
25/04/2024 09:21

Towards Reliable Experiments on the Performance of Connected Components Labeling Algorithms /
Bolelli, Federico; Cancilla, Michele; Baraldi, Lorenzo; Grana, Costantino. - In: JOURNAL OF REAL-TIME
IMAGE PROCESSING. - ISSN 1861-8200. - 17:2(2020), pp. 229-244. [10.1007/s11554-018-0756-1]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is a pre print version of the following article:

Journal of Real-Time Image Processing manuscript No.
(will be inserted by the editor)

Federico Bolelli · Michele Cancilla · Lorenzo Baraldi · Costantino Grana

Towards Reliable Experiments on the Performance of
Connected Components Labeling Algorithms

Received: date / Revised: date

Abstract The problem of labeling the connected com-
ponents of a binary image is well-defined and several pro-
posals have been presented in the past. Since an exact so-
lution to the problem exists, algorithms mainly differ on
their execution speed. In this paper, we propose and de-
scribe YACCLAB, Yet Another Connected Components
Labeling Benchmark. Together with a rich and varied
dataset, YACCLAB contains an open source platform to
test new proposals and to compare them with publicly
available competitors. Textual and graphical outputs are
automatically generated for many kinds of tests, which
analyze the methods from different perspectives. An ex-
tensive set of experiments among state-of-the-art tech-
niques is reported and discussed.

Keywords Connected Components Labeling · Bench-
marking, Performance Evaluation

1 Introduction

Part of the responsibility for the huge progress in both
computer vision and image processing of the recent years
may be credited to the broad access to public image and
video datasets. Even if datasets have been blamed for
narrowing the focus of research on object recognition,
reducing it to a single benchmark performance number,
it is now clear that the ability to compare different tech-
niques on the same data allows the reader to choose
which algorithm suits his needs best [31]. In Computer
Science it is not sufficient to reproduce other people tests,
but publishing the source code or, at the very least, an
executable should be mandatory. Sometimes, just set-
ting the correct parameters may be a problem, changing
the final figures by orders of magnitude. This may be

F. Bolelli · M.Cancilla · L. Baraldi · C. Grana
Università degli Studi di Modena e Reggio Emilia
Dipartimento di Ingegneria “Enzo Ferrari”
Tel.: +39-0592056265
Fax: +39-0592056129
E-mail: {name.surname}@unimore.it

referred to as reproducible research, i.e. an approach at
presenting scientific claims together with all information
needed to reproduce the presented results, so that others
may verify the findings and build upon them.

Benchmarking may be a problem by itself, because
measuring performance may not be obvious, but there
are some specific tasks in image processing in which the
expected result is known. This reduces the burden of the
evaluator, since, after checking that the result is correct,
the main question left is to measure how fast an algo-
rithm is.

The problem of labeling the connected components of
a binary image is such a problem, so one would expect
every paper on the subject to focus on the same evalu-
ation method and data. This is not the case. In recent
years, many novel proposals have been published and al-
most none of them compared on the same data [6, 8, 19].

This paper tackles the problem of evaluating the speed
of execution of different strategies to solve the Connected
Components Labeling (CCL) problem on binary images.

There are three aspects to keep into account when
measuring the “speed of execution” of a family of al-
gorithms: the data on which the algorithms are tested,
the hardware capabilities and the quality of the soft-
ware implementation. Purists may horrify at our omis-
sion of computational complexity, but the fact is that
CCL is inherently a linear algorithm if we separate it
from the equivalence solving (the Union-Find problem),
whose computational complexity has been already well
studied in depth [30].

The base step for all comparisons is to work on the
same data, so our contribution is to provide a public
dataset of binary images without any license limitations,
or synthetically generated ones. We tried to cover differ-
ent application scenarios for CCL algorithms such as mo-
tion analysis, document processing, OCR, medical imag-
ing, and fingerprint analysis.

Not all computer architectures deliver the same per-
formance on all algorithms and this may also be true for
CCL ones. Moreover, the compiler used may significantly
impact on the performance of algorithms. The solution

2

we propose to figure out these problems is to provide an
open-source C++ project with a very permissive license,
in order to let anyone take the provided algorithms and
test them on his own setting, verifying any claim found
in the literature (ours included).

Everyone is well aware that software optimization is
not an easy task, so the quality of software implementa-
tion may change a wonderful algorithm in an unusable
junk. Unfortunately, providing source code is not a com-
mon requirement for papers to be published, and we had
to re-implement many algorithms for which the source
code was not available. A positive note is that, being
our project open source, any author believing we did him
wrong is welcome to provide a better implementation.

The evaluation framework1 is called Yet Another Con-
nected Components Labeling Benchmark (YACCLAB in
short), and the accompanying dataset is the YACCLAB
Dataset.

In the following, we will describe the dataset (Sec-
tion 2), provide some details on how the framework works
and how to extend it (Section 3), and summarize the al-
gorithms currently available in YACCLAB (Section 4).
An extensive set of experiments is reported in Section 5,
discussing and motivating the results. Finally, in Sec-
tion 6, we draw conclusions.

2 The Dataset

Following a common practice in the literature, we built
a dataset that includes both synthetic and real images.
The provided dataset is suitable for a wide range of ap-
plications, ranging from document processing to surveil-
lance, and features a significant variability in terms of
resolution, image density, variance of density, and num-
ber of components (see Table 1 as a reference). All im-
ages are provided in 1 bit per pixel PNG format, with
0 (black) being background and 1 (white) being fore-
ground. The dataset can be automatically downloaded
during the set up of the YACCLAB project or it can be
found at http://imagelab.ing.unimore.it/yacclab.

2.1 Synthetic Images

Random noise images have been used in many papers to
evaluate CCL results [13, 17, 18, 22] because connected
components in such images have complicated geometrical
shapes and complex connectivity to be analyzed. For this
reason, we included in our dataset two different set of
synthetic images:

1. Classical: is the collection of images publicly available
in [13], being this the only one already published and
used in several other works [9, 19, 29]. These images

1 https://github.com/prittt/YACCLAB

(a) g = 1 (b) g = 2 (c) g = 4

(d) g = 8 (e) g = 12 (f) g = 16

Fig. 1 Sample images taken from the granularity dataset: all
images have a foreground density of 30% and a granularity
varying from 1 to 16.

contain black and white random noise with nine dif-
ferent foreground densities (from 10% up to 90%),
and with resolutions ranging from 32×32 to a maxi-
mum of 4096×4096 pixels. For every combination of
size and density, ten images are provided, making a
total of 720 different images. The resulting dataset al-
lows to evaluate performance in terms of scalability
on the number of pixels and on the number of labels,
which is somehow related to density. For the sake
of completeness, this set of images have been gener-
ated through the Pseudo Random Number Genera-
tor (PRNG) of the C standard library implemented
in Visual Studio 2008.

2. Granularity: encompasses a set of black and white
random noise images generated as described by Caba-
ret et al. in [6]. This dataset allows to test algorithms
varying not only the pixels density but also their
granularity g (i.e., dimension of minimum foreground
block), underlying the behaviour of different propos-
als when the number of provisional labels changes.
All the images have a resolution of 2048 × 2048 and
are generated with the Mersenne Twister MT19937
[26] random number generator implemented in the
C++ standard and starting with a seed equal to zero.
Density of the images ranges from 0% to 100% with
step of 1% and for every density value 16 images with
pixels blocks of g × g with g ∈ [1, 16] are generated.
Moreover, the procedure has been repeated 10 times
for every couple of density-granularity for a total of
16 160 images.

2.2 Natural Images

The second set of images we include is the Otsu-binarized
[27] version of the MIRflickr dataset [20], publicly avail-

http://imagelab.ing.unimore.it/yacclab
https://github.com/prittt/YACCLAB

3

(a) MIRflickr (b) Medical

(c) Hamlet (d) Tobacco800 (e) XDOCS

(f) Fingerprints (g) 3DPeS

Fig. 2 Sample images from the YACCLAB real datasets.

Table 1 YACCLAB datasets characteristics

Mpix Density Variance #CC

3DPeS 0.41 0.0263 0.0005 320
Fingerprints 0.14 0.2380 0.0084 809

Hamlet 2.71 0.0789 0.0003 1477
Tobacco800 4.60 0.0475 0.0021 2107

XDOCS 16.49 0.0918 0.0005 15 282
Medical 1.21 0.2469 0.0062 484

MIRflickr 0.18 0.4459 0.0365 492
Classical 2.80 0.4996 0.0669 63 107

Granularity 4.19 0.5000 0.0850 8725

able under a Creative Commons License. It contains 25-
000 standard resolution images taken from Flickr, with
an average resolution of 0.18 megapixels. There are few
connected components (492 on average) and simple pat-
terns, so the labeling is quite easy and fast. Images have
an average density of 0.4459 foreground pixels, with a
variance of 0.0021. This subset serves again as a com-
parison with already published results [13, 34].

2.3 Medical Images

Another important task where CCL is an indispensable
pre-processing operation is medical image analysis. This
dataset, provided by Dong et al. [12], is composed of his-
tological images and allows us to cover this fundamental
field. Dong et al. provide both original images and a bi-
narized version of those images, which are included in the
YACCLAB dataset. The process used for nuclei segmen-
tation and binarization is described in [12]. The resulting
dataset is a collection of 343 binary histological images
with an average amount of 1.21 million pixels to analyze
and 484 components to label.

2.4 Document Images

CCL is one of the initial pre-processing steps in most
layout analysis or OCR algorithms. Therefore, to cover
for Document Analysis applications, three more datasets
are added:

1. Hamlet: this is a set of 104 images scanned from a
version of the Hamlet found on Project Gutenberg2.
Images have an average amount of 2.71 million of
pixels to analyze and 1447 components to label, with
an average foreground density of 0.0789.

2. Tobacco800: it is composed of 1290 document images
and it is a realistic database for document image anal-
ysis research, as these documents were collected and
scanned using a wide variety of equipment over time.
Resolution of documents in Tobacco800 varies signif-
icantly from 150 to 300 dpi and the dimensions of
images range from 1200 by 1600 up to 2500 by 3200
pixels [1, 23, 24].

3. XDOCS: this is a collection of high resolution histor-
ical document images taken from the large number
of civil registries that are available since the constitu-
tion of the Italian state [3, 4, 5]. XDOCS is composed
of 1677 images with an average size of 4853×3387
and 15 282 components to analyze. As for most of
document dataset, it has a low foreground density of
0.0918.

2.5 Fingerprints Images

This dataset counts 960 fingerprint images collected by
using low-cost optical sensors or synthetically generated.

2 http://www.gutenberg.org

http://www.gutenberg.org

4

Table 2 YAML configuration file of the YACCLAB project.

Parameter name Description

perform Dictionary which specifies the kind
of tests to perform (correctness,
average, average ws, density and
size, granularity and memory).

correctness tests Dictionary indicating the kind of
correctness tests to perform.

tests number Dictionary which sets the number
of runs for each test available.

Algorithms

algorithms List of algorithms on which apply
the chosen tests.

Datasets

check datasets List of datasets on which CCL
algorithms should be checked.

average datasets List of datasets on which average
test should be run.

average ws datasets List of datasets on which aver-
age ws test should be run.

memory datasets List of datasets on which memory
test should be run.

Utilities

paths Dictionary with both input
(datasets) and output (results)
paths.

write n labels Whether to report the number
of connected components in the
output files.

color labels Whether to output a colored ver-
sion of labeled images during tests.

save middle tests Dictionary specifying, separately
for every test, whether to save the
output of single runs, or only a
summary of the whole test.

These images were taken from three fingerprint verifica-
tion competitions (FCV2000, FCV2002 and FCV20040
[25]). In order to fit those images for a CCL applica-
tion, fingerprints have been binarized using an adaptive
threshold [28] and then negated in order to have fore-
ground pixels with value 1. Most of the original images
have a resolution of 500 dpi and their dimensions range
from 240×320 up to 640×480 pixels.

2.6 Surveillance Images

The final set of images included in YACCLAB comes
from a surveillance dataset, namely 3DPeS (3D Peo-
ple Surveillance Dataset [2]). This has been designed
mainly for people re-identification in multi-camera sys-
tems with non-overlapped fields of view, although it can
be exploited for people detection, tracking, action anal-
ysis and trajectory analysis. The background models for
all cameras are provided by the authors, so a very basic
technique of motion segmentation has been applied to

generate the foreground binary masks, i.e., background
subtraction and Otsu thresholding [27]. The analysis of
the foreground masks to remove small connected compo-
nents and to match the nearest neighbors is a common
application for CCL.

3 The Project

YACCLAB is an open source project that enables re-
searchers to test CCL algorithms under extremely vari-
able points of view. The software requires the OpenCV
3.0 library (or higher) to work. A configuration file placed
in the installation folder allows the user to specify which
kind of tests should be performed, on which datasets,
and on which algorithms. A complete description of all
configuration parameters is reported in Table 2.

The benchmark provides the following tests, which
are deeply described in the following of this Section:

– correctness;
– average run-time, also called average in the following

of the paper;
– average run-time with steps, which will be referred

to as average ws;
– density, size and granularity tests on synthetic im-

ages;
– memory accesses or simply memory test.

It is important to highlight that each test (except cor-
rectness and memory ones) is repeated more times per
image as specified by the tests number configuration pa-
rameter: the minimum execution time for each image is
then considered. The use of minimum is justified by the
fact that, in theory, an algorithm on a specific environ-
ment will always require the same time to execute. This
time was computable in exact way on non multitask-
ing single core processors (8086, 80286). Nowadays, too
many unpredictable things are happening in the back-
ground, independently with respect to the specific algo-
rithm. Anyway, an algorithm cannot use less than the
required clock cycles, so the best way to get the “real”
execution time is to use the minimum value over multiple
runs. The probability of having a higher execution time
is then equal for all algorithms. For that reason, taking
the minimum is the only way to get reproducible and
stable results from one execution of the benchmark to
another on the same environment. Two other strategies
useful to obtain stable execution times are: i) stopping
all the background processes and ii) disabling page swap-
ping during the execution of the benchmark.

YACCLAB has been designed with extensibility in
mind, so that new resources can be easily integrated into
the project. To introduce a new CCL algorithm into the
benchmarking system, it must be compliant with a base
interface (Listing 1) implementing the following meth-
ods:

5

class Labeling {
public:

static cv::Mat1b img_;
cv::Mat1i img_labels_;
unsigned n_labels_;
PerformanceEvaluator perf_;

Labeling() {}
virtual ~Labeling() = default;

virtual void PerformLabeling();
virtual void PerformLabelingWithSteps();
virtual void PerformLabelingMem(std::vector<unsigned long>& accesses);

virtual void FreeLabelingData() { img_labels_.release(); }
};

Listing 1 Labeling base class from which CCL algorithms have to inherit.

– PerformLabeling : includes the whole code of the algo-
rithm and it is necessary to perform average, density,
size and granularity tests;

– PerformLabelingWithSteps: implements the algorithm,
dividing it in steps (i.e. alloc/dealloc, first scan
and second scan for those which have two scans, or
all scan for the others) in order to evaluate every
step separately;

– PerformLabelingMem: is an implementation of the al-
gorithm that traces the number of memory accesses
whenever they occur.

The C++ savvy will notice the fact that the labeling
methods are declared virtual, thus adding an overhead
to the function call. We measured the impact of this
and verified that it is many orders of magnitude lower
than the time required by the algorithms, being in fact
negligible. Additionally, it is the same for all algorithms.

All CCL algorithms included in YACCLAB imple-
ment the 8-way connectivity. Moreover, in order to com-
pare different proposals as fairly as possible, we stan-
dardized shared code preferring, for example, the new
statement to allocate memory or using, when possible,
the same data types.

We look at YACCLAB as a growing effort towards
better reproducibility of CCL algorithms, so implemen-
tations of new and existing labeling methods are wel-
come.

3.1 Correctness Test

The first kind of test that YACCLAB enables is related
to correctness. In order to check the correctness of an im-
plementation, indeed, the output of an algorithm is com-
pared with that of the Scan plus Array-based Union-Find
algorithm [33], which is assumed to be a correct reference
point. Before making the comparison, labels indexes are

changed to force a row major ordering: different label-
ing paradigms may assign different labels to the same
object and this is not considered an error. The datasets
on which correctness test shall be executed have to be
specified through the check datasets list in the config-
uration file. An additional dataset to the ones already
described in Section 2 has been specifically designed for
correctness tests. This collection, called check and in-
cluded in YACCLAB, contains a set of 20 binary images
with special sizes (i.e. odd number of rows/columns or
single row/column) and a chessboard texture to test al-
gorithms in the most critical cases.

3.2 Average Run-Time Test

Average run-time test executes algorithms on every im-
age of a specified dataset and reports the average exe-
cution times in three different formats: plain text files,
histogram charts, either in color or in gray-scale, and
LATEX tables, which can be directly included in research
papers.

Such kind of test can be applied on all YACCLAB
datasets and the average datasets list enables the user
to specify which ones should be selected. YACCLAB per-
forms average test only whether the associated entry in
the perform dictionary of the configuration file is set to
“true”.

It should be noted that the execution times calcu-
lated by average test always include memory allocation.
We strongly believe that excluding memory allocation
from the execution time is not impartial. Indeed, each
algorithm may require a different number of tables and
obviously these impact on performance. In real applica-
tions, CCL is applied on images of different sizes and this
requires to reallocate data when needed. For this reason,
it is mandatory to include the memory allocation time to

6

evaluate the performance of an algorithm. On the other
hand, there are cases in which it could be fair to com-
pare algorithms without considering memory allocation:
in an embedded system in which images are always cap-
tured with the same size, for example, could be realistic
to allocate memory only once. In order to cover these
circumstances, we introduced the average ws test in our
benchmarking system, as described in Section 3.3.

3.3 Average Run-Time Test with Steps

This test evaluates the performance of an algorithm sep-
arating the allocation/deallocation time (alloc/dealloc)
from the time required to compute labeling. Moreover,
if an algorithm employs multiple scans to produce the
correct output labels, YACCLAB will store the time of
every scan and will display them separately.

To understand how YACCLAB computes the mem-
ory allocation time for an algorithm on a reference im-
age, it is important to underline the subtleties involved in
the allocation process. Indeed, all modern operating sys-
tems (not real-time, nor embedded ones, but certainly
Windows and Unix) handle virtual memory exploiting
a demand paging technique, i.e. demand paging with no
pre-paging for most of Unix OS and cluster demand pag-
ing for Windows OS. This means that a disk page is
copied into physical memory only when it is accessed
by a process the first time, and not when the allocation
function is called. Therefore, it is not possible to calcu-
late the exact allocation time required by an algorithm,
which computes CCL on a reference image, but its upper
bound can be estimated using the following approach:

1. forcing the allocation of the entire memory by reserv-
ing it (malloc), filling it with zeros (memset), and
tracing the time;

2. calculating the time required by the assignment op-
eration (memset), and subtracting it from the one
obtained at 1;

3. repeating the previous points for all data structures
needed by an algorithm and summing times together.

This will produce an upper bound of the allocation
time because caches may reduce the second assignment
operation, increasing the estimated allocation time. More-
over, in real cases, CCL algorithms may reserve more
memory than they really need, but the demand paging,
differently from our measuring system, will allocate only
the accessed pages.

3.4 Synthetic Test

Test on synthetic images are useful to evaluate the per-
formance of different approaches in term of scalability on
the number of pixels and labels. Moreover, synthetic tests
give us the possibility to highlight the behavior of CCL

algorithms when the foreground pixels density changes.
YACCLAB divides this test into two groups:

– density and size: are performed on classical dataset
(Section 2.1) and estimate the performance of differ-
ent CCL algorithms when they are executed on im-
ages with varying foreground density and size. The
density test calculates the mean execution time of
each algorithm over images whose density ranges from
10% up to 90%, with a 10% step. On the other hand,
size test reports average execution time on images
having resolutions ranging from 32×32 up to 4096×
4096;

– granularity: evaluates an algorithm varying density
(from 1% to 100%, using a 1% step) and pixels gran-
ularity, but not images resolution. This test was pro-
posed in [6] and its inclusion in YACCLAB allows to
also verify the performance claims of CCL algorithms
on this demanding case. The output results display
the average execution time over images with the same
density and granularity.

3.5 Memory Accesses Test

This test is useful to correlate the performance of an
algorithm to the number of memory accesses. The mem-
ory test computes the average number of accesses to the
label image (i.e. the images usually used to store the pro-
visional and then the final labels for the connected com-
ponents), the average number of accesses to the binary
image to be labeled and, finally, the average number of
accesses to data structures used to solve the equivalences
between label classes. Moreover, if an algorithm requires
extra data, memory test summarize them as “other” ac-
cesses and returns the average. Furthermore, all contri-
butions of each algorithm and dataset are summed to-
gether in order to show the total amount.

Since counting the number of memory accesses im-
poses additional computations, the code implementing
this test is not shared with that implementing the oth-
ers.

3.6 NULL labeling

The NULL labeling is a new “algorithm” which defines
a lower bound limit for the execution time of CCL on

Algorithm 1: NULL labeling

Input: IN, binary image of width w and height h
Result: OUT, integer image of width w and height h

1 for r ← 0 to h− 1 do
2 for c← 0 to w − 1 do
3 OUT (r, c) = IN(r, c)
4 end
5 end

7

a given machine and dataset. As the name suggests, the
NULL labeling does not provide the correct connected
components for a given image. It only copies the pixels
from the input image to the output one.

It is important to underline that the lower bound
limit defined by the NULL labeling can not be overtaken
by any CCL algorithm. The operations performed by
NULL labeling allow to identify the minimum time re-
quired for allocating the memory of the output image,
reading the input image and writing the output one. In
this way, all the algorithms may be compared in terms
of how costly are the additional operations required.

3.7 Union-Find Templating

Following the idea of extensibility, an algorithm can also
be templated on the Union-Find strategy. YACCLAB is
able to compare each algorithm (but those for which the
labels solver is built-in) with four different labels solving
strategies: standard Union-Find (UF), Union-Find with
Path Compression (UFPC) [32], Interleaved Rems algo-
rithm with splicing (RemSP) [11] and Three Table Ar-
ray (TTA) proposed in [16]. This flexibility allows YAC-
CLAB to better analyze the behavior of a specific algo-
rithm and the user to choose the best combination for his
machine, compiler, and operating system. The standard-
ization of the Union-Find algorithms reduces the code
variability and provides fairer comparisons. Particular
care was used to check that the flexibility introduced
with Union-Find templating did not impact on execu-
tion time. We compared the produced code at assembly
level and the output is the same with and without tem-
plates.

4 Available Algorithms

Since version 3.0, OpenCV included CCL features. The
algorithm implemented was the one described in [32, 33],
which is basically equivalent to the one in [18]3. It uses
a pixel based scanning with online equivalence solving
by means of a Union-Find technique with path compres-
sion, plus a decision tree for accessing only the minimum
number of already labeled pixels.

Still, this is the reference algorithm implemented in
YACCLAB, because of its very good performance and
ease of understanding.

In [13] we proved that different versions of the deci-
sion tree are equivalent to the previous one and extended
it to Block Based scanning, that is scanning the image
in 2 × 2 blocks. Building the decision tree for that case
is much harder, because of the large number of possi-
ble combinations. In [14] we proposed a proved optimal

3 After the appearance of the YACCLAB project results,
OpenCV changed its default algorithm to the fastest one re-
ported in YACCLAB.

strategy to build the decision tree by means of a dynamic
programming approach. In YACCLAB we provide an im-
plementation of this algorithm which employs the usual
OpenCV optimizations on image accesses.

Another variation of Block Based analysis was pro-
posed in [9], which is reported to be faster than the pre-
vious one. We also include this algorithm thanks to the
availability of the source code on the web pages of au-
thors, making the signature compliant with our stan-
dards and adding some checks to deal with images with
an odd number of rows and columns as the other algo-
rithms do.

In [21] a different take on labeling, called Light Speed
Labeling, was proposed. The paper has a well described
pseudocode for the algorithm, and in the journal ver-
sion [6] further analyses have been performed, also propos-
ing some variations and stating that it is the fastest al-
gorithm available. To our knowledge, no public imple-
mentation exists, so we are the first ones to really make
it available. This is probably due to two small mistakes
in the pseudocode of [22]: a w was called n because of a
change in notation between the two papers and a “step
2” was missing in a “for” loop. We implemented both
the standard version —this is the name used by the
authors—, the compressed version, and the zero-offset
optimization, that is reported to provide a speedup of
up to 5%.

In order to demonstrate the importance of the al-
gorithm used to solve label equivalences, we include an
implementation of [10] which uses a two scan proce-
dure with an online labels solver algorithm (exploiting
an array-based structure to store the label equivalences).
This technique requires multiple searches over the array
at every Union operation, leading to a clear non-linear
behavior with respect to the number of labels.

As a representative of the contour tracing type of al-
gorithms we include the approach proposed in [7]. This
approach clockwise tags all pixels in both the contour
and the immediately external background area in a sin-
gle operation. Then, during the raster scan, when an
untagged boundary is found, a counterclockwise contour
tracing is performed for internal contours. This technique
proved to have a linear complexity with respect to the
number of labels and run quite fast, also because the fill-
ing of the connected components (label propagation after
contour following) is cache-friendly for images stored in
a raster scan order.

In order to cover a new recent paradigm for CCL,
YACCLAB includes two more algorithms: Configuration-
Transition-Based [19] originally proposed by He et al. in
2014 and Optimized Pixel Prediction [15] proposed by
Grana et al. in 2016.

The algorithm from He —using a reduced version of
the 2 × 2 scan mask, from the Block Based algorithm,
to just 1× 2 pixels— scans the given image at alternate
lines and processes pixels two by two. The authors also
define nine different configurations and nine groups of as-

8

sociated actions for the pixels in the current scan mask.
Then, in the labeling approach, the next-case decisions
are represented as a configuration-transition diagram to
obtain better speed. The current state of the algorithm is
defined by the values of pixels already checked in the cur-
rent scan mask, and by previous actions executed. This
approach allows He et al. to save the number of accesses
to pixels and to speed up the labeling process. The de-
sign of the algorithm is specific for the CCL problem and
there is no prevision of extending it to any other similar
task.

In Optimized Pixel Prediction, instead, we proposed
a general paradigm to exploit already seen pixels during
the scan phase, in order to minimize the number of times
a pixel is accessed. As shown in literature, the decision
table which rules the scan step can be conveniently con-
verted to an optimal binary decision tree [13], in which
internal nodes represent conditions on mask pixels, and
leaves represent actions to be performed on the current
pixel of the provisional labels image. Usually, the same
decision tree is traversed for each pixel of the input im-
age, without exploiting values seen in the previous it-
eration, which, if considered, would result in a simplifi-
cation of the decision tree for that pixel. To go beyond
this limitation, we computed a reduced decision tree for
each possible set of known pixels: these reduced decision
trees are then connected into a single graph, which rules
the execution of the CCL algorithm on the whole im-
age. Each leaf of a tree, which represents the action to
be performed on a pixel, is connected to the root of a
second tree, which should be executed for the next pixel.
The obtained graph can then be directly converted into
running code.

Finally, we also include the stripe-based algorithm
proposed by Zhao et al. [34]. Here, each pair of consecu-
tive rows in the image is taken as a work-region (called
stripe). Foreground pixels in each stripe are replaced
with a global position value (the index of the leftmost
pixel of the stripe connected to that pixel). Every stripe
is then considered as a rooted tree, and the image is ab-
stracted as the forest composed of all stripes. Stripes are
therefore merged together by merging multiple rooted
trees. Finally, the image is traversed to find the roots of
non-zero pixels and obtain label values, which are then
assigned to the non-zero pixels. In the original paper, the
number of rows in the image is supposed to be even, and
authors state that no extra auxiliary memory is required.
We notice that to store global position values on images
having more than 256 labels, pixels should be converted
to a larger data type, thus requiring additional memory.
To make a fair comparison, our implementation copies
the input image to one with 32 bits per pixel, and adds
proper checks to deal with the last row.

5 Experimental Results

In this Section, experimental results obtained with YAC-
CLAB over the aforementioned algorithms are presented
and analyzed.

There are many variables that may significantly influ-
ence the performance of an algorithm: the chosen labels
solver, the adopted compiler, the operating system on
which tests are performed, the machine architecture and
last but not least the data on which algorithms are ex-
ecuted. Unfortunately, all these combinations generate
too much data to be analyzed and reported in a single
paper, so that we select the most significant and general
ones, highlighting the strengths and weaknesses of the
state-of-the-art algorithms.

Specifically, we picked nine different algorithms: five
of them can use four different labels solving algorithms,
one (Light Speed Labeling) has four variations and each
can use two labels solving algorithms, for a total of 31
combinations plus the NULL labeling. We have seven
datasets for the average run-time test, for a total of
224 values, which we fit in a single results table. We
considered two compilers (MSVC 19.11.25508.2 with 02
speed optimizations enabled and GCC 5.1.0 with 03 op-
timization flag) and two operating systems (Windows
10.0.15063 64 bit and Linux 4.10.0-33-generic 64 bit),
for a total of three possible combinations (the Microsoft
compiler cannot run under Linux). We selected a sin-
gle machine in order to showcase the performance of the
different algorithms: an Intel Core i7-4770 CPU @ 3,40
GHz (with 4×32 KB L1 cache, 4×256 KB L2 cache, and
8 MB of L3 cache), and with 24 GB of RAM available.
We understand that a comparison in performance be-
tween different machines would be useful, but it would
require to replicate all the considerations, leaving any-
way space to the question whether the observations on
the two selected machines could be applied also to an-
other one.

In the following, we will use acronyms to refer to
the available algorithms: CT is the Contour Tracing ap-
proach by Fu Chang et al. [7], CCIT is the algorithm
by Wan-Yu Chang et al. [9], DiStefano is the algorithm
in [10], BBDT4 is the Block Based with Decision Trees
algorithm by Grana et al. [13], SAUF4 is the Scan plus
Array-based Union-Find algorithm by Wu et al. [33],
CTB is the Configuration-Transition-Based algorithm by
He et al. [19], SBLA is the stripe-based algorithm by
Zhao et al. [34], and PRED is the Optimized Pixel Pre-
diction by Grana et al. [15]. Additionally, the four differ-
ent versions of the Light Speed Labeling algorithm by La-
cassagne et al. [6] are identified as LSL STD, LSL STDZ,
LSL RLE, and LSL RLEZ, where STD refers to the stan-
dard version of the algorithm, RLE refers to the run
length encoding optimization and Z is related to the zero-
offset addressing optimization as described by the au-

4 SAUF and BBDT are the algorithms currently included
in the OpenCV library (since version 3.2).

9

Table 3 Average run-time results in ms obtained under Windows 10 with MSVC 19.11.25508.2 compiler. The bold values
represent the best labels solver for a specific CCL algorithm and dataset, the red ones point out the best algorithm for a
given dataset.

3DPeS Fingerprints Hamlet Medical MIRflickr Tobacco800 XDOCS

SAUF RemSP 0.823 0.401 6.206 2.817 0.506 9.648 48.605
SAUF TTA 0.830 0.401 6.245 2.849 0.507 9.698 48.959
SAUF UFPC 0.823 0.402 6.212 2.824 0.510 9.657 48.673
SAUF UF 0.824 0.401 6.205 2.814 0.510 9.647 48.638

BBDT RemSP 0.650 0.314 5.011 2.186 0.396 7.951 40.587
BBDT TTA 0.660 0.316 5.038 2.187 0.397 7.995 40.789
BBDT UFPC 0.651 0.315 5.023 2.203 0.397 7.961 40.684
BBDT UF 0.650 0.317 5.033 2.199 0.397 7.965 40.658

CCIT RemSP 0.779 0.356 5.898 2.600 0.461 9.389 46.675
CCIT TTA 0.741 0.348 5.666 2.520 0.451 8.923 45.271
CCIT UFPC 0.741 0.370 5.813 2.634 0.486 9.025 46.227
CCIT UF 0.763 0.363 5.876 2.598 0.471 9.238 46.633

CTB RemSP 0.809 0.377 6.100 2.810 0.493 9.659 48.375
CTB TTA 0.941 0.407 7.240 3.184 0.524 11.741 55.597
CTB UFPC 0.811 0.381 6.111 2.804 0.498 9.643 48.446
CTB UF 0.892 0.404 7.298 3.147 0.534 11.679 56.029

PRED RemSP 0.720 0.349 5.475 2.534 0.467 8.499 44.642
PRED TTA 0.730 0.353 5.539 2.603 0.477 8.578 45.736
PRED UFPC 0.723 0.355 5.496 2.579 0.479 8.528 44.854
PRED UF 0.723 0.353 5.492 2.573 0.480 8.532 45.408

LSL STD TTA 2.149 0.697 16.503 7.136 0.994 27.843 127.648
LSL STD UF 2.139 0.694 16.466 7.122 0.991 27.793 127.433

LSL STDZ TTA 1.716 0.551 13.459 5.802 0.802 22.696 104.932
LSL STDZ UF 1.707 0.550 13.411 5.784 0.800 22.650 104.850

LSL RLE TTA 1.695 0.631 13.722 5.880 0.846 22.600 105.326
LSL RLE UF 1.682 0.629 13.637 5.843 0.843 22.517 104.901

LSL RLEZ TTA 1.767 0.654 14.216 6.092 0.876 23.441 108.819
LSL RLEZ UF 1.760 0.654 14.223 6.108 0.878 23.428 108.944

DiStefano 0.881 0.606 7.556 4.037 0.850 11.363 90.903

CT 0.988 0.937 9.684 4.517 0.938 12.820 75.670

SBLA 0.878 0.551 7.480 3.559 0.666 10.887 61.673

NULL 0.369 0.097 2.508 1.120 0.165 4.414 21.579

thors in the paper. Moreover, NULL is the lower bound
limit described in Section 3.6. Finally, to identify the la-
bels solver adopted to test an algorithm, the acronyms al-
ready presented in Section 3.7 are placed after its name.

5.1 Average Run-Time Test Results

Results of average tests are summarized in Tables 3, 4(a),
and 4(b) (the last two are at the end of the paper).

The first conclusion we can draw is that Linux is
faster for this task. Extremely so. In particular, when
memory allocation becomes important, i.e. when the da-
taset has large images, or the algorithm requires larger
data structures, the time required by Windows may be
double than Linux. Other tests reported the cause to be a
higher allocation time, due to the virtual page commits.

In order to evaluate how labels solver algorithms af-
fect the performance, we estimated the time required by

all of them for every algorithm and dataset. Changing
the labels solver can lead to significant enhancements
for specific combinations of algorithm, data, and oper-
ating system, or it can make no difference for others. It
appears that the best strategy the user can follow is to
test the algorithms on his specific configuration and pick
the one which delivers the best performance.

For what concerns labels solver algorithms, the fol-
lowing tentative conclusions can be drawn:

– Windows MSCV: RemSP provides the best perfor-
mance with all algorithms, except with CCIT that
uses TTA for best results.

– Windows GCC: UF provides the best performance
with all algorithms, or it is equivalent to RemSP with
CCIT.

– Linux GCC: TTA and RemSP are almost equivalent,
and the others are not too different, except, again,
with CCIT that significantly favors TTA.

10

 0

 0.5

 1

 1.5

 2

 2.5

SAUF_UF

BBDT_RemSP

CCIT_TTA

CTB_TTA

PRED_RemSP

LSL_STD_UF

LSL_STDZ_UF

LSL_RLE_UF

LSL_RLEZ_UF

DiStefano

CT SBLA
NULL

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan
All Scans

0.27 0.27 0.27 0.27 0.27

1.22 1.22 1.22 1.22

0.27 0.27 0.27 0.27

0.70

0.20 0.27 0.23 0.26

0.82

0.52
0.43 0.42

0.72

0.93

0.15

0.22
0.22

0.15 0.15

0.38

0.38
0.38 0.38

0.25

0.82

1.06

0.16

1.
12

0.
69 0.

76

0.
65 0.
68

2.
42

2.
12

2.
03

2.
02

1.
24 1.

33

2.
02

0.
43

(a) 3DPeS

 0

 0.2

 0.4

 0.6

 0.8

 1

SAUF_UF

BBDT_RemSP

CCIT_RemSP

CTB_RemSP

PRED_RemSP

LSL_STD_UF

LSL_STDZ_UF

LSL_RLE_UF

LSL_RLEZ_UF

DiStefano

CT SBLA
NULL

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan
All Scans

0.02 0.02 0.02 0.02 0.02

0.30 0.30 0.30 0.30

0.02 0.02 0.02 0.02

0.30

0.16
0.20 0.21 0.21

0.32

0.22

0.30
0.26

0.43 0.45

0.05

0.13

0.13
0.05 0.05

0.11

0.11

0.11

0.11

0.18

0.46

0.93

0.06

0.
37

0.
31 0.

35

0.
28

0.
28

0.
73

0.
63

0.
71

0.
67

0.
63

0.
95

0.
93

0.
08

(b) Fingerprints

 0

 2

 4

 6

 8

 10

 12

 14

SAUF_UF

BBDT_UF

CCIT_RemSP

CTB_UFPC

PRED_RemSP

LSL_STD_UF

LSL_STDZ_TTA

LSL_RLE_UF

LSL_RLEZ_UF

DiStefano

CT SBLA
NULL

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan
All Scans

1.21 1.21 1.21 1.21 1.20

3.40
4.31

3.40 3.40

1.69
0.69 0.69 0.69

4.90

1.91
2.46 2.24 2.28

5.96 4.12

3.82 3.57

5.65

6.30

1.14

1.77
1.76

1.14 1.14

2.71

2.74

2.71
2.71 2.09

6.53

9.94

1.11

7.
25

4.
89 5.

43

4.
59

4.
62

12
.0

7

11
.1

7

9.
93

9.
68

9.
43

10
.6

3

13
.5

2

1.
80

(c) Hamlet

 0

 1

 2

 3

 4

 5

 6

 7

SAUF_UF

BBDT_RemSP

CCIT_RemSP

CTB_UF

PRED_RemSP

LSL_STD_UF

LSL_STDZ_UF

LSL_RLE_UF

LSL_RLEZ_UF

DiStefano

CT SBLA
NULL

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan
All Scans

0.69 0.69 0.69 0.69 0.69

2.27 2.27 2.27 2.27

0.89
0.38 0.38 0.38

2.09

0.84
1.13 1.07 1.06

2.62

1.71 1.65 1.51

3.06

2.82

0.45

0.74

0.73
0.45 0.45

1.16

1.16 1.16
1.16 1.01

3.51

4.44

0.48

3.
23

2.
27 2.

55

2.
21

2.
20

6.
05

5.
14

5.
08

4.
94

4.
96

4.
82

6.
71

0.
86

(d) Medical

Fig. 3 Average run-time tests with steps in ms on an Intel Core i7-4770 CPU @ 3.40GHz running Linux with GCC 5.1.0
(lower is better).

The different memory management, between the two
O.S., can again be a possible explanation of performance
variance between labels solvers. Linux seems to have
a better performance, since it allocates memory pages
with a speed that doubles the Windows memory allo-
cation capability. TTA is, at least in theory, really effi-
cient when merges are encountered but, unfortunately,
this efficiency requires more memory. Therefore, the ad-
vantages appear significant under Linux, instead, with
Windows, they are frustrated by the allocation costs.

For all we said, expressing a judgment on which al-
gorithm is “best” is extremely difficult, and maybe plain
wrong. Under Windows, BBDT has best performance,
irrespective of the compiler. Under Linux, CTB demon-
strates, in most cases, the best behavior. This is true for
our test machine, and can be justified later by observ-
ing the behavior of other tests, but we cannot say which
algorithm of the two is the fastest.

For what regards LSL, our tests do not confirm the re-
sults on CCL presented in [6], but it is clear that the zero-
offset optimization is extremely beneficial for LSL STD,
less so for LSL RLE. The RLE version is most of the
times faster than the STD one, even after the zero-offset
optimization.

5.2 Average Run-Time Test with Steps Results

In order to discuss the single phases of each algorithm,
we need to shorten the algorithm lists. We thus select,
for each algorithm and dataset combination, the labels
solver which has the lowest total execution time when
using the PerformLabelingWithSteps methods. This also
allows to show the charts produced by YACCLAB in
Fig. 3 and Fig. 4.

The allocation/deallocation time is stable and de-
pends only on the data structures used:

– CT, SBLA, and NULL do not have any memory re-
quirement in addition to the output image;

– SAUF, BBDT, CCIT, CTB, and PRED have the ad-
ditional requirements of the Union-Find structures,
which are one (UF, UFPC, RemSP) or three arrays
(TTA);

– DiStefano has a two arrays structure to handle labels
resolution;

– LSL has always a larger memory footprint.

All this is reflected in the time requirements. Note that
the time is quantized on the number of virtual memory
pages required, so for example on 3DPeS or Fingerprints,
there is no difference but for LSL.

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

SAUF_UF

BBDT_RemSP

CCIT_RemSP

CTB_UF

PRED_RemSP

LSL_STD_UF

LSL_STDZ_UF

LSL_RLE_UF

LSL_RLEZ_UF

DiStefano

CT SBLA
NULL

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan
All Scans

0.10 0.10 0.10 0.10 0.10

0.52 0.52 0.52 0.52

0.10 0.09 0.09 0.09

0.37

0.16
0.23 0.25 0.23

0.40

0.27 0.29 0.27

0.64

0.52

0.07

0.14

0.14 0.07
0.07

0.16

0.16
0.16

0.16
0.19

0.66

0.89

0.07

0.
54

0.
40 0.

47

0.
42

0.
40

1.
08

0.
95 0.
97

0.
95

0.
93 0.

98

1.
27

0.
16

(a) MIRflickr

 0

 5

 10

 15

 20

SAUF_UF

BBDT_UF

CCIT_UFPC

CTB_UFPC

PRED_UFPC

LSL_STD_UF

LSL_STDZ_UF

LSL_RLE_UF

LSL_RLEZ_UF

DiStefano

CT SBLA
NULL

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan
All Scans

1.44 1.44 1.44 1.44 1.44

4.57 4.58 4.58 4.58

2.14
0.85 0.85 0.85

8.16

2.65
3.83

3.17 3.26

9.76

6.34
5.44 5.20

8.85

9.22

2.01

2.74

2.72

2.01 2.01

4.41

4.41

4.41 4.41
2.98

10.08

13.66

2.00

11
.6

1

6.
83 7.

99

6.
62

6.
71

18
.7

4

15
.3

3

14
.4

3

14
.1

9

13
.9

7

14
.5

1

20
.1

5

2.
85

(b) Tobacco800

 0

 10

 20

 30

 40

 50

 60

 70

 80

SAUF_UF

BBDT_UF

CCIT_RemSP

CTB_UFPC

PRED_RemSP

LSL_STD_UF

LSL_STDZ_UF

LSL_RLE_UF

LSL_RLEZ_UF

DiStefano

CT SBLA
NULL

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan
All Scans

3.62 3.61 3.63 3.62 3.62

12.07 12.07 12.05 12.06

5.17
2.54 2.54 2.54

30.09

11.27
13.83 13.41 13.64

36.20

23.90 22.15 20.80

43.09

35.13

7.69

10.61
10.54

7.69 7.69

15.86

15.85
15.85

15.85

12.12

40.69

59.23

7.34

41
.4

0

25
.4

9

28
.0

0

24
.7

2

24
.9

5

64
.1

3

51
.8

2

50
.0

5

48
.7

1

60
.3

8

61
.7

7

78
.3

6

9.
88

(c) XDOCS

Fig. 4 Average run-time tests with steps in ms on an Intel
Core i7-4770 CPU @ 3.40GHz running Linux with GCC 5.1.0
(lower is better).

The first scan of BBDT is always faster than that of
the other two scan algorithms, while its second scan is
slower. This is clearly due to the fact that the 2×2 mask
used requires a bunch of tests in the second scan, which
are saved in the first scan. CCIT has exactly the same
second scan and the same timings, but its first scan is
slower due to a different organization of the decision tree.
LSL second scan has to make two indirections and this
causes another slowdown. Of course the real problem of
LSL is the first scan, which is extremely costly and slower
than the other efficient algorithms.

The memory savings of SBLA are annihilated by the
horrible cache accesses caused by the simultaneous use
of the output image as a Union-Find structure. CT is
heavily affected by the length of the contours, so its worse
performance is obtained on the fingerprints dataset.

5.3 Memory Test Results

YACCLAB can also report the number of memory ac-
cesses of each algorithm, for each dataset. We are not
reporting these numbers for all combinations, but we
simply try to graphically report a summary in Fig. 5,
which has been computed under Linux, with GCC, on
Tobacco800 dataset, using the classical UF algorithm.
The chart compares memory accesses and execution time,
but normalizes them with reference to the values of NULL
labeling. For this reason, the axes start at 1 both for x
and y and the values are adimensional.

There is a correlation between number of memory
accesses and time, but it is not linear and not perfect.
In fact, CT has very few memory accesses, similarly to
CCIT, but their access patterns differ a lot: CT is defi-
nitely not cache friendly and thus CCIT is much faster.
Furthermore, BBDT uses the same mask of CCIT, re-
quires slightly more accesses, but it is faster than CCIT
because the same results are obtained with a more struc-
tured and regular code which is easier for the compiler to
optimize. CTB and PRED instead use a smaller mask,
thus requiring more accesses to both the output image,
and the equivalence storage structures. Their mask is
anyway used smartly, containing the number of accesses
to the input image (they leverage the outcome of one

SAUF_UF

BBDT_UF

CCIT_UF

CTB_UF
PRED_UF

LSL_STD_UF

LSL_STDZ_UF
LSL_RLE_UF

LSL_RLEZ_UF
DiStefano

CT

SBLA

NULL
1

2

3

4

5

6

7

1 2 3 4 5

R
at

io
 o

f
ex

ec
u

ti
o

n
 t

im
e

s
w

rt
 N

U
LL

Ratio of memory accesses wrt NULL

Fig. 5 Correlation between memory accesses and execution
times normalized to the NULL labeling and obtained under
Linux with GCC 5.1.0 on Tobacco800 dataset.

12

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density

SAUF_RemSP
BBDT_RemSP

CCIT_TTA
CTB_RemSP

PRED_RemSP
LSL_STDZ_UF
LSL_RLEZ_UF

NULL

(a) Density

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

102 103 104 105 106 107 108

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Pixels

SAUF_RemSP
BBDT_RemSP

CCIT_TTA
CTB_RemSP

PRED_RemSP
LSL_STDZ_UF
LSL_RLEZ_UF

NULL

(b) Size

Fig. 6 Size and Density tests on Intel Core i7-4770 CPU
@ 3.40GHz running Linux with GCC 5.1.0. Some algorithms
have been omitted to make the charts more legible.

pixel to evaluate the next one), thus allowing for an ex-
tremely simple and branchless second scan. As already
analyzed before, DiStefano and SBLA have extremely
poor labels solving strategy which causes the execution
time to be very high. The other algorithms have even
higher memory requirements, which cause more slow-
downs and impact on performance.

5.4 Synthetic Tests Results

The final results have been obtained on the synthetic
datasets and are reported in Fig. 6 and Fig. 7. Again,
these tests are reported for a reduced set of combina-
tions, selecting the best performing labels solver, under
Linux and with GCC. We removed the worse perform-
ing algorithms in order to keep the figure readable. The
Density chart shows how, depending on the number of
foreground pixels, the behavior changes. This is mostly
related to the errors of the branch prediction unit which
heavily affects the algorithms around 0.5. It is interesting
to note that PRED and CTB behave extremely similarly
and are effective at low densities, LSL STD is much less

affected by the density changes, BBDT is faster at higher
densities.

We included these tests in YACCLAB for the sake
of completeness, but during the writing of this paper we
realized why virtually any conclusion drawn from this is
inapplicable to real world images. The problem is that
the density of foreground pixels is not the key factor in
the branch prediction: the key point is the probability
of transition from black to white and viceversa. We are
keeping it fixed at 50% using random generation, but in
real images this is definitely not the case. So the branch
predictor has much less problems and the result are more
similar to those observed at lower densities.

Less interesting is the Size chart, which shows that
the behavior is linear in the number of pixels for all the
selected algorithms, as expected. The only point we want
to stress is the “jump” observed around 105 pixels. This
is due to the images not fitting L2 cache anymore and
requiring also L3 cache to be employed to fit the input
image.

The Granularity charts, on the other hand, high-
light the performance of an algorithm when both den-
sity of foreground pixels and their granularity change.
Of course, when the granularity is equal to 1 (Fig. 7(a))
the algorithms performance have the pattern already ob-
served in the density chart. Then, when the granularity
grows, the execution time for middle density images de-
crease. Again, this can be easily explained considering
the branch prediction unit: when pixel blocks in the in-
put image became bigger, the prediction of pixel values,
which are totally random, fails less, thus decreasing the
cost associated to failures.

6 Conclusions

In this paper we described two contributions to the image
processing community: a comprehensive dataset for com-
paring connected components labeling algorithms and a
portable open source C++ project to test different algo-
rithms on top of it. No new algorithms were proposed,
but this tool allows any new improvement to be evalu-
ated uniformly with respect to existing proposals.

We presented an analysis of some results to showcase
the possibility of this project, and doing so we demon-
strated that in many cases it is impossible to find an
algorithm which clearly dominates the others. Moreover,
giving normalized figures such as clock per pixel is poorly
significant, because it implies that that number does not
depend on the machine. When changing the compiler
changes the algorithm behavior, the number becomes
clearly useless.

This is not to say that no comparison is possible. If
an algorithm is always faster than another in all tried
configurations, the conclusion is then obvious.

The reproducible research movement is strongly af-
fecting the Image Processing community, making sci-

13

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

SAUF_RemSP
BBDT_RemSP

CCIT_TTA
CTB_RemSP

PRED_RemSP
LSL_STDZ_UF
LSL_RLEZ_UF

NULL

(a) g = 1

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

SAUF_RemSP
BBDT_RemSP

CCIT_TTA
CTB_RemSP

PRED_RemSP
LSL_STDZ_UF
LSL_RLEZ_UF

NULL

(b) g = 2

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

SAUF_RemSP
BBDT_RemSP

CCIT_TTA
CTB_RemSP

PRED_RemSP
LSL_STDZ_UF
LSL_RLEZ_UF

NULL

(c) g = 4

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

SAUF_RemSP
BBDT_RemSP

CCIT_TTA
CTB_RemSP

PRED_RemSP
LSL_STDZ_UF
LSL_RLEZ_UF

NULL

(d) g = 8

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

SAUF_RemSP
BBDT_RemSP

CCIT_TTA
CTB_RemSP

PRED_RemSP
LSL_STDZ_UF
LSL_RLEZ_UF

NULL

(e) g = 12

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

SAUF_RemSP
BBDT_RemSP

CCIT_TTA
CTB_RemSP

PRED_RemSP
LSL_STDZ_UF
LSL_RLEZ_UF

NULL

(f) g = 16

Fig. 7 Granularity results in ms on an Intel Core i7-4770 CPU @ 3.40GHz running Linux with GCC 5.1.0 (lower is better).

entific advances readily available to all researchers and
practitioners. We strongly support this view and our ef-
fort is exactly aiming at letting everybody pick the best
CCL algorithm for his needs.

References

1. Agam G, Argamon S, Frieder O, Grossman D, Lewis
D (2006) The Complex Document Image Processing
(CDIP) Test Collection Project. Illinois Institute of
Technology

2. Baltieri D, Vezzani R, Cucchiara R (2011) 3DPeS:
3D People Dataset for Surveillance and Forensics.
In: Proceedings of the 2011 joint ACM workshop on
Human gesture and behavior understanding, ACM,
pp 59–64

3. Bolelli F (2017) Indexing of historical document im-
ages: Ad hoc dewarping technique for handwritten
text. In: 13th Italian Research Conference on Digi-
tal Libraries

4. Bolelli F, Borghi G, Grana C (2017) Historical hand-
written text images word spotting through sliding
window hog features. In: 19th International Confer-
ence on Image Analysis and Processing

14

5. Bolelli F, Borghi G, Grana C (2018) Xdocs: An ap-
plication to index historical documents. In: Italian
Research Conference on Digital Libraries, Springer,
pp 151–162

6. Cabaret L, Lacassagne L, Etiemble D (2016) Paral-
lel light speed labeling: an efficient connected com-
ponent algorithm for labeling and analysis on multi-
core processors. Journal of Real-Time Image Pro-
cessing pp 1–24

7. Chang F, Chen CJ, Lu CJ (2004) A linear-time
component-labeling algorithm using contour tracing
technique. Computer Vision and Image Understand-
ing 93(2):206–220

8. Chang WY, Chiu CC (2014) An efficient scan algo-
rithm for block-based connected component labeling.
In: 22nd Mediterranean Conference of Control and
Automation (MED), IEEE, pp 1008–1013

9. Chang WY, Chiu CC, Yang JH (2015) Block-based
connected-component labeling algorithm using bi-
nary decision trees. Sensors 15(9):23,763–23,787

10. Di Stefano L, Bulgarelli A (1999) A Simple and Ef-
ficient Connected Components Labeling Algorithm.
In: International Conference on Image Analysis and
Processing, IEEE, pp 322–327

11. Dijkstra EW (1976) A discipline of programming /
Edsger W. Dijkstra. Prentice-Hall Englewood Cliffs,
N.J

12. Dong F, Irshad H, Oh EY, Lerwill MF, Brachtel EF,
Jones NC, Knoblauch NW, Montaser-Kouhsari L,
Johnson NB, Rao LK, et al (2014) Computational
Pathology to Discriminate Benign from Malignant
Intraductal Proliferations of the Breast. PloS one
9(12):e114,885

13. Grana C, Borghesani D, Cucchiara R (2010) Opti-
mized Block-based Connected Components Labeling
with Decision Trees. IEEE Transactions on Image
Processing 19(6):1596–1609

14. Grana C, Montangero M, Borghesani D (2012) Op-
timal decision trees for local image processing al-
gorithms. Pattern Recognition Letters 33(16):2302–
2310

15. Grana C, Baraldi L, Bolelli F (2016) Optimized Con-
nected Components Labeling with Pixel Prediction.
In: Advanced Concepts for Intelligent Vision Sys-
tems

16. He L, Chao Y, Suzuki K (2007) A Linear-Time Two-
Scan Labeling Algorithm. In: International Confer-
ence on Image Processing, vol 5, pp 241–244

17. He L, Chao Y, Suzuki K (2008) A Run-Based Two-
Scan Labeling Algorithm. IEEE Transactions on Im-
age Processing 17(5):749–756

18. He L, Chao Y, Suzuki K, Wu K (2009) Fast
connected-component labeling. Pattern Recognition
42(9):1977–1987

19. He L, Zhao X, Chao Y, Suzuki K (2014)
Configuration-Transition-Based Connected-
Component Labeling. IEEE Transactions on

Image Processing 23(2):943–951
20. Huiskes MJ, Lew MS (2008) The MIR Flickr Re-

trieval Evaluation. In: MIR ’08: Proceedings of the
2008 ACM International Conference on Multimedia
Information Retrieval, ACM, New York, NY, USA

21. Lacassagne L, Zavidovique B (2009) Light Speed La-
beling for RISC architectures. In: ICIP, pp 3245–
3248

22. Lacassagne L, Zavidovique B (2011) Light speed la-
beling: efficient connected component labeling on
risc architectures. Journal of Real-Time Image Pro-
cessing 6(2):117–135

23. Lewis D, Agam G, Argamon S, Frieder O, Grossman
D, Heard J (2006) Building a test collection for com-
plex document information processing. In: Proceed-
ings of the 29th annual international ACM SIGIR
conference on Research and development in infor-
mation retrieval, ACM, pp 665–666

24. LTDL (2007) The Legacy Tobacco Document Li-
brary (LTDL). University of California, San Fran-
cisco

25. Maltoni D, Maio D, Jain A, Prabhakar S (2009)
Handbook of fingerprint recognition. Springer Sci-
ence & Business Media

26. Matsumoto M, Nishimura T (1998) Mersenne
twister: a 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Trans-
actions on Modeling and Computer Simulation
(TOMACS) 8(1):3–30

27. Otsu N (1979) A threshold selection method from
gray-level histograms. IEEE transactions on sys-
tems, man, and cybernetics 9(1):62–66

28. Sauvola J, Pietikäinen M (2000) Adaptive document
image binarization. Pattern recognition 33(2):225–
236

29. Sutheebanjard P, Premchaiswadi W (2011) Efficient
scan mask techniques for connected components la-
beling algorithm. EURASIP Journal on image and
Video Processing 2011(1):1–20

30. Tarjan RE (1975) Efficiency of a good but not linear
set union algorithm. Journal of the ACM 22(2):215–
225

31. Torralba A, Efros AA (2011) Unbiased Look at
Dataset Bias. In: IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), IEEE, pp
1521–1528

32. Wu K, Otoo E, Suzuki K (2005) Two Strategies
to Speed up Connected Component Labeling Algo-
rithms. Tech. Rep. LBNL-59102, Lawrence Berkeley
National Laboratory

33. Wu K, Otoo E, Suzuki K (2009) Optimizing two-
pass connected-component labeling algorithms. Pat-
tern Analysis and Applications 12(2):117–135

34. Zhao H, Fan Y, Zhang T, Sang H (2010) Stripe-based
connected components labelling. Electronics letters
46(21):1434–1436

15

Table 4 Average run-time results in ms obtained under both Linux (a) and Windows (b) with GCC 5.1.0 compiler. The bold
values represent the best labels solver for a specific CCL algorithm and dataset, the red ones point out the best algorithm
for a given dataset.

3DPeS Fingerprints Hamlet Medical MIRflickr Tobacco800 XDOCS

(a
)

L
in

u
x

w
it

h
G

C
C

5
.1

.0

SAUF RemSP 1.123 0.404 6.832 3.036 0.556 11.209 41.031
SAUF TTA 1.136 0.424 6.960 3.178 0.573 11.243 41.719
SAUF UFPC 1.143 0.432 6.998 3.083 0.570 11.358 42.042
SAUF UF 1.126 0.400 6.827 3.065 0.559 11.230 41.438

BBDT RemSP 0.687 0.330 4.376 1.985 0.391 6.477 24.632
BBDT TTA 0.699 0.339 4.512 2.047 0.398 6.612 25.561
BBDT UFPC 0.688 0.335 4.480 2.003 0.395 6.571 25.223
BBDT UF 0.682 0.333 4.412 2.037 0.395 6.500 24.882

CCIT RemSP 0.801 0.378 4.915 2.303 0.470 7.447 27.100
CCIT TTA 0.759 0.367 4.747 2.267 0.471 6.975 26.648
CCIT UFPC 0.839 0.412 5.369 2.503 0.518 7.945 30.316
CCIT UF 0.853 0.403 5.386 2.465 0.504 8.035 30.149

CTB RemSP 0.669 0.316 4.149 2.097 0.458 6.218 24.501
CTB TTA 0.675 0.317 4.175 2.076 0.443 6.219 24.576
CTB UFPC 0.669 0.317 4.163 2.091 0.456 6.254 24.452
CTB UF 0.673 0.325 4.194 2.078 0.452 6.263 24.537

PRED RemSP 0.689 0.323 4.254 1.972 0.414 6.310 24.579
PRED TTA 0.696 0.328 4.291 1.993 0.416 6.354 25.000
PRED UFPC 0.691 0.330 4.289 2.003 0.422 6.361 24.853
PRED UF 0.684 0.323 4.219 1.974 0.413 6.259 24.469

LSL STD TTA 2.100 0.689 11.640 5.638 0.949 18.400 64.207
LSL STD UF 2.095 0.685 11.608 5.504 0.944 18.337 64.048

LSL STDZ TTA 1.814 0.595 9.667 4.760 0.823 15.049 52.201
LSL STDZ UF 1.796 0.583 9.511 4.572 0.811 14.794 51.313

LSL RLE TTA 1.714 0.655 9.380 4.587 0.837 13.966 49.483
LSL RLE UF 1.706 0.646 9.330 4.435 0.829 13.887 49.240

LSL RLEZ TTA 1.713 0.655 9.385 4.587 0.837 13.983 49.543
LSL RLEZ UF 1.696 0.637 9.221 4.396 0.818 13.785 48.687

DiStefano 1.198 0.629 8.377 4.232 0.857 12.753 58.009

CT 1.435 1.027 11.447 5.371 1.073 15.804 66.645

SBLA 1.339 0.685 9.655 4.454 0.821 14.406 56.906

NULL 0.395 0.094 1.791 0.849 0.160 2.834 9.685

(b
)

W
in

d
o

w
s

w
it

h
G

C
C

5
.1

.0

SAUF RemSP 1.123 0.420 7.932 3.476 0.578 13.293 63.635
SAUF TTA 1.139 0.429 7.945 3.525 0.590 13.264 64.126
SAUF UFPC 1.141 0.442 8.029 3.485 0.589 13.425 63.276
SAUF UF 1.121 0.414 7.863 3.476 0.581 13.265 63.607

BBDT RemSP 0.723 0.362 5.490 2.311 0.422 8.756 42.290
BBDT TTA 0.733 0.365 5.505 2.317 0.423 8.765 42.601
BBDT UFPC 0.724 0.365 5.500 2.315 0.423 8.760 42.363
BBDT UF 0.609 0.321 4.715 1.977 0.370 7.484 36.727

CCIT RemSP 0.845 0.400 6.307 2.806 0.508 10.126 50.326
CCIT TTA 0.894 0.418 6.665 3.009 0.540 10.712 53.974
CCIT UFPC 0.855 0.424 6.431 2.899 0.545 10.196 51.185
CCIT UF 0.853 0.416 6.389 2.851 0.529 10.157 50.337

CTB RemSP 0.674 0.347 5.306 2.614 0.509 8.380 48.303
CTB TTA 0.687 0.349 5.349 2.637 0.514 8.440 48.785
CTB UFPC 0.659 0.346 5.208 2.606 0.516 8.215 47.846
CTB UF 0.675 0.335 5.203 2.436 0.468 8.260 44.461

PRED RemSP 0.693 0.349 5.363 2.411 0.446 8.436 43.561
PRED TTA 0.707 0.355 5.431 2.436 0.450 8.505 44.071
PRED UFPC 0.696 0.353 5.382 2.422 0.453 8.447 43.708
PRED UF 0.686 0.332 5.247 2.355 0.431 8.335 42.662

LSL STD TTA 2.026 0.658 15.620 6.761 0.946 26.373 119.099
LSL STD UF 2.011 0.653 15.567 6.743 0.940 26.299 118.757

LSL STDZ TTA 1.745 0.565 13.590 5.867 0.823 23.043 104.320
LSL STDZ UF 1.710 0.552 13.402 5.784 0.808 22.753 102.928

LSL RLE TTA 1.635 0.622 13.279 5.667 0.832 21.892 99.882
LSL RLE UF 1.627 0.627 13.311 5.734 0.835 21.918 100.168

LSL RLEZ TTA 1.635 0.628 13.314 5.736 0.836 21.917 100.093
LSL RLEZ UF 1.610 0.601 13.067 5.584 0.811 21.687 98.852

DiStefano 0.820 0.555 6.879 3.619 0.738 10.293 72.852

CT 1.431 1.037 12.332 5.716 1.099 17.953 98.586

SBLA 1.263 0.682 10.089 4.569 0.817 15.494 80.206

NULL 0.364 0.096 2.452 1.086 0.163 4.397 21.378

	Introduction
	The Dataset
	The Project
	Available Algorithms
	Experimental Results
	Conclusions

