13]; this consists of com-
puting the sequence of posterior densities {f(xl|y1:T ), l =
1, 2, ..., T} (where T represents the length of the observation
interval), given a) the initial pdf f(x1) and b) the T · P -
dimensional measurement vector y1:T =

[
yT
1 ,y

T
2 , ...,y

T
T

]T
,

where

yl , [y0,l, y1,l, ..., yP−1,l]
T = hl

(
x
(N)
l

)
+Bl

(
x
(N)
l

)
x
(L)
l +el,

(3)
with l = 1, 2, ..., T , is a P -dimensional vector collecting the
noisy observations available about xl in the l-th interval. Here,
Bl(x

(N)
l ) is a time-varying P ×DL real matrix, hl(x

(N)
l ) is

a time-varying P -dimensional real function and el the l-th
element of the measurement noise sequence {ek} consisting
of P -dimensional iid noise vectors (all independent of both
{w(N)

k } and {w(L)
k }).

III. A FG-BASED REPRESENTATION OF SMOOTHING

In this Section we formulate the computation of the
marginal smoothed density f(xl|y1:T ) (with l = 1, 2, ..., T )
as a message passing algorithm over a specific FG for the
following two cases: C.1) a SSM whose statistical behavior
is characterized by the Markov model f(xl+1|xl) and the
observation model f(yl|xl); C.2) a SSM having the additional
property of being CLG (see the previous Section).

In case C.1 we take into consideration the joint pdf
f(xl,y1:T ) in place of the posterior pdf f(xl|y1:T ). This
choice is motivated by the fact that: a) the computation of the
former pdf can be easily formulated as a recursive message
passing algorithm over a proper FG, since, as shown below,
this involves only products and sums of products; b) the former
pdf, being proportional to the latter one, is represented by the
same FG (this issue is discussed in [23, Sec. II, p. 1297]).
Note that the validity of statement a) relies on the following
mathematical results: 1) the factorization (e.g., see [8, Sec. 3])

f (xl,y1:T ) = f
(
yl:T

∣∣xl,y1:(l−1)
)
f
(
xl,y1:(l−1)

)
= f (yl:T |xl ) f

(
xl,y1:(l−1)

)
(4)

for the pdf of interest; 2) the availability of recursive methods,
known as Bayesian filtering [2] (and called forward filtering,
FF, in the following for clarity) and backward information
filtering (BIF; e.g., see [8]) for computing the joint pdf
f(xl,y1:(l−1)) and the conditional pdf f(yl:T |xl), respec-
tively, for any l.

As far as FF is concerned, the formulation illustrated in [21,
Sec. 2] is adopted here; this consists of a measurement update
(MU) step followed by a time update (TU) step and assumes
the a priori knowledge of the pdf f(x1) for its initialization.
In the MU step of its l-th recursion (with l = 1, 2, ..., T ) the
joint pdf

f (xl,y1:l) = f
(
xl,y1:(l−1)

)
f (yl |xl ) (5)
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Fig. 1: Graphical representation of the message passing for the
evaluation of the joint pdf f(xl+1,y1:l) and of the conditional
pdf f(yl:T |xl) on the basis of eqs. (5)-(6) and (7)-(8), respec-
tively (the forward and backward message flows are indicated
by red and blue arrows, respectively)

is computed on the basis of pdf f(xl,y1:(l−1)), and the new
measurement vector yl. In the TU step, instead, the pdf
f (xl,y1:l) (5) is exploited to compute the pdf

f (xl+1,y1:l) =

∫
f (xl+1 |xl ) f (xl,y1:l) dxl, (6)

representing a prediction about the future state xl+1.
A conceptually similar recursive procedure can be easily

developed for the (T − l)-th recursion of BIF (with l = T −
1, T − 2, ..., 1). In fact, this can be formulated as a TU step
followed by a MU step; these are expressed by

f
(
y(l+1):T |xl

)
=

∫
f
(
y(l+1):T |xl+1

)
f (xl+1 |xl ) dxl

(7)
and

f (yl:T |xl ) = f
(
y(l+1):T |xl

)
f ( yl |xl ) , (8)

respectively. Note that this procedure requires the knowledge
of the pdf f(yT |xT ) for its initialization (see (7)).

Eqs. (5)-(8) show that each of the FF (or BIF) recursions
involves only products of pdfs and a sum (i.e., an integration)
of products. For this reason, based on the general rules about
graphical models illustrated in [23, Sect. II], such recursions
can be interpreted as specific instances of the SPA1 applied to
the cycle free FG of Fig. 1 (where the simplified notation of
[23] is employed).

More specifically, it is easy to show that eqs. (5) and (6)
can be seen as a SPA-based algorithm for forward message
passing over the FG shown in Fig. 1 (the flow of forward
messages is indicated by red arrows in the considered figure).
In fact, if the FG is fed by the message2

~mfp (xl) , f(xl,y1:(l−1)), (9)

the forward message emerging from the equality node and
that passed along the edge associated with xl+1 are given by

1In a Forney-style FG, such a rule can be formulated as follows [23]: the
message emerging from a node f along some edge x is formed as the product
of f and all the incoming messages along all the edges that enter the node f
except x, summed over all the involved variables except x.

2In the following the acronyms bp, be, fp, fe and sm are employed in the
subscripts of various messages, so that readers can easily understand their
meaning; in fact, the messages these acronyms refer to represent a form
of backward prediction, backward estimation, forward prediction, forward
estimation and smoothing, respectively.

~mfe (xl) = f (xl,y1:l) and f(xl+1,y1:l) = ~mfp (xl+1), re-
spectively [21], [22]. A similar interpretation can be provided
for eqs. (7) and (8), which, however, can be reformulated as a
SPA-based algorithm for backward message passing over the
considered FG. In fact, if the input message

←
mbe (xl+1) , f

(
y(l+1):T |xl+1

)
(10)

enters the FG along the half edge associated with xl+1 (the
flow of backward messages is indicated by blue arrows in Fig.
1), the backward message

←
mbp (xl) (emerging from the node

associated with the pdf f(xl+1|xl)) is given by (see (7))

←
mbp (xl) =

∫
←
mbe (xl) f (xl+1 |xl ) dxl

=

∫
f(y(l+1):T |xl+1)f (xl+1 |xl ) dxl

= f
(
y(l+1):T |xl

)
. (11)

Therefore, the backward message emerging from the equality
node can be evaluated as (see (8) and (10))

f (yl |xl )
←
mbp (xl) = f (yl |xl ) f

(
y(l+1):T |xl

)
= f (yl:T |xl ) =

←
mbe (xl) (12)

and this concludes our proof.
These results easily lead to the conclusion that, once the

forward and backward message passing algorithms illustrated
above have been carried out over the entire observation inter-
val, the smoothed pdf f (xl,y1:T ) can be evaluated as (see
(4), (9) and (12))

f (xl,y1:T ) = ~mfp (xl)
←
mbe (xl) , (13)

with l = 1, 2, ..., T (note that
←
mbe (xT ) = 1 and ~mfp (x1) =

f(x1)) or, alternatively, as

f (xl,y1:T ) = ~mfe (xl)
←
mbp (xl) . (14)

It is worth noting that, despite the conceptual simplicity of the
procedure illustrated above, its implementation can represent
a formidable task, mainly because of the multidimensional
integration required in (6) and (7). This has motivated the
development of the so called Rao-Blackwellization approach,
according to which the state vector xl is partitioned in a
nonlinear component x

(N)
l and a linear component x

(L)
l ;

moreover, from a statistical viewpoint, x
(N)
l is represented

through a set of weighted particles, whereas x
(L)
l through

a set of a particle-dependent Gaussian pdfs (i.e., through a
Gaussian mixture, GM). In [21] and [22] it has been shown
that Rao-Blackwellized filtering can be seen as an instance of
the SPA applied to the FG we develop for case C.2; the new
FG is based not only on that analysed for case C.1, but also
on the idea of representing a mixed linear/nonlinear SSM as
the concatenation of two interacting sub-models, one referring
to the linear component of system state, the other one to its
nonlinear component [21]. For this reason, two distinct sub-
graphs are drawn, one referring to smoothing for x(L)

l (under
the assumption that x(N)

l is known), the other one to smoothing
for x(N)

l (under the dual assumption that x(L)
l is known). The

first (second) sub-graph can be easily obtained from the FG
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shown in Fig. 1 by including the contribution of a pseudo-
measurement, denoted z

(L)
l (z(N)

l ), computed on the basis of
the knowledge of x(N)

l (x(L)
l ). In fact, smoothing for the linear

component x(L)
l can benefit not only from the measurement

yl, but also from the vector (see (2))

z
(L)
l , x

(N)
l+1 − f

(N)
l

(
x
(N)
l

)
= A

(N)
l

(
x
(N)
l

)
x
(L)
l + w

(N)
l ,

(15)
which, from a statistical viewpoint, is characterized by the pdf
f(z

(L)
l |x

(L)
l ,x

(N)
l ). Similarly, the vector (see (1))

z
(N)
l , x

(L)
l+1 −A

(L)
l

(
x
(N)
l

)
x
(L)
l = f

(L)
l

(
x
(N)
l

)
+ w

(L)
l ,

(16)
characterized by the pdf f(z

(N)
l |x(N)

l ), can be exploited in
smoothing for the nonlinear component x(N)

l . Then, the two
sub-graphs are merged by adding five distinct equality nodes,
associated with the shared variables (namely, yl, x

(L)
l , x(N)

l ,
x
(L)
l+1 and x

(N)
l+1 ). This leads to the overall FG illustrated in Fig.

2, in which the sub-graph referring to the linear (nonlinear)
state component is identified by red (blue) lines, whereas the
equality nodes added to merge them are identified by black
lines. This graphical model deserves the following important
comments:
• No approximation is made in deriving it.
• Its upper (lower) sub-graph contains an additional

node representing the pseudo-measurement pdf
f(z

(L)
l |x

(L)
l ,x

(N)
l ) (f(z

(N)
l |x(N)

l )) and a specific
node not referring to a pdf factorization, but representing
the transformation from the couple (x

(N)
l ,x

(N)
l+1) to z

(L)
l

((x(L)
l ,x

(L)
l+1) to z

(N)
l ); the last peculiarity is evidenced

by the presence of an arrow on all the edges connected
to such a node.

• Unlike the FG represented in Fig. 1, it is not cycle-free.
This property is due to the fact that, generally speaking,
smoothing for x(N)

l is not decouplable from that for x(L)
l ;

in other words, uncertainty in each component of system
state needs to be accounted for in the distribution of the
other state component.

Given the FG of Fig. 2, we would like to follow the
same line of reasoning as that illustrated for the graphical
model of Fig. 1. In particular, given the input backward
(marginal) messages

←
mbe(x

(L)
l+1) , f(y(l+1):T , z

(L)
(l+1):T ,x

(L)
l+1)

and
←
mbe(x

(N)
l+1) , f(y(l+1):T , z

(N)
(l+1):T ,x

(N)
l+1), we are inter-

ested in deriving a BIF algorithm3 based on this FG and gener-
ating the output backward (marginal) messages

←
mbe(x

(L)
l ) =

f(yl:T , z
(L)
l:T ,x

(L)
l ) and

←
mbe(x

(N)
l ) = f(yl:T , z

(N)
l:T ,x

(N)
l ) on

the basis of the available a priori information and the noisy
measurement yl. Note that, given the FG of of Fig. 2, the
evaluation of the message

←
mbe(x

(L)
l ) (

←
mbe(x

(N)
l )) requires

marginalization with respect to x
(N)
l (x(L)

l ). It is well known
that, on the one hand, in cycle-free graphical models exact
marginalization can be accomplished by means of the SPA; on
the other hand, the application of the SPA to a graphical model
containing cycles unavoidably leads to approximate solutions

3FF based on this FG has been deeply investigated in [21] and [22] and,
for this reason, is not analysed here.

Fig. 2: Factor graph for case C.2. The sub-graph referring
to the linear (nonlinear) state component is identified by
red (blue) lines, whereas the equality nodes introduced to
merge the two sub-graphs by black lines. The direction of the
messages passed over the half edges x

(L)
l and x

(N)
l (inputs)

and over the half edges x
(L)
l+1 and x

(N)
l+1 (outputs) is indicated

by green arrows.

[24], whatever message scheduling is adopted. Despite this, we
believe that, like in the related problem of filtering for CLG
SSMs [21], [22], this approach can lead to the development of
accurate and computationally efficient smoothing algorithms,
as shown in the following Section.

IV. PARTICLE SMOOTHING AS MESSAGE PASSING

In this Section we first illustrate some assumptions about
the statistical properties of the SSM described in Section II.
Then, we develop the SPS and RBSS techniques. Finally, we
compare the most relevant features of these techniques with
those of the other RBPS algorithms available in the technical
literature.

A. Statistical properties of the considered SSM
Even if the graphical model shown in Fig. 2 can be

employed for any mixed linear/nonlinear system described
by eqs. (1)-(3), the methods derived in this Section apply,
like MPF [17] and TF [21], to the specific class of CLG
SSMs. For this reason, following [21], [22] we assume that:
a) the process noise {w(L)

k } ({w(N)
k }) is Gaussian and all its

elements have zero mean and covariance C
(L)
w (C(N)

w ) for any
l; b) the measurement noise {e(L)

k } is Gaussian having zero
mean and covariance matrix Ce for any l; c) all the above men-
tioned Gaussian processes are statistically independent. Under
these assumptions, the pdfs f(yl|x(L)

l ,x
(N
l ), f(z

(L)
l |x

(L)
l )

and f(x
(L)
l+1|x

(L)
l ,x

(N)
l ) are Gaussian with mean (covari-

ance matrix) Bl(x
(N)
l )x

(L)
l +hl(x

(N)
l ), A(N)

l (x
(N)
l )x

(L)
l and

f
(L)
l (x

(N)
l ) + A

(L)
l (x

(N)
l )x

(L)
l , respectively (Ce, C

(N)
w and

C
(L)
w , respectively). Similarly, the pdfs f(z

(N)
l |x(N)

l ) and
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f(x
(N)
l+1 |x

(N)
l ,x

(L)
l ) are Gaussian with mean (covariance ma-

trix) f
(L)
l (x

(N)
l ) and f

(N)
l (x

(N)
l ) + A

(N)
l (x

(N)
l )x

(L)
l , respec-

tively (C(L)
w and C

(N)
w , respectively).

B. Derivation of the particle serial smoother
In developing our first particle smoothing algorithm the

following fundamental requirements have been set to limit
its computational complexity as much as possible: 1) MPF
is employed in its (single) forward pass4; 2) the statistical
information generated by the BIF technique adopted in its
(single) backward pass can be easily combined with that
provided by MPF to generate the marginal smoothed densities
of interest; c) the estimates of both the linear component
and the nonlinear component are available at the end of the
backward pass and each of them is represented by a single
trajectory.

As far as the use of MPF is concerned, the following
notation is adopted here:
• The j-th particle predicted for x

(N)
l in the (l − 1)-

th recursion (with l = 2, 3, ..., T ) of this algorithm is
denoted x

(N)
l/(l−1),j (with j = 0, 1, ..., Np − 1, where Np

is the overall number of particles); moreover, the weight
assigned to this particle is denoted wl/(l−1),j (this weight
is equal to 1/Np for any j, since the use of particle
resampling in each recursion is assumed).

• The weight computed for the particle x
(N)
l/(l−1),j in the

following (i.e., in the l-th) recursion on the basis of
the new measurement yl is denoted wl/l,j (with j =
0, 1, ..., Np − 1).

• The j-th particle available after particle resampling based
on the weights {wl/l,j} is denoted x

(N)
l/l,j (note that the

set {x(N)
l/l,j} usually contains multiple copies of the most

likely particles of the set {x(N)
l/(l−1),j}).

• The Gaussian model predicted for x
(L)
l in the (l − 1)-

th recursion and associated with x
(N)
l/(l−1),j is denoted

N (x
(L)
l ; η

(L)
fp,l,j ,C

(L)
fp,l,j); note, however, that only a por-

tion of these Gaussian models is usually updated in the
next (i.e., l-th) recursion on the basis of yl; in fact, this
task follows particle resampling, which typically leads to
discarding a fraction of the particles collected in the set
{x(N)

l/(l−1),j}.
In the forward pass of the proposed SPS method, the

statistical information generated by MPF and saved for further
processing is conveyed by the forward messages

~mfp,j

(
x
(N)
l

)
, δ

(
x
(N)
l − x

(N)
l/(l−1),j

)
(17)

and
~mfp,j

(
x
(L)
l

)
, N

(
x
(L)
l ; η

(L)
fp,l,j ,C

(L)
fp,l,j

)
, (18)

with j = 0, 1, ..., Np − 1. Let us now focus on the back-
ward pass of the SPS algorithm and, in particular, tackle

4Note that TF can be employed in place of MPF in the forward pass
of RBSS. However, our computer simulations have evidenced that, in the
presence of strong measurement and/or process noise (like in the scenarios
considered in Section V), this choice does not provide any performance
improvement with respect to MPF.

the problems of a) developing a recursive BIF algorithm
based on the FG of Fig. 2 and b) merging the statistical
information it generates with those computed in the forward
pass (smoothing). The recursive algorithm we propose results
from the application of the SPA to the FG shown in Fig. 2
and is based on the message scheduling illustrated in Figs.
3-(a) and 3-(b), both referring to the (T − l)-th recursion
(with l = T − 1, T − 2, ..., 1) and the j-th particle5 x

(N)
l/(l−1),j

(with j = 0, 1, ..., Np − 1). The processing accomplished by
the SPS algorithm within the considered recursion can be
divided in three parts, that are executed serially (and this
motivates the presence of the adjective ‘serial’ in the name
of the devised smoothing algorithms). The first part, that
involves the computation of the messages illustrated in Fig. 3-
(a), concerns the linear state component, since it generates the
particle-dependent statistical model

←
mbe,j(x

(L)
l ) (conveying a

particle-dependent backward estimate of x
(L)
l ) and combines

it with the forward model ~mfp,j(x
(L)
l ) on the basis of (13);

this results in the message msm,j(x
(L)
l ), conveying a particle-

dependent statistical model for the smoothed pdf of x
(L)
l .

Note that the last message is expected to provide a more
refined statistical representation of x

(L)
l than ~mfp,j(x

(L)
l ) or

←
mbe,j(x

(L)
l ) alone; consequently, it can be profitably exploited

in the evaluation of new particle weights. This task is ac-
complished in the second part (see Fig.3-(b)), which mainly
concerns the nonlinear state component; in fact, in this part
the message6 mbe,j(x

(N)
l ) = msm,j(x

(N)
l ), conveying a new

weight for the particle x
(N)
l/(l−1),j , is computed on the basis of

the available measurements and pseudo-measurements, and of
the message msm,j(x

(L)
l ). After running the first two parts

for all the available particles, the sets of smoothed messages
{msm,j(x

(L)
l )} and {msm,j(x

(N)
l )} are available; in the third

(and last) part of the SPS algorithm, these messages are
fused to generate an estimate of the marginal smoothed pdf
of xl. From Figs. 3-(a) and 3-(b) it can be also inferred
that the considered recursion is fed not only by the forward
messages ~mfp,j(x

(N)
l ) (17) and ~mfp,j(x

(L)
l ) (18), but also by

the particle-independent backward messages
←
mbe

(
x
(N)
l+1

)
, δ

(
x
(N)
l+1 − x

(N)
be,l+1

)
(19)

and
←
mbe

(
x
(L)
l+1

)
, N

(
x
(L)
l+1; η

(L)
be,l+1,C

(L)
be,l+1

)
. (20)

These messages have been generated in the previous (i.e., the
(T − l − 1)-th) recursion and provide statistical information
about the backward estimates of x(N)

l+1 and x
(L)
l+1, respectively.

More specifically, as explained in detail below, the messages
←
mbe(x

(N)
l+1) (19) and

←
mbe(x

(L)
l+1) (20) convey the backward

estimate x
(N)
be,l+1 (i.e., a single particle representation) of x(N)

l+1

and a (simplified) backward statistical representation of x(L)
l+1,

5Note that, similarly to MPF, most of the processing tasks which SPS
consists of can be formulated with reference to a single particle; this explains
why the notation adopted for most of the messages appearing in Fig. 3 includes
the subscript j, that represents the index of the particle (namely, the particle
x
(N)
l/(l−1),j

) representing x
(N)
l within the considered recursion.

6The backward and the smoothed estimates coincide in this case since all
the message {~mfp,j(x

(N)
l )} convey a unit weight (see (17)).
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respectively. Consequently, in the (T − l)-th recursion of
the SPS algorithm, the messages

←
mbe(x

(N)
l ) and

←
mbe(x

(L)
l )

must be also computed (see Fig. 3-(b)), so that they become
available to the next backward recursion; in practice, they are
generated merging the statistical information conveyed by the
sets {mbe,j(x

(L)
l )} and {mbe,j(x

(N)
l )}, respectively.

Let us analyse now the three processing steps accomplished
in the first part of the SPS technique (see Fig. 3-(a)). The first
step aims at evaluating the Gaussian message

←
m1,j(x

(L)
l ) = N (x

(L)
l ; η

(L)
1,l,j ,C

(L)
1,l,j), (21)

representing a one-step backward prediction of the pdf of x(L)
l ,

evaluated on the basis of ~mfp,j(x
(N)
l ) (17) and

←
mbe(x

(L)
l+1)

(20). Note that, given x
(N)
l = x

(N)
l/(l−1),j , the random variable

x
(L)
l+1 is generated by adding the output A(L)

l,j x
(L)
l of a matrix

multiplication to the random vector f
(L)
l,j + w

(L)
l (see (1)),

where A
(L)
l,j , A

(L)
l (x

(N)
l/(l−1),j) and f

(L)
l,j , f

(L)
l (x

(N)
l/(l−1),j).

Consequently, the precision matrix W
(L)
1,l,j and the transformed

mean vector w
(L)
1,l,j associated with the covariance matrix

C
(L)
1,l,j and the mean vector η(L)

1,l,j , respectively, can be easily
computed by applying eqs. (IV.6)-(IV.8) of [23, Table 4,
p.1304] in their backward form (with A → IDL

, X →
A

(L)
l,j x

(L)
l , Z → x

(L)
l+1 and Y → f

(L)
l,j + w

(L)
l ) and, then,

eqs. (III.5)-(III.6) of [23, Table 3, p.1304] (with A → A
(L)
l,j ,

X → x
(L)
l and Y → A

(L)
l,j x

(L)
l ); this results in

W
(L)
1,l,j =

(
A

(L)
l,j

)T
Pl+1W

(L)
be,l+1A

(L)
l,j , (22)

and

w
(L)
1,l,j =

(
A

(L)
l,j

)T [
Pl+1w

(L)
be,l+1 −W

(L)
be,l+1Hl+1W

(L)
w f

(L)
l,j

]
,

(23)
where W

(L)
be,l+1 , (C

(L)
be,l+1)−1, Pl+1 , IDL

−W
(L)
be,l+1Hl+1,

Hl+1 , (W
(L)
w + W

(L)
be,l+1)−1, W

(L)
w , (C

(L)
w )−1 and

w
(L)
be,l+1 , W

(L)
be,l+1η

(L)
be,l+1. The second step can be seen

as a MU for the linear state component. In fact, it aims
at generating the backward estimate

←
mbe,j(x

(L)
l ) by merging

the backward prediction
←
m1,j(x

(L)
l ) (21) with the Gaussian

messages
←
m2,j(x

(L)
l ) and

←
m4,j(x

(L)
l ), that convey the avail-

able statistical information about the measurement yl and
the pseudo-measurement z

(L)
l , respectively, given x

(N)
l =

x
(N)
l/(l−1),j and x

(N)
l+1 = x

(N)
be,l+1. Since

~mj

(
z
(L)
l

)
= f

(
z
(L)
l

∣∣∣x(N)
l/(l−1),j ,x

(N)
be,l+1

)
= δ

(
z
(L)
l − z

(L)
l,j

)
,

(24)
where

z
(L)
l,j , x

(N)
be,l+1 − f

(N)
l,j (25)

and f
(N)
l,j , f

(N)
l (x

(N)
l/(l−1),j), the message

←
m2,j(x

(L)
l ) can be

easily evaluated as

←
m2,j

(
x
(L)
l

)
=

∫ ∫
f
(
z
(L)
l

∣∣∣x(L)
l ,x

(N)
l

)
· ←mj

(
z
(L)
l

)
~mfp,j

(
x
(N)
l

)
dx

(N)
l dz

(L)
l

= N
(
z
(L)
l,j ;A

(N)
l,j x

(L)
l ,C(N)

w

)
. (26)

Moreover, this message can be put in the equivalent Gaussian
form

←
m2,j

(
x
(L)
l

)
= N

(
z
(L)
l,j ; η

(L)
2,l,j ,C

(L)
2,l,j

)
, (27)

where the precision matrix W
(L)
2,l,j and the transformed mean

vector w(L)
2,l,j associated with C

(L)
2,l,j and η(L)

2,l,j , respectively, are
given by

W
(L)
2,l,j =

(
A

(N)
l,j

)T
W(N)

w A
(N)
l,j , (28)

and

w
(L)
2,l,j =

(
A

(N)
l,j

)T
W(N)

w z
(L)
l,j , (29)

respectively; here, A
(N)
l,j , A

(N)
l (x

(N)
l/(l−1),j) and W

(N)
w ,

(C
(N)
w )−1. Similarly, the message

←
m4,j(x

(L)
l ) is given by

←
m4,j

(
x
(L)
l

)
=

∫
f
(
yl

∣∣∣x(N)
l , x

(L)
l

)
~mfp,j

(
x
(N)
l

)
dx

(N)
l

= N
(
yl;Bl,j x

(L)
l + hl,j ,Ce

)
, (30)

where Bl,j , Bl(x
(N)
l/(l−1),j) and hl,j , hl(x

(N)
l/(l−1),j); this

message can be also put in the equivalent Gaussian form

←
m4,j

(
x
(L)
l

)
= N

(
x
(L)
l ; η

(L)
4,l,j ,C

(L)
4,l,j

)
, (31)

where the precision matrix W
(L)
4,l,j and the transformed mean

vector w(L)
4,l,j associated with C

(L)
4,l,j and η(L)

4,l,j , respectively, are
evaluated as

W
(L)
4,l,j = (Bl,j)

T
WeBl,j (32)

and
w

(L)
4,l,j = (Bl,j)

T
We (yl − hl,j) , (33)

respectively, and We , C−1e . Given
←
m1,j(x

(L)
l ) (21),

←
m2,j(x

(L)
l ) (27) and

←
m4,j(x

(L)
l ) (31), the message

←
mbe,j

(
x
(L)
l

)
= N

(
x
(L)
l ; η

(L)
be,l,j ,C

(L)
be,l,j

)
(34)

can be computed by applying twice eqs. (II.2) and (II.4) of
[23, Table 2, p.1303] (referring to the computation of the
backward messages emerging from an equality node). This
produces the precision matrix

W
(L)
be,l,j , W

(L)
1,l,j + W

(L)
2,l,j + W

(L)
4,l,j

=
(
A

(L)
l,j

)T
Pl+1W

(L)
be,l+1A

(L)
l,j

+ (Bl,j)
T
WeBl,j

+
(
A

(N)
l,j

)T
W(N)

w A
(N)
l,j (35)
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(a) (b)

Fig. 3: Representation of the message scheduling employed in the first part (a) and in the second part (b) of the (T − l)-th
recursion of SPS backward processing. Blue, green and red arrows are employed to identify the input forward messages, the
input/output backward messages and the remaining messages, respectively.

and the transformed mean vector

w
(L)
be,l,j , w

(L)
1,l,j + w

(L)
2,l,j + w

(L)
4,l,j

=
(
A

(L)
l,j

)T [
Pl+1w

(L)
be,l+1

−W(L)
be,l+1Hl+1W

(L)
w f

(L)
l,j

]
+
(
A

(N)
l,j

)T
W(N)

w z
(L)
l,j

+ (Bl,j)
T
We (yl − hl,j) , (36)

associated with C
(L)
be,l,j and η

(L)
be,l,j , respectively. In the third

(and last) step, the messages ~mfp,j(x
(L)
l ) and

←
mbe,j(x

(L)
l ) are

merged (see eq. (13)) to generate the Gaussian message

msm,j

(
x
(L)
l

)
= N

(
x
(L)
l ; η

(L)
sm,l,j ,C

(L)
sm,l,j

)
, (37)

that conveys the smoothed information for the linear compo-
nent associated with the j-th particle. In this case, applying
again eqs. (II.2) and (II.4) of [23, Table 2, p.1303] produces
the precision matrix7

W
(L)
sm,l,j ,

(
C

(L)
sm,l,j

)−1
= W

(L)
fp,l,j + W

(L)
be,l,j , (38)

and the transformed mean vector

w
(L)
sm,l,j , W

(L)
sm,l,jη

(L)
sm,l,j = w

(L)
fp,l,j + w

(L)
be,l,j , (39)

associated with C
(L)
sm,l,j and η

(L)
sm,l,j , respectively (here,

W
(L)
fp,l,j , (C

(L)
fp,l,j)

−1 and w
(L)
fp,l,j , W

(L)
fp,l,jη

(L)
fp,l,j). Finally,

the message msm,j(x
(L)
l ) (37) is passed to the second part of

the SPS algorithm, since it represents the final estimate of the
pdf of x(L)

l associated with the j-th particle.

7Note that msm,j(x
(L)
1 ) =

←
mbe,j(x

(L)
1 ) and msm,j(x

(L)
T ) =

~mfp,j(x
(L)
T ) should be assumed, since at the instant l = 1 (l = T ) only a

backward estimate (a forward prediction) is available for x(L)
l .

The processing accomplished in the second part of the SPS
technique can be divided in two steps (see Fig. 3-(b)). In
the first step, a new weight is computed for the j-th particle
on the basis of the following information: a) the backward
estimate x

(N)
be,l+1 of x(N)

l+1 (see
←
mbe(x

(N)
l+1) (19); b) the pseudo-

measurement z
(N)
l ; c) the measurement yl. For this reason,

the new overall weight Wl,j for the j-th particle is expressed
as a product of three factors (see the lower part of the FG
shown in Fig. 3-(b)), i.e. as

Wl,j = w1,l,j · w2,l,j · w4,l,j , (40)

where the weights w1,l,j , w2,l,j and w4,l,j are related to
x
(N)
be,l+1, z

(N)
l and yl, respectively, and represent the mes-

sages
←
m1,j(x

(N)
l ),

←
m2,j(x

(N)
l ) and

←
m4,j(x

(N)
l ), respectively.

In practice, the weight w1,l,j is evaluated as

w1,l,j =

∫ ∫
f
(
x
(N)
l+1

∣∣∣x(L)
l ,x

(N)
l/(l−1),j

)
· ←mbe

(
x
(N)
l+1

)
msm,j

(
x
(L)
l

)
dx

(L)
l dx

(N)
l+1

= N
(
x
(N)
be,l+1; η

(N)
1,l,j ,C

(N)
1,l,j

)
=

= K1,l,j exp

(
−1

2
Z1,l,j

)
(41)

where K1,l,j = (2π det(C
(N)
1,l,j))

−DN/2, Z1,l,j =
∥∥∥x(N)

be,l+1

−η(N)
1,l,j

∥∥∥2
W

(N)
1,l,j

,

η
(N)
1,l,j , A

(N)
l,j η

(N)
sm,l,j + f

(N)
l,j , (42)

C
(N)
1,l,j , A

(N)
l,j C

(N)
sm,l,j

(
A

(N)
l,j

)T
+ C(N)

w (43)

and ‖x‖2W , xTWx denotes the square of the norm of the
vector x with respect to the positive definite matrix W.
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The computation of the weight w2,l,j requires the knowl-
edge of the Gaussian message

←
mj

(
z
(N)
l

)
= N

(
x
(N)
l ; η

(N)
z,l,j ,C

(N)
z,l,j

)
, (44)

that expresses the statistical knowledge acquired about z
(N)
l

(16) on the basis of the messages
←
mbe(x

(L)
l+1) (20) and

msm,j(x
(L)
l ) (37); the mean vector and the covariance matrix

of the message
←
mj(z

(N)
l ) (44) are evaluated as (see [21, p. 4,

eqs. (35)-(36)])

η
(N)
z,l,j , η

(L)
be,l+1 −A

(L)
l,j η

(L)
sm,l,j , (45)

and

C
(N)
z,l,j , C

(L)
be,l+1 −A

(L)
l,j C

(L)
sm,l,j

(
A

(L)
l,j

)T
, (46)

respectively. Given the message
←
mj(z

(N)
l ) (44), w2,l,j is

computed by correlating it with the pdf f(z
(N)
l |x(N)

l/(l−1),j)

(expressing our prior knowledge about z(N)
l for the considered

particle), i.e. as

w2,l,j =

∫
←
mj

(
z
(N)
l

)
f
(
z
(N)
l

∣∣∣x(N)
l/(l−1),j

)
dz

(N)
l . (47)

Then, substituting
←
mj(z

(N)
l ) (44) in (47) yields, after some

manipulation,

w2,l,j = K2,l,j exp

(
−1

2
Z2,l,j

)
, (48)

where

Z2,l,j ,
∥∥∥η(N)

z,l,j

∥∥∥2
W

(N)
2,l,j

+
∥∥∥f (L)

l,j

∥∥∥2
W

(L)
w

−
∥∥∥η(N)

2,l,j

∥∥∥2
W

(N)
2,l,j

(49)

K2,l,j = (2π det(C
(N)
z,l,j + C

(L)
w ))−DL/2,

W
(N)
2,l,j = W

(N)
z,l,j + W(L)

w , (50)

w
(N)
2,l,j = w

(N)
z,l,j + W(L)

w f
(L)
l,j , (51)

W
(N)
z,l,j , (C

(N)
z,l,j)

−1 and w
(N)
z,l,j , W

(N)
z,l,jη

(N)
z,l,j .

Finally, the weight w4,l,j is evaluated as

w4,l,j =

∫
f
(
yl

∣∣∣x(N)
l/(l−1),j , x

(L)
l

)
msm,j

(
x
(L)
l

)
dx

(L)
l

= N
(
yl; η

(N)
4,l,j ,C

(N)
4,l,j

)
= K4,l,j exp

(
−1

2
Z4,l,j

)
,

(52)

where K4,l,j , (2π det(C
(N)
4,l,j))

−P/2, Z4,l,j , ‖yl

−η(N)
4,l,j

∥∥∥2
W

(N)
4,l,j

,

η
(N)
4,l,j , Bl,jη

(L)
sm,l,j + hl,j , (53)

C
(N)
4,l,j , Bl,jC

(L)
sm,l,j(Bl,j)

T + Ce (54)

and W
(N)
4,l,j , (C

(N)
4,l,j)

−1. Substituting the right-hand side
(RHS) of (41), (48) and (52) in (40) yields8

Wl,j = Kl,j exp

(
−1

2
Zl,j

)
, (55)

where
Kl,j , K1,l,j ·K2,l,j ·K4,l,j (56)

and

Zl,j , Z1,l,j + Z2,l,j + Z4,l,j =

=
∥∥∥x(N)

be,l+1 − η
(N)
1,l,j

∥∥∥2
W

(N)
1,l,j

+
∥∥∥yl − η(N)

4,l,j

∥∥∥2
W

(N)
4,l,j

+
∥∥∥η(N)

z,l,j

∥∥∥2
W

(N)
2,l,j

+
∥∥∥f (L)

l,j

∥∥∥2
W

(L)
w

−
∥∥∥η(N)

2,l,j

∥∥∥2
W

(N)
2,l,j

.

(57)

It worth noting that: a) for a given SSM and under specific
operating conditions, the three weights w1,l,j , w2,l,j and
w4,l,j may not have the same importance; b) the weight
w4,l,j can be seen as the backward counterpart of the weight
wl/l,j evaluated in FF. For these reasons, in some cases,
the computational load due to the evaluation of the overall
weight Wl,j (40) might be substantially reduced by discarding
one of the weigths {wp,l,j , p = 1, 2, 4} and/or adopting
the approximation w4,l,j ' wl/l,j with a limited impact on
estimation accuracy.

Once the whole set of weights {Wl,j } is available, its
normalization must be accomplished; this produces the final
(normalised) weight

Wsm,l,j ,Wl,j/

Np−1∑
j=0

Wl,j , (58)

which is conveyed by the messages (see Fig. 3-(b))

mbe,j

(
x
(N)
l

)
= msm,j

(
x
(N)
l

)
= Wsm,l,j δ

(
x
(N)
l − x

(N)
l/(l−1),j

)
(59)

for j = 0, 1, , ..., Np − 1.
In the second step the input messages

←
mbe

(
x
(N)
l

)
= δ

(
x
(N)
l − x

(N)
be,l

)
(60)

and
←
mbe

(
x
(L)
l

)
= N

(
x
(L)
l ; η

(L)
be,l,C

(L)
be,l

)
(61)

for the next recursion are generated on the basis of the par-
ticle weights {Wsm,l,j } (see (58)) and the particle-dependent
Gaussian messages {←mbe,j(x

(L)
l ) } (see (34)-(36)). The vector

x
(N)
be,l , appearing in the RHS of (60), represents the l-th element

of the estimated nonlinear state trajectory and is evaluated as
a weighted sum of the particles {x(N)

l/(l−1),j} , i.e. as

x
(N)
be,l ,

Np−1∑
j=0

Wsm,l,jx
(N)
l/(l−1),j . (62)

8Our numerical results have evidenced that ignoring the factor Kl,j in the
evaluation of the weights {Wl,j } has a negligible impact on the performance
of the SPS algorithm for the SSMs considered in Section V. For, this reason,
this factor has been always set to one in our computer simulations.
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The evaluation of the mean vector η(L)
be,l and C

(L)
be,l, appearing

in the RHS of (61), is based on the observation that: a) the
statistical presentation of x

(L)
l based on the sets {Wsm,l,j }

(see (58)) and {←mbe,j(x
(L)
l ) } (see (34)) is expressed by a Np-

component order GM; b) any GM can be easily condensed in
a single Gaussian pdf by means of a simple transformation
preserving both the mean and the covariance matrix of the
GM itself (e.g., see [28, Sect. 4]). Adopting this transformation
leads us to evaluating η(L)

be,l (which represents the l-the element
of the estimated linear state trajectory) and C

(L)
be,l as

η
(L)
be,l ,

Np−1∑
j=0

Wsm,l,j η
(L)
be,l,j (63)

and

C
(L)
be,l ,

Np−1∑
j=0

Wsm,l,j C
(L)
be,l,j

+

Np−1∑
j=0

Wsm,l,j

(
η
(L)
be,l,j − η

(L)
be,l

)(
η
(L)
be,l,j − η

(L)
be,l

)T
,

(64)

respectively.
The third (and final) part of the SPS algorithm aims at

generating its output, i.e. at computing an approximation of the
marginal smoothed pdfs of xl; this approximation is expressed
by

f̂ (xl|y1:N ) ,
Np−1∑
j=0

msm,j

(
x
(N)
l

)
msm,j

(
x
(L)
l

)
, (65)

where msm,j(x
(L)
l ) and msm,j(x

(N)
l ) are given by (37) and

(59), respectively; note that this formula has the typical
structure of Rao-Blackwellized approximations (e.g., see eq.
(11) in [20, p. 355, second column]).

After completing the evaluation of f̂ (xl|y1:N ) (65), the
(T − l)-th recursion of the SPS technique is over. Then,
the recursion index l is decreased by one; if it equals zero,
the backward pass is over, otherwise a new recursion starts.
It is important to point out that the first recursion of the
backward pass requires the knowledge of the input messages
←
mbe(x

(N)
T ) and

←
mbe(x

(L)
T ). Like in any particle smoothing

method employing BIF, the evaluation of these messages
is based on the statistical information generated in the last
recursion of FF. In particular, the above mentioned messages
are still expressed by (60) and (61) (with l = T ). However,
in this case, we have that x

(N)
be,T is computed according to

(62) (with l = T ), but using the FF weights {wT/T,j}
in place of the smoothed weights {Wsm,l,j}; similarly, the
parameters η(L)

be,T and C
(L)
be,T appearing in (61) are evaluated

on the basis of formulas (63) and (64), but employing, in
place of the Gaussian messages {←mbe,j(x

(N)
l )} (see (40)), the

messages {N (x
(L)
T ; η

(L)
fe,T,j ,C

(L)
fe,T,j)} generated by the MU

for the linear state component in the last (i.e., in the T -th)
recursion of FF.

The complete SPS technique is given in Algorithm 1.

Algorithm 1: Serial particle smoothing

1 Forward filtering: Run the MPF algorithm for time
l = 1, 2, ..., T . For each l, store
{x(N)

l/(l−1),j , η
(L)
fp,l,j ,C

(L)
fp,l,j}

Np

j=1; for l = T store

{wT/T,j , η
(L)
fe,T,j ,C

(L)
fe,T,j}

Np

j=1.
2 Initialisation of backward filtering: compute x

(N)
be,T ,

η
(L)
be,T and C

(L)
be,T according to (62), (63) and (64) (with

Wsm,l,j = wT/T,j , η(L)
be,T,j = η

(L)
fe,T,j and

C
(L)
be,T,j = C

(L)
fe,T,j for any j), respectively.

3 Backward filtering and smoothing: For l = T − 1 to 1:
a- For j = 1 to Np:
- Backward filter prediction (linear component only):

compute W
(L)
1,l,j and w

(L)
1,l,j according to (22) and (23),

respectively;
- Backward measurement update (linear component

only): compute W
(L)
be,l,j and w

(L)
be,l,j according to (35)

and (36), respectively;
- Smoothing (linear state component only): compute
W

(L)
sm,l,j and w

(L)
sm,l,j according to (38) and (39),

respectively;
- Computation of particle weights (MU for the nonlinear

component only):
i) compute η(N)

1,l,j and C
(N)
1,l,j according to (42) and

(43), respectively;
ii) compute W

(N)
2,l,j and w

(N)
2,l,j according to (50) and

(51), respectively;
iii) compute η(N)

4,l,j and C
(N)
4,l,j according to (53) and

(54), respectively;
iv) compute the j-th weight Wl,j according to

(55)-(57) and store it.
b- Normalisation of particle weights: compute the

normalised weights {Wsm,l,j} according to (58) and
store them;

c- Condensation of backward estimation messages:
compute x

(N)
be,l , η(L)

be,l and C
(L)
be,l according to (62), (63)

and (64).
d- Generation of marginal smoothed densities: generate

an estimate of f (xl, |y1:N ) according to (65).

The SPS algorithm illustrated above deserves some addi-
tional comments, that are listed below:

1) The condensation of the sets of messages {←mbe,j(x
(L)
l )}

(see (34)) and {←mbe,j(x
(N)
l )} (see (59)) in the messages

←
mbe(x

(N)
l ) (60) and

←
mbe(x

(L)
l ) (61), respectively, is

necessary to significantly mitigate the computational
requirements of BIF. In fact, merging the complete
statistical information provided by sets {←mbe,j(x

(L)
l )}

and {←mbe,j(x
(N)
l )} with the forward messages repre-

senting xl−1 (namely, the messages {→mfp,j(x
(N)
l−1)} and

{→mfp,j(x
(L)
l−1)}, respectively) would entail a computa-

tional load proportional to N2
p .

2) Given (65), the approximations for the marginal
smoothed pdfs of x

(N)
l and x

(L)
l are expressed by the
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particle-based model

f̂
(
x
(N)
l |y1:N

)
,

Np−1∑
j=0

msm,j

(
x
(N)
l

)
(66)

and the Np-component GM

f̂
(
x
(L)
l |y1:N

)
,

Np−1∑
j=0

Wsm,l,j msm,j

(
x
(L)
l

)
, (67)

respectively, and are both suitable to represent multi-
modal pdfs. From these formulas it is easily inferred
that the smoothed estimate of x

(N)
l is given by x

(N)
be,l

(62), whereas the smoothed estimate x
(L)
sm,l of x

(L)
l has

to be evaluated as

x
(L)
sm,l =

Np−1∑
j=0

Wsm,l,j η
(L)
sm,l,j , (68)

where the mean vector η(L)
sm,l,j is computed on the basis

of (38) and (39).
Our final comment concerns the smoothing of the linear

state component and has been inspired by the considerations
illustrated in [20, Par. IV-D], where it is stressed that in
Rao-Blackwellized methods the statistics for the linear state
component need to be computed conditionally on the consid-
ered nonlinear state trajectory. As a matter of fact, our SPS
algorithm generates a single estimate of the nonlinear state
trajectory in its backward pass; however, the statistical models
for the linear state components associated with this trajectory
(see

←
mbe(x

(L)
l ) (61) and f̂(x

(L)
l |y1:N ) (67)) do not satisfy the

above mentioned condition (since they do not really refer to a
specific nonlinear state trajectory). This suggests that, once the
SPS algorithm has been carried out, more refined statistics for
the linear state component can be computed by accomplishing
Kalman smoothing (KS) on the linear state component, under
the assumption that the nonlinear state component is known
over the entire observation interval. In practice, this requires:

1) Carrying out a new forward pass followed by a new
backward pass; the first (second) pass produces a single
Gaussian message ~mfp(x

(L)
l ) , N (x

(L)
l ; η

(L)
fp,l,C

(L)
fp,l)

(
←
mbe(x

(L)
l ) , N (x

(L)
l ; η

(L)
be,l,C

(L)
be,l)) for l = 2, .., T (l =

T − 1, T − 2, .., 1).
2) Merging ~mfp(x

(L)
l ) and

←
mbe(x

(L)
l ) in the mes-

sage msm(x
(L)
l ) = N (x

(L)
l ; η

(L)
sm,l,C

(L)
sm,l), with

l = 2, 1, .., T − 1 (msm(x
(L)
1 ) =

←
mbe(x

(L)
1 ) and

msm(x
(L)
T ) = ~mfp(x

(L)
T ) are assumed) on the basis of

(38)-(39), so that a new final estimate η(L)
sm,l is available

for x(L)
l .

We believe that, even if this procedure is conceptually
appealing, the improvement it may provide in the estimation
accuracy for the linear state component is influenced by a)
the number of modes of the density of x(L)

l (since the adopted
unimodal model for this state component might provide a poor
statistical representation of it) and b) the presence of large
errors, at specific instants, in the estimated nonlinear state
trajectory. As a matter of fact, in our computer simulations no

improvement has been found in the estimation accuracy for
the specific SSMs considered in Section V.

C. Derivation of the Rao-Blackwellized serial smoother
The backward processing in the SPS algorithm has been

explicitly devised for estimating the marginal smoothing den-
sities {f(xl|y1:T )}; however, the structure of its recursion
can be easily modified to generate, like in the RBPS method
proposed in [20], M (equally likely) nonlinear state trajec-
tories, that jointly provide a point mass approximation of
the joint smoothing pdf f(x

(N)
1:T |y1:T ). In practice, this result

can be achieved accomplishing: 1) a single forward pass
(MPF); 2) M distinct backward passes, each generating a
new trajectory for the nonlinear state component; 3) KS for
each of the M nonlinear state trajectories, in order to estimate
the associated linear state trajectories. As far as the second
point is concerned, the recursive filtering algorithm we adopt
in each backward pass is obtained by incorporating a particle
sampling mechanism in the BIF of the SPS technique; this
modification is due to the fact that the nonlinear state trajectory
{x(N)

be,l , l = 1, 2, ..., T} generated in the backward pass of
the new particle smoother (called RBSS in the following)
consists entirely of particles generated in the forward pass
and not of a linear combination of them, like in the SPS
algorithm (see (62)). Consequently, the first change we make
in the SPS algorithm concerns the algorithm initialization
(see step 2) of Algorithm 1); in fact, in the RBSS tech-
nique the input messages feeding the first backward recursion
are expressed by

←
mbe(x

(N)
T ) , δ(x

(N)
T − x

(N)
T/(T−1),jT ) and

←
mbe(x

(L)
T ) , N (x

(L)
T ; η

(L)
fe,T,jT

,C
(L)
fe,T,jT

), where x
(N)
T/(T−1),jT

denotes the particle drawn from the particle set {x(N)
T/(T−1),j}

on the basis of the associated weights {wT/T,j} (generated
by the MPF MU for the nonlinear state component in its
final recursion), whereas

←
mbe(x

(L)
T ) represents the Gaussian

model associated with this particle (and generated by the MPF
MU for the linear state component in its final recursion). The
other modifications refer to step 3)-c) of Algorithm 1, which is
replaced by the following two tasks: 1) drawing a new sample,
denoted x

(N)
l/(l−1),jl , from the particle set {x(N)

l/(l−1),j} on the
basis of the particle weights {Wsm,l,j } (see (58)); 2) setting
x
(N)
be,l = x

(N)
l/(l−1),jl and (η

(L)
be,l,C

(L)
be,l) = (η

(L)
be,l,,jl

,C(L)
be,l,,jl

).
The backward pass is followed by KS; this aims at com-

puting the statistics for the linear state component only and
involves a new forward pass, which is carried out under
the assumption that the nonlinear state component is known;
this generates a new couple (η

(L)
fp,l,C

(L)
fp,l) for any l. Finally,

similarly to [20], the smoothed covariance C
(L)
sm,l and the

smoothed mean η
(L)
sm,l are evaluated on the basis of (38) and

(39), respectively (note also that the final estimate of x
(L)
l is

expressed by η(L)
sm,l).

The complete RBSS technique is given in Algorithm 2,
where, for simplicity, the generation of a single trajectory is
considered.
D. Comparison of the SPS and RBSS algorithms with other
RBPS methods

In this Paragraph the SPS and the RBSS techniques devised
in the previous two Paragraphs are compared with the other
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Algorithm 2: Rao-Blackwellized serial smoothing

1 Forward filtering: Run step 1) of Algorithm 1.
2 Initialisation of backward filtering: draw a particle,

denoted x
(N)
T/(T−1),jT , from the particle set {x(N)

T/(T−1),j}
on the basis of the particle weights {wT/T,j}; then, set
η
(L)
be,T = η

(L)
fe,T,jT

and C
(L)
be,T = C

(L)
fe,T,jT

and store them.
3 Backward filtering and smoothing: For l = T − 1 to 1:

a- For j = 1 to Np:
- Backward information filtering and smoothing: Run all

the steps listed at points 3)-a) and 3)-b) of Algorithm 1.
b- Computation of backward estimation messages: draw

a particle, denoted x
(N)
l/(l−1),jl , from the particle set

{x(N)
l/(l−1),j} on the basis of the particle weights

{Wsm,l,j}; then, set η(L)
be,l = η

(L)
be,l,,jl

and
C

(L)
be,l = C

(L)
be,l,,jl

.
4 Linear state smoothing: For l = 1 to T

a- Run a Kalman filter for the linear state component,
conditionally on the nonlinear trajectory selected in step
3) and store the predicted mean and covariance, i.e. the
couple (η

(L)
fp,l,C

(L)
fp,l).

b- Compute the smoothed covariance C
(L)
sm,l and the

smoothed mean η(L)
sm,l on the basis of (38) and (39),

respectively.

RBPS algorithms available in the literature, namely with the
particle smoothers proposed by Briers et al. in [13, Sec. 4, p.
75], by Fong et al. [14] and by Lindsten et al. [20] (these al-
gorithms are denoted Alg-B, Alg-F and Alg-L, respectively, to
ease reading of the remaining part of this manuscript). Despite
their substantially different structures, the last three algorithms
share the following relevant features: 1) the computation of an
estimate of the joint smoothing density f(x1:T |y1:T ); 2) the
reuse of the FF particles and weights; 3) the use of resampling
in the generation of backward trajectories; 4) the exploitation
of Kalman techniques for the linear state component. In the
following we provide some details about these features, so that
some important differences between such techniques and the
SPS/RBSS algorithms can be easily identified.

The first feature refers to the fact that these techniques aim
at generating realizations from the complete joint smoothing
pdf f(x1:T |y1:T ). Each realization consists of a) a trajectory
(i.e., a set of T particles, one for each observation instant)
for the nonlinear state component and a set of T Gaussian
pdfs (one for each observation instant) in Alg-B and Alg-
L, or b) a trajectory for the entire state in Alg-F (since a
particle-based representation is adopted for the linear state
component too). This approach provides the following relevant
advantage: any marginal smoothing density (like those we are
interested in) can be easily obtained from the joint density
by marginalization (i.e., by discarding the particle sets and
the associated Gaussian densities that refer to the instants
we are not interested in). This benefit, however, is obtained
at the price of a substantial computational complexity in all
cases. In fact, backward filtering and smoothing in Alg-F and

Alg-L require to be re-run M times, if M realizations of
f(x1:T |y1:T ) are needed; luckily, the processing accomplished
in each run reuses all the particles and the weights computed
in the forward pass. On the contrary, a single backward pass is
accomplished in the algorithm derived in Alg-B ; in this pass,
however, the generation of a new set of weighted particles and
Gaussian densities (representing the nonlinear state component
and the linear state component, respectively) is carried out.

The second feature concerns the fact that the particles
and the associated weights generated in the forward pass are
reused in the backward pass, even if in different ways. More
specifically, in the backward pass of the RPBS techniques of
Alg-F and Alg-L, particles are re-weighted; moreover, each
new weight is evaluated as the product of the weight computed
in the forward pass for the considered particle with a new
weight generated on the basis of backward statistics (see, in
particular, the particle smoothing task of Algorithm 4 in [14,
p. 443] and step 3)-b)-ii) of Algorithm 1 in [20, p. 357]). On
the one hand, the reuse, in the backward pass, of the particles
generated in the forward pass greatly simplifies BIF. On the
other hand, it places a strong constraint on the support of
each of the pdfs computed for nonlinear state component;
in fact, such a support is restricted to that identified for
the predicted/filtered pdfs in the forward pass9. This is the
reason why Alg-B includes an algorithm for generating, in
its backward pass, new particles, which are independent of
those computed in the forward pass. The price to be paid for
this, however, is represented by the additional computational
load due to 1) particle generation in the backward pass and 2)
the complexity of the processing required for fusing forward
and backward particles (and their associated weights) in the
computation of smoothed densities (see, in particular, [13, Par.
4.1.2, p. 80]).

As far as the third feature is concerned, it is worth men-
tioning that the use of resampling in Alg-F and Alg-L is
substantially different from that of Alg-B. In fact, in the first
case, resampling is applied to the particle set produced in the
TU of each recursion of the forward pass when generating a
new trajectory in a backward pass; this is motivated by the
fact that the mechanism of particle selection can benefit from
more refined statistical information, since the new weights
generated in the backward pass for the available particle set
are expected to be more reliable than those computed in the
forward pass. On the contrary, in the second case, resampling
is applied to the new particle set generated in each recursion
of the backward pass, exactly like in the forward pass.

Finally, the fourth feature concerns the exploitation of
Kalman techniques and, in particular, of KS for the linear
state component in the considered RBPS algorithms. Note,
however, that a different use of these standard tools is made
in the considered manuscripts. In fact, on the one hand, in
Alg-B and Alg-F, smoothing for linear state component is
accomplished within the backward pass and exploits the statis-
tical information about the linear state component generated
by Rao-Blackwellized filtering in the forward pass. On the
other hand, in Alg-L the backward pass aims at generating

9Note that this occurs in the SPS and in the RBSS techniques too.
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a trajectory for the nonlinear state component only. For this
reason, in this case, an additional forward pass for the linear
state component only is accomplished, under the assumption
that the nonlinear state trajectory is known, after that the
backward pass has been completed; finally, KS is carried out
to merge forward and backward information, as illustrated at
the end of the previous Paragraph.

Let us now focus on the similarity of the proposed SPS
technique with Alg-B, Alg-F and Alg-L in terms of the four
features illustrated above. The SPS algorithm shares feature
4) and part of feature 2) with the other RBPS techniques; in
fact, it reuses the FF particles, but not their weights (unless
the weight w4,l,j (52) is replaced by the MPF weight wl/l,j ,
as suggested in Paragraph IV-B). It does not share, however,
features 1) and 3); this makes it much faster than Alg-B, Alg-F
and Alg-L in the computation of marginal smoothed densities,
since both resampling and the generation of multiple trajecto-
ries or new particles in the backward pass are time consuming
tasks. In fact, the computational complexity associated with
the computation of marginal smoothed densities is of order
O(NpTM) for Alg-F and Alg-L, of order O(N2

pT ) for Alg-
B10; on the contrary, the computational complexity for the SPS
technique is of order O(NpT ) only.

The RBSS technique deserves different comments, since it
is structurally very similar to Alg-F and, consequently, its
complexity is also of order O(NpTM). In fact, the main
difference between these two algorithms is related to the
computation of particle weights in the backward pass. More
specifically, in Alg-F, the evaluation of the weight for the j-th
particle is not based on (40) (and, consequently, on (55)-(57)),
but on the formula (see step b)-ii) of Algorithm 1 in [20, p.
357])

Wl,j = wj
l Z

j
t det

(
Λj
t

)−1/2
exp

(
−1

2
ηjt

)
. (69)

Here, wj
l corresponds to wl/l,j (i.e., it represents the j-th

particle weight computed in the MPF MU for the nonlinear
state component and, consequently, depends on yl), whereas
the remaining factors appearing in the RHS of the last equation
are related to the statistical information about x(L)

l generated
in both the forward pass and the backward pass, and to the
pseudo-measurements. More specifically, it can be shown that
(analytical details are omitted here for space limitations):
• The product det(Λj

t )
−1/2 exp(−ηjt /2) appearing in the

RHS of (69) quantifies the correlation between the Gaus-
sian pdfs representing x

(L)
l , conditioned on x

(N)
l =

x
(N)
l/(l−1),j , in the forward pass and in the backward

pass (ηjt is expressed by the sum of three terms, a
scalar product and two squared non Euclidean norms;
see eq. (21a) of [20, p. 357]). Note, however, that these
Gaussian pdfs are not expressed by ~mfp,j(x

(L)
l ) (18)

and
←
mbe(x

(L)
l ) (61). In fact, on the hand, the Gaussian

10The dependence on N2
p is due to the fact that the particles generated in

the backward pass are different from those of the forward pass; this makes the
evaluation of the marginal densities, that requires merging all the statistical
information emerging from both passes (see [13, Par. 4.1.2, p. 80]) for further
details), computationally intensive.

pdf referring to the l-th recursion of the forward pass
(represented by N (zl; z̄

j
l/l, P

j
l/l); see eq. (11) of [20, p.

355])) is not that predicted in the previous recursion for
the j-th particle, but is that generated in the MU of
the l-th recursion on the basis of ~mfp,j(x

(L)
l ) and yl;

on the other end, the Gaussian pdf referring to the l-th
recursion of the backward pass is not influenced, unlike
←
mbe(x

(L)
l ), by the measurement yl (the precision matrix

and transformed mean vector for this Gaussian pdf are
denoted Ωl and λl, respectively; see eqs. (33b) and (33c)
of [20, p. 358]), but only by the pseudo-measurement
z
(L)
l .

• If the notation of the algorithms developed in this
manuscript is adopted, the factor Zj

t appearing in the
RHS of (69) can be expressed as11 (see eq. (33a) of [20,
p. 358])

Zj
l =

(
det
[
W

(L)
be,l+1 + W(L)

w

])−1/2
exp

(
−
τ jl
2

)
,

(70)
where

τ jl =
∥∥∥z(L)

l,j

∥∥∥2
W

(N)
w

+
∥∥∥f (L)

l,j

∥∥∥2
W

(L)
be,l+1

−2
(
w

(L)
be,l+1

)T
f
(L)
l,j −

∥∥∥w(L)
be,l+1

−W(L)
be,l+1f

(L)
l,j

∥∥∥2[
W

(L)
be,l+1+W

(L)
w

]−1 . (71)

Consequently, the quantity Zj
t (70) depends on both the

pseudo-measurement z(L)
l,j (24) and on the statistics of the

backward estimate for the linear state component x
(L)
l+1

(namely, on w
(L)
be,l+1and W

(L)
be,l+1), but it is not influenced

by the statistics computed in the forward pass for that
component.

Finally, it is worth stressing that Alg-B and Alg-F apply
to a mixed linear/nonlinear SSM whose state equation for the
nonlinear component (see (1)) does contain the nonlinear term
f
(L)
l (x

(N)
l ) (see [13, Sec. 4, p. 75] and [14, Sec. 4, p. 441]);

consequently, the only alternative method applicable to the
SSM described by (1)-(3) in its complete form is represented
by Alg-L.

V. NUMERICAL RESULTS

In this Section the SPS and RBSS algorithms are compared,
in terms of accuracy and computational load, for two specific
SSMs with a) the RBPS developed in [20] (i.e., Alg-L) and b)
MPF. As far as our comparison with MPF is concerned, it is
worth remembering that, in principle, SMC filtering algorithms
should be able to generate a point mass approximation of the
joint smoothing pdf f(x

(N)
1:T |y1:T ) (and, consequently, of all

its marginals); this would make backward filtering useless.
Unluckily, SMC filtering techniques suffer from the so called
degeneracy problem (e.g., see [13, Par. 1.3] and [29, Sec. 4]),

11Particle-independent factors are omitted in the following formula for
simplicity.
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so that their approximation of the above mentioned pdf is
extremely poor for large T .

The first SSM (denoted SSM #1 in the following) we con-
sider in our simulations refers to an agent node (represented
as a rigid body) that randomly moves on a plane and whose
state xl in the l-th observation interval is defined as

xl , [vT
l ,p

T
l ]T , (72)

where vl , [vx,l, vy,l]
T and pl , [px,l, py,l]

T represent the
target velocity and its position, respectively (their components
are expressed in m/s and in m, respectively). As far as the state
update equations are concerned, we assume that the target ve-
locity is approximately constant within each sampling interval
and its evolution is described by the first-order autoregressive
model

vl+1 = ρvl + (1− ρ)nv,l, (73)

where ρ is a real parameter (with 0 < ρ < 1), nv,l is an
additive Gaussian noise (AGN) vector characterized by the
covariance matrix I2. Consequently, the dynamic model

pl+1 = pl + vl · Ts + np,l (74)

can be employed for target position; here, Ts is the sampling
interval, and np,l is an AGN vector characterized by the
covariance matrix σ2

pI2 and accounting for model inaccuracy.
We also assume that noisy and unbiased measurements are
available for both velocity and position; therefore, the mea-
surement vector yl can be expressed as

yl = xl + el, (75)

where el , [eTv,l, e
T
p,l]

T and ev,l (ep,l) is an AGN vector
characterized by the covariance matrix σ2

evI2 (σ2
epI2). As it

can be easily inferred from (73)-(75), the first model we
are considering is linear and Gaussian. Our interest in it is
motivated by the fact that an optimal algorithm, namely KS
[1], can be employed in this case and that its mean square error
(MSE) performance represents a lower bound for any particle
smoother applied to SSM #1. In our work, the state vector
xl (72) has been artificially partitioned, setting x

(L)
l = vl

and x
(N)
l = pl (this choice is made for our second SSM

too). Consequently, the state equation (73) ((74)) can been
interpreted as an instance of (1) ((2)), with A

(L)
l (x

(N)
l ) = I2,

f
(L)
l (x

(N)
l ) = 02,1 and w

(L)
l = nv,l (with A

(N)
l (x

(N)
l ) =

TsI2, f
(N)
l (x

(N)
l ) = x

(N)
l and w

(N)
l = np,l); moreover,

comparing the measurement equation (75) with (3) leads easily
to the conclusion that hl(x

(N)
l ) = 04,1 and Bl(x

(N)
l ) = I4

for the considered SSM.
The second SSM (denoted SSM #2 in the following) is

obtained from the first one by simply introducing in its
dynamic model the contribution of the acceleration

al (pl) = −a0
pl

‖pl‖
1

1 + (‖pl‖ /d0)
2 , (76)

exhibiting a nonlinear dependence on pl, and representing the
effect of a force applied to the target and pointing towards
the origin of our reference system; here, a0 is a scale factor
(expressed in m/s2), whereas d0 is a (small) reference distance
that prevents the magnitude of acceleration from diverging

if the target approaches the origin of our reference system
(note that the magnitude of al (pl) (76) is approximately
proportional to ‖pl‖−2). Consequently, the new state update
equations are obtained by adding the new nonlinear terms
Tal(pl) and (T 2/2)al(pl)) to the RHSs of (73) and (74),
respectively. This entails that, as far as eqs. (1) and (2) are
concerned, the only changes with respect to SSM #1 are
represented by the functions f

(L)
l (x

(N)
l ) and f

(N)
l (x

(N)
l ), re-

spectively; in fact, now we have that f (L)
l (x

(N)
l ) = Tsal(x

(N)
l )

and f
(N)
l (x

(N)
l ) = x

(N)
l − (T 2

s /2)al(x
(N)
l ). On the contrary,

no change is required for the measurement model.
In our computer simulations, our assessment of state esti-

mation accuracy is based on the evaluation of two root MSEs
(RMSEs), one (denoted RMSEN (alg), where ‘alg’ denotes
the algorithm this parameter refers to) referring to the nonlin-
ear state component, the other one (denoted RMSEL(alg)) to
the linear state component; note that each of these parameters
represents the square root of the average MSE evaluated for the
elements of the state component it refers to. Our assessment
of computational requirements is based, instead, on assessing
the average computation time required for processing a single
block of measurements (this quantity is denoted CTB in the
following). In all the simulations the following choices have
been always made: a) T = 200 has been selected for the
length of the observation interval; b) unless differently stated,
M = 100 has been chosen for the number of trajectories gen-
erated by the RBSS algorithm and Alg-L (note that M . Np

is recommended in [15]).
In our computer simulations, unless differently stated, the

following values have been selected for the parameters of the
considered SSMs: SSM #1 - Ts = 10−2 s, ρ = 0.99, σp =
10−2 m, σv = 10−2 m/s, σev = 0.1 m/s, σep = 0.1 m,
v0 = [10−2 m/s, 10−2 m/s], p0 = [0, 0]; SSM #2 - T = 10−2

s, ρ = 0.995, σp = 10−2 m, σv = 5·10−3 m/s, σev = 5·10−2

m/s, σep = 5·10−2 m, v0 = [10−2 m/s, 10−2 m/s], p0 = [10−2

m, 10−2m], a0 = 0.5 m/s2 and d0 = 10−2 m.
Given the parameters listed above, RMSEL(KF ) ∼=

0.02898 and RMSEL(KS) = 0.0222 have been obtained for
Kalman filtering (KF) and KS, respectively; this means that
KS roughly provides a 25% improvement in state estimation
accuracy with respect to KF. Moreover, it has been found
that, on the one hand, even for small values of Np (say,
Np ≥ 10), the accuracy of considered particle-based filtering
(smoothing) algorithms is very close to that of KF (KS) in
terms of RMSEL; on the other hand, a significant number of
particles is required to closely approach the performance of
Kalman algorithms in terms of RMSEN . The last conclusion
is easily inferred from Fig. 4, that shows12 the dependence of
RMSEN on the number of particles (Np) for MPF and for
the three considered smoothing algorithms (the two horizontal
lines represent the RMSEs achieved by KF and KS); note that
two RMSEN curves are shown for Alg-L, one referring to
the case M = 100, the other one to the case M = Np. These
results also lead to the conclusion that:

12In these and in the following figures simulation results are identified by
markers, whereas continuous lines are drawn to ease reading.
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1) A small improvement in the estimation accuracy of all
the considered algorithms is achieved for Np > 200.

2) The MPF and the SPS algorithm closely approach KF
and KS accuracy, respectively, as Np increases.

3) Even if the RBSS algorithm and Alg-L provide by far
richer statistical information than the SPS algorithm,
they achieve slightly better accuracy in state estimation
for Np < 300, despite their substantially larger computa-
tional load. Moreover, for Np > 300 the SPS algorithm
performs slightly better than the RBSS algorithm and
Alg-L if M = 100 is set; this is due to the fact the
overall number of trajectories generated by the last two
algorithms is not allowed to increase with Np. In fact, a
further improvement in their accuracy can be achieved
by increasing M proportionally to Np; this is evidenced
by the trend of the RMSEN curve provided for Alg-
L with M = Np. Unluckily, this result is achieved at
the price of a substantial increase in the computational
load. For instance, the CTB of the Alg-L with M = Np

is roughly 2, 3, 4 and 5 times larger than that of the
Alg-L with M = 100 for Np = 200, 300, 400 and 500,
respectively.

Further numerical results (not shown here for space limita-
tions) have also evidenced that: a) as Np increases, the particle-
based representation f̂(pl|y1:N ) (see (66)) of the pdf of x(N)

l

closely approaches the Gaussian pdf computed by KF; b) the
RMSE improvement provided by the considered smoothing
algorithms over MPF is mainly related to its ‘peak shaving’
effect in state estimation error (in other words, the amplitude
of the spikes appearing in the state estimation error at the end
of the forward pass are substantially reduced by smoothing; c)
a minor degradation in the estimation accuracy of the SPS and
RBSS algorithms is found if w4,l,j = wl/l,j and w2,l,j = 1
are set in formula (40) to reduce the computational effort13

required by the evaluation of the particle weights {Wl,j}
(consequently, only the weight w1,l,j (41) has to be computed
in BIF; note that this requires computing the inverse of the
matrix C

(N)
1,l,j (43) only). As far the last point is concerned, it is

also worth stressing that the little relevance of the weight w2,l,j

is due to the fact that the correlation appearing in the RHS of
(47) exhibits a weak dependence on the selected particle in the
presence of strong process noise for the linear state component
(i.e., when σv is large in this case).

All the conclusions illustrated above are also supported by
the performance results in Fig. 5, that shows the dependence of
RMSEN (blue lines) and RMSEL (red lines) on the number
of particles (Np) for SSM #2. In particular, it is interesting to
note that, even in this case, all the RMSEL curves are flat,
whereas the RMSEN curves achieve a floor as Np increases.
Moreover, the accuracy gap between the SPS algorithm and the
RBSS algorithm (or Alg-L) is really small, despite the fact they
have substantially different computational requirements. This
can be easily inferred from Fig. 6, that shows the dependence
of the CTB on the number of particles (Np) for all the
considered algorithms. In particular, these results show that:

13This approximation can be adopted in the RBSS algorithm too; the
resulting technique is called simplified RBSS (SBRSS) in the following.

Fig. 4: RMSEN performance versus Np for SSM #1; MPF,
SPS, RBSS and Alg-L are considered.

Fig. 5: RMSE performance versus Np for the linear state
component (RMSEL) and the nonlinear state component
(RMSEN ) for SSM #2; MPF, SPS, RBSS and Alg-L are
considered.

1) The accuracy improvement of SPS over MPF is obtained
at the price of a limited increase in computational com-
plexity (the SPS and the MPF algorithms have similar
computational requirements);

2) The CTB gap between Alg-L (or the RBSS algorithm)
and the SPS algorithm is significant (for instance, the
computation time of Alg-L is about 50 times larger than
that of SPS for Np = 100).

3) The RBSS and its simplified version (SRBSS) have
larger computational requirements than Alg-L for the
considered SSM, despite the fact that the evaluation
of the weights for SRBSS is based on a substantially
simpler formula than that employed for Alg-L. This
gap can be related to the slightly different processing
accomplished for the linear state component (see the
last part of Paragraph IV-D).

In our work the dependence of RMSEL and RMSEN on
the intensity of the measurement noise has been also analysed.
Our results (not illustrated here for space limitations) show
that the performance gap between MPF and all the considered
smoothing gets larger as σe increases; this is due to the fact
that a stronger measurement noise results in a poorer quality
of the statistical information generated in the forward pass,
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Fig. 6: CTB versus Np for SSM #2; MPF, SPS, RBSS, SRBSS
and Alg-L are considered.

and this impairs more and more the estimation process in the
backward pass.

VI. CONCLUSIONS

In this manuscript the smoothing problem for SSMs has
been analysed from a FG perspective. This has allowed us
to devise two new particle smoothing algorithms for CLG
SSMs. The first algorithm, dubbed SPS, generates estimates
of the marginal smoothing densities at a limited computational
cost. Moreover, as evidenced by our computer simulations
for specific SSMs, its accuracy is similar to that achieved by
the second algorithm, dubbed RBSS. The RBSS technique,
however, generates an estimate of the joint smoothing pdf for
the entire observation interval; in addition, its accuracy in state
estimation and computational costs are comparable with those
of the RBPS algorithm recently proposed by Lindsten et al.
in [20].

Our future work concerns the application of FG methods to
the problems of filtering and smoothing for other classes of
SSMs.
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