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Abstract

We develop an explicit asymptotic model for the Rayleigh wave field arising in

case of stresses prescribed on the surface of an orthorhombic elastic half-plane.

The model consists of an elliptic equation governing the behaviour within the

half-plane, with boundary values given on the half-plane surface by a wave

equation. Consequently, propagation along the surface is entirely accounted

for by the hyperbolic equation, which, besides, may be immediately recast in

terms of the associated surface displacement. The model readily solves otherwise

involved dynamic problems for prescribed surface stresses, and its effectiveness

is demonstrated for the classical Lamb’s problem, as well as for the steady-

state moving load problem. The latter example shows that the proposed model

is really obtained by perturbation around the steady-state solution for a load

moving at the Rayleigh speed.
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1. Introduction

Surface waves in anisotropic elastic media have been well investigated on

the grounds of their wide range of application in defect detection, waveguide

scattering and earthquake analysis. A large degree of interest has been raised

by surface waves propagating in crystals, starting from the work of R. Stoneley

[29], which generalizes the classical result of Lord Rayleigh concerning isotropic
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media [31] to solid-solid interfaces. Propagation of harmonic surface waves in

orthorhombic media was investigated, among others, by Sveklo [32], Chadwick

[4] and Destrade [6]. Existence and uniqueness of surface waves in anisotropic

media has been provided by Barnett & Lothe [1] on the basis of the Stroh

formalism [30].

Most of the literature concerning surface waves really deals with harmonic

surface waves of sinusoidal profile. A more general approach to surface waves

of arbitrary shape originates from the works of Sobolev [28], Friedlander [10],

and Chadwick [3], which consider eigen-solutions in the form of arbitrary plane

harmonic functions. Such an approach has been recently extended to 3D as

well as to interfacial waves [19, 23]. The effect of anisotropy has also been

incorporated, see [24, 26].

Another viewpoint in modelling near-surface dynamics is given in [17], where

a hyperbolic-elliptic formulation for the Rayleigh wave induced stresses field is

provided. Focus is set on singling out the contribution of Rayleigh waves to the

overall dynamics and consequently neglect bulk waves. This approach relies on

a slow time perturbation of the eigen-solution obtained in [3]. An important

feature of the described formulation takes the shape of a hyperbolic equation

for either elastic potential, that is valid over the surface and governs surface

wave propagation. The same approach has been extended, for linear isotropic

elasticity, to 3D wave propagation, thin coating layers and to mixed boundary

conditions [5], [7] and [8]. Besides, interesting results concerning the near-

resonant regime for loads moving on an elastic half-space have been reported in

[9, 12, 15]. In parallel, parabolic-elliptic models were constructed for bending

edge Rayleigh-type waves [16]. Some more results on the asymptotic theories

for Rayleigh and Rayleigh-type waves may be found in [13] and [14].

In this paper, we extend the results of [17] to orthorhombic elastic materi-

als. This generalisation is non-trivial due to the fact that anisotropy prevents

the Helmholtz decomposition of the displacement field into a longitudinal and a

transverse potential. A slow time perturbation procedure is carried out which,

at leading order, sustains the representation of the wave field in terms of a sin-
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Figure 1: A line load f(x1, t) acting on an orthorhombic half-plane

gle plane harmonic function, see [26]. Consideration of the first correction to

the leading order solution brings in the hyperbolic equation governing surface

displacements. The complete formulation includes an elliptic equation for the

auxiliary plane harmonic function, complemented by the boundary condition

on the surface in the form of the aforementioned hyperbolic equation. In or-

der to illustrate the efficacy of the asymptotic solution we consider two model

examples, namely Lamb’s normal load problem and the steady-state moving

point load. In the case of Lamb’s problem, the result of the asymptotic formu-

lation corresponds to the Rayleigh pole contribution to the solution obtained

by means of integral transforms. In the case of a steady-state moving load, it

is shown that the exact solution for the subsonic regime is easily obtained in

terms of harmonic functions, a fact observed in [2] for isotropic elasticity. As

expected, the near-resonant behaviour coincides with that given by the derived

hyperbolic-elliptic model.

2. Governing equations

Consider an orthorhombic linear elastic half-plane occupying the region

E+2 = {(x1, x2) : x2 ≥ 0} of a two-dimensional Euclidean space. In the con-

text of wave propagation, the plane (x1, x2) is often named the sagittal plane.

The half-plane is acted upon, on its boundary x2 = 0, by a line load distribution

f(x1, t) (Fig.1). Let u = (u1, u2) be the displacement vector of a material par-

ticle with co-ordinates x = (x1, x2) in the half-plane. In light of the half-plane

being orthorhombic, its constitutive equations are taken in planar orthotropic
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form, see e.g. [11, §2.5],

σ11 = c11∂1u1 + c12∂2u2,

σ22 = c12∂1u1 + c22∂2u2,

σ12 = c66 (∂2u1 + ∂1u2) ,

where ∂j stands for partial differentiation along xj and cij are material constants

such that

c11 > 0, c66 > 0, c11c22 − c212 > 0,

ensuring that the strain-energy density is positive definite. We let the shorthand

notation

β = c12 + c66.

The constitutive parameters c11, c22, c12 and c66 are often expressed in terms of

the technical material constants E1, E2, ν12, ν21, G12, there holding the recipro-

cal relation

ν12E2 = ν21E1.

For instance, for unidirectionally reinforced glass-epoxy composite material [11,

Table 2-3b]

E1 = 54 GPa, E2 = 18 GPa, G12 = c66 = 9 GPa,

ν12 = 0.25, ρ = 1900 kg/m
3
,

whence

c11 = 55.15 GPa, c22 = 18.38 GPa, c12 = 4.60 GPa. (1)

Following [27], three wave speeds are defined

c1 =

√
c11
ρ
, c2 =

√
c22
ρ

and c6 =

√
c66
ρ
,

together with the combination

cc =

√
c11c22 − c212

ρc22
< c1. (2)

4



Motion in the half-plane is governed by the following pair of PDEs

c11∂
2
11u1 + c66∂

2
22u1 + β∂212u2 = ρ∂2ttu1, (3a)

β∂212u1 + c66∂
2
11u2 + c22∂

2
22u2 = ρ∂2ttu2. (3b)

The boundary conditions (BCs) on the surface x2 = 0 are in the form of imposed

traction

σ12 = f1(x1, t), σ22 = f2(x1, t), (4)

where we have let f = −(f1, f2) to abide with tradition (force positive down-

wards). Clearly, displacement is expected to decay depth-wise at infinity

(u1, u2)→ (0, 0), as x2 → +∞. (5)

Let us focus on waves radiating from the load with phase speed c close to

the Rayleigh wave speed cR, i.e.

ε =

∣∣∣∣ ccR − 1

∣∣∣∣� 1. (6)

Examples of such occurrence include the near-resonance regime of a moving

load or a far-field approximation, for more details see [14]. For the sake of

definiteness, we consider waves propagating in the positive direction according

to the moving co-ordinate ξ = x1 − cRt, cR > 0, associated with the Rayleigh

wavefront. Then, a slow time perturbation procedure is readily established, see

e.g. [17] and [18], which allows for the following arbitrary profile travelling-wave

solution

uj = Uj(ξ, x2, τ), j = 1, 2,

where τ = εt is the so-called slow time.

Plugging this solution into the governing equations (3), one gets the pair of

linear PDEs

(c11 − ρc2R)∂2ξξU1 + c66∂
2
22U1 + β∂2ξ2U2 = ρε∂τ (ε∂τU1 − 2cR∂ξU1) , (7a)

β∂2ξ2U1 + (c66 − ρc2R)∂2ξξU2 + c22∂
2
22U2 = ρε∂τ (ε∂τU2 − 2cR∂ξU2) . (7b)
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As well-known, this system of two second order PDEs may be recast in terms

of a single fourth order PDE, for instance in terms of U1,

a0∂
4
ξξξξU1 + a1∂

4
ξξ22U1 + a2∂

4
2222U1 + ε∂2τξ

(
b1∂

2
ξξU1 + d1∂

2
22U1

)
− ε2∂2ττ

(
b2∂

2
ξξU1 + d2∂

2
22U1

)
− ε3b3∂4τττξU1 + ε4b4∂

4
ττττU1 = 0, (8)

where the coefficients are

a0 =
(
c11 − ρc2R

) (
c66 − ρc2R

)
,

a1 = c11c22 + c266 − β2 − (c22 + c66) ρc2R,

a2 = c22c66,

b1 = 2ρcR
[
c11 + c66 − 2ρc2R

]
,

d1 = 2ρcR(c22 + c66),

b2 = ρ
[
c11 + c66 − 6ρc2R

]
,

d2 = ρ(c22 + c66)

b3 = 4ρ2cR,

b4 = ρ2.

Once U1 is determined, ∂2ξ2U2 may be readily found from Eq.(7a) and possibly

integrated. Similarly, boundary conditions (4) give, at x2 = 0,

c66 (∂ξU2 + ∂2U1) = f1, (9a)

c12∂ξU1 + c22∂2U2 = f2. (9b)

3. Two-term solution

We begin by expanding displacements as asymptotic series

Uj(ξ, x2, τ) = ε−1U
(0)
j (ξ, x2, τ) + U

(1)
j (ξ, x2, τ) + εU

(2)
j (ξ, x2, τ) + . . . ,

where j = 1, 2. It should be emphasized that the presence of the leading terms

of order ε−1 is due to the near-resonant nature of the excitation, given that a

homogeneous problem is expected at leading order [14].
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3.1. Leading order analysis

At leading order, Eq.(8) reduces to the homogeneous fourth-order pseudo-

static PDE already discussed in [26, Eq.(8)], namely(
a0∂

4
ξξξξ + a1∂

4
ξξ22 + a2∂

4
2222

)
U

(0)
1 = 0, (10)

while Eq.(7a) gives

β∂2ξ2U
(0)
2 =

(
ρc2R − c11

)
∂2ξξU

(0)
1 − c66∂222U

(0)
1 . (11)

Eq.(10) may be formally rewritten in operator form as the product of two second-

order bi-dimensional Laplace operators1, suitably stretched along the x2 co-

ordinate,

a2∆1∆2U
(0)
1 = 0, (12)

being

∆j =
(
∂222 + λ2j∂

2
ξξ

)
, j = 1, 2,

and where the dimensionless coefficients λ1 and λ2 are obtained from solving

λ21 + λ22 =
a1
a2

and λ21λ
2
2 =

a0
a2
. (13)

In the general case, λ1 and λ2 are solution of the secular equation for Rayleigh

wave propagating in orthorhombic crystals (see [27, §5.3.3.1] and observe that

λj here is χj = ıqj there). In this paper, we restrict attention to the case

when λ1 and λ2 are positive real numbers, which requires (a0, a1) > 0, with this

implying

cR < min (c6, ch) , ch =

√
c2c − 2c26

c12
c22

1 + c66
c22

< cc. (14)

The solution of Eq.(12) may be obtained superposing a pair of plane harmonic

functions (with physical dimension of length), stretched along x2 according to

the factors λ1 and λ2 [26, Eq.(12)] and decaying along x2 to comply with con-

ditions (5),

U
(0)
1 (ξ, x2, τ) = φ

(0)
1 (ξ, λ1x2, τ) + φ

(0)
2 (ξ, λ2x2, τ). (15)

1This factorizing is most often met in dealing with the bi-harmonic operator of plate theory,
cf[21].
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This solution may be inserted into Eq.(11) to give

U
(0)
2 (ξ, x2, τ) = α1φ

(0)∗
1 (ξ, λ1x2, τ) + α2φ

(0)∗
2 (ξ, λ2x2, τ), (16)

having let the dimensionless coefficients

αj =
c66λ

2
j + ρc2R − c11
βλj

< 0. (17)

Here, calling upon the harmonic character of φ
(0)
j (ξ, λjx2, τ), use has been made

of the Cauchy-Riemann identities according to which we have (no summation

over j = 1, 2 is implied)

∂ξφ
(0)
j = λ−1j ∂2φ

(0)∗
j , ∂2φ

(0)
j = −λj∂ξφ(0)∗j , (18)

where a superscript asterisk denotes the harmonic conjugated function. We

recall that the operation of harmonic conjugation is an involution, in the sense

that

φ
(0)∗∗
j = −φ(0)j .

Plugging the solutions (15) and (16) into the BCs (9) gives, at x2 = 0,

(α1 − λ1)∂ξφ
(0)
1

∗
+ (α2 − λ2)∂ξφ

(0)
2

∗
= 0, (19a)

(c12 + c22α1λ1)∂ξφ
(0)
1 + (c12 + c22α2λ2)∂ξφ

(0)
2 = 0. (19b)

Taking harmonic conjugation of Eq.(19a), a homogeneous algebraic linear sys-

tem in the unknowns ∂ξφ
(0)
1 (ξ, 0, τ) and ∂ξφ

(0)
2 (ξ, 0, τ) is found, which admits

non-trivial solutions provided that cR satisfies the Rayleigh wave speed equa-

tion, namely

det

 α1 − λ1 α2 − λ2
c12 + c22α1λ1 c12 + c22α2λ2

 = 0.

Expanding the determinant and making use of Eqs.(13), we get the velocity

equation

R(c2) = 0, (20)

where R(c2) is the Rayleigh function

R(c2) =
[
c22(c11 − ρc2)− c212

]√ (c11 − ρc2)(c66 − ρc2)

c22c66
−ρc2

(
c11 − ρc2

)
, (21)
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which possesses a unique real solution, c = cR < c1. Indeed, the square root in

Eq.(20) may be eliminated by squaring (see also [27, §5.3.3.1])

c26(c21 − c2)c4 − c22(c26 − c2)(c2c − c2)2 = 0,

which shows that the root c = cR satisfies

cR < min (c6, cc) . (22)

We observe that this property is already implied by the requirement that λ1 and

λ2 be real, through the condition (14). There may be several roots of Eq.(20),

but only one complies with the constraints (14) and (22). For the parameter

set (1), we find

cR = 2084.13 m/s.

Furthermore, either of the boundary conditions (19), once integrated along ξ,

yields a connection between φ
(0)
1 and φ

(0)
2 on the surface x2 = 0 (cf[26, Eq.(18)])

φ
(0)
2 (ξ, 0, τ) = −ϑφ(0)1 (ξ, 0, τ), (23)

where

ϑ =
α1 − λ1
α2 − λ2

=
c12 + c22α1λ1
c12 + c22α2λ2

.

Consequently, since the harmonic functions φ
(0)
2 (ξ, x2, τ) and −ϑφ(0)1 (ξ, x2, τ)

coincide on the boundary x2 = 0, they coincide throughout and, therefore, the

displacement field may be conveniently expressed in terms of a single plane

harmonic function, say φ
(0)
1 , as

U
(0)
1 (ξ, x2, τ) = φ

(0)
1 (ξ, λ1x2, τ)− ϑφ(0)1 (ξ, λ2x2, τ), (24a)

U
(0)
2 (ξ, x2, τ) = α1φ

(0)∗
1 (ξ, λ1x2, τ)− ϑα2φ

(0)∗
1 (ξ, λ2x2, τ). (24b)

Thus, the leading order analysis brings out the eigen-solution for the Rayleigh

wave field, already discussed in [26].

3.2. First order correction

Following [17], now consider the first order correction to the leading order

solution. Proceeding to the next order, Eq.(8) gives

a2 41 42U
(1)
1 = −2ρcR

[
(c11 + c66 − 2ρc2R)∂2ξξ + (c22 + c66)∂222

]
∂2ξτU

(0)
1 , (25)
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while Eq.(7a) lends

β∂2ξ2U
(1)
2 =

(
ρc2R − c11

)
∂2ξξU

(1)
1 − c66∂222U

(1)
1 − 2ρcR∂

2
ξτU

(0)
1 . (26)

Clearly, U
(1)
1 may be found from Eq.(25) as the sum of the solution to the

homogeneous equation

41 42 U
(1) = 0,

which, as for the leading order problem, is readily obtained through superpo-

sition of a pair of plane harmonic functions φ
(1)
1 and φ

(1)
2 , with any particular

solution U
(1)
1p of the inhomogeneous equation. In order to find the latter, we

exploit linearity and consider the functions φ
(0)
1 and φ

(0)
2 appearing in Eq.(15)

one at a time. Thus, we let U
(1)
1p = U

(1)
1a + U

(1)
1b , where U

(1)
1a is the particular

solution of Eq.(25) where U
(0)
1 has been replaced by φ

(0)
1 and, similarly, U

(1)
1b is

the particular solution of the same equation in which U
(0)
1 has been substituted

with φ
(0)
2 . Thus, for the first contribution, making use of the Cauchy-Riemann

identities (18), we get

a2 41 42U
(1)
1a = e1∂

4
ξξξτφ

(0)
1 , (27)

wherein

e1 = −2ρcR
[
c11 + c66 − (c22 + c66)λ21 − 2ρc2R

]
.

The same linear decomposition goes with U2
(1)
p = U2a

(1)+U2b
(1) in Eq.(26) and,

for the first contribution, we have

β∂2ξ2U
(1)
2a =

(
ρc2R − c11

)
∂2ξξU

(1)
1a − c66∂222U

(1)
1a − 2ρcR∂

2
ξτφ

(0)
1 .

The particular solution of Eq.(27) may be conveniently sought in the form2

U
(1)
1a = x2ψ1(ξ, λ1x2, τ)

where ψ1 is harmonic in the first two arguments. Then, noting that

41U
(1)
1a = 2∂2ψ1,

2Indeed, this comes from the general form of the solution for the bi-harmonic equation,
see [33]. The alternative choice U1a

(1)(ξ, x2, τ) = ξψ1(ξ, λ1x2, τ) is likewise possible, but it is
less advantageous when it comes to writing the BCs at x2 = 0.
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and, using once more the Cauchy-Riemann identities, we have, from Eq.(27),

2a2 42 ∂2ψ1 = −2a2λ1(λ22 − λ21)∂3ξξξψ
∗
1 = e1∂

4
ξξξτφ

(0)
1 ,

whence

U
(1)
1a =

e1
2a2λ1(λ22 − λ21)

x2∂τφ
(0)∗
1 . (28)

In likewise manner, the second particular solution associated with φ
(0)
2 satisfies

a2 41 42U
(1)
1b = e2∂

4
ξξξτφ

(0)
2 , (29)

where

e2 = −2ρcR
[
c11 + c66 − (c22 + c66)λ22 − 2ρc2R

]
,

and, similarly, Eq.(26) becomes

β∂2ξ2U
(1)
2b =

(
ρc2R − c11

)
∂2ξξU

(1)
1b − c66∂

2
22U

(1)
1b − 2ρcR∂

2
ξτφ

(0)
2 .

Proceeding as before, we get for the solution of Eq.(29)

U
(1)
1b =

e2
2a2λ2(λ21 − λ22)

x2∂τφ
(0)∗
2 . (30)

Hence, putting together the homogeneous and the particular solutions (28,30),

the general solution is arrived at

U
(1)
1 (ξ, x2, τ) = φ

(1)
1 (ξ, λ1x2, τ) + φ

(1)
2 (ξ, λ2x2, τ)

+
1

2a2(λ22 − λ21)
x2

[
e1
λ1

∂τφ
(0)∗
1 − e2

λ2
∂τφ

(0)∗
2

]
, (31)

where φ
(1)
j (ξ, λjx2), j = 1, 2 are plane harmonic functions which decay as

x2 → +∞.

Plugging Eq.(31) into Eq.(26), employing the Cauchy-Riemann identities

(18) and integrating along x2 gives

∂2U
(1)
2 = α1λ1∂ξφ

(1)
1 + α2λ2∂ξφ

(1)
2

− β−1
{

2ρcR +
e1

c22(λ22 − λ21)

}
∂τφ

(0)
1 − β−1

{
2ρcR +

e2
c22(λ21 − λ22)

}
∂τφ

(0)
2

+
x2

2a2(λ22 − λ21)

[
e1α1∂

2
ξτφ

(0)∗
1 − e2α2∂

2
ξτφ

(0)∗
2

]
, (32)
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and also

∂ξU
(1)
2 = α1∂ξφ

(1)∗
1 + α2∂ξφ

(1)∗
2 − 1

βλ1

{
2ρcR +

e1(2c66λ1 − α1β)

2a2λ1(λ22 − λ21)

}
∂τφ

(0)∗
1

− 1

βλ2

{
2ρcR +

e2(2c66λ2 − α2β)

2a2λ2(λ21 − λ22)

}
∂τφ

(0)∗
2

+
x2

2a2(λ22 − λ21)

[
e2α2

λ2
∂2ξτφ

(0)
2 −

e1α1

λ1
∂2ξτφ

(0)
1

]
. (33)

At this order, the BCs (9) are inhomogeneous

c66

(
∂2U

(1)
1 + ∂ξU

(1)
2

)
= f1, (34a)

c12∂ξU
(1)
1 + c22∂2U

(1)
2 = f2, (34b)

where the left hand sides (LHSs) are evaluated at x2 = 0. Substituting into

Eqs.(34) the expressions (31,32,33) gives

(α1 − λ1) ∂ξφ
(1)∗
1 + (α2 − λ2) ∂ξφ

(1)∗
2

=
f1
c66

+ (α1 − λ1)
(
Z11∂τφ

(0)∗
1 (ξ, 0, τ) + Z12∂τφ

(0)∗
2 (ξ, 0, τ)

)
(35)

having let

(α1−λ1)Z1j =
1

βλj

(
ej
αjβ + (β − 2c66)λj

2a2λj(λ2j − λ2k)
+ 2ρcR

)
, j, k ∈ {1, 2} and k 6= j.

Similarly, Eq.(34b) becomes

(c12 + c22α1λ1) ∂ξφ
(1)
1 + (c12 + c22α2λ2) ∂ξφ

(1)
2

= f2 + (c12 + c22α1λ1)
(
Z21∂τφ

(0)
1 (ξ, 0, τ) + Z22∂τφ

(0)
2 (ξ, 0, τ)

)
, (36)

where

(c12 + c22α1λ1)Z2j =
1

β

(
2ρcRc22 −

ej
λ2j − λ2k

)
, j, k ∈ {1, 2} and k 6= j.

It is observed that the entries of the square matrix Zjk have dimension of slow-

ness, i.e. inverse of speed.

Let us consider the case of normal load first, i.e. f1 = 0. Taking harmonic

conjugation of Eq.(35) and considering Eq.(36) lends a singular linear system in
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the unknowns ∂ξφ
(1)
1 and ∂ξφ

(1)
2 which admits a unique solution provided that

the following compatibility condition is satisfied by the RHS

(Z21 − Z11)∂τφ
(0)
1 + (Z22 − Z12)∂τφ

(0)
2 +

1

c12 + c22α1λ1
f2 = 0, at x2 = 0.

This equation may be recast entirely in terms of a single harmonic function, say

φ
(0)
1 , through the connection (23) and then differentiated with respect to ξ,

∂2ξτφ
(0)
1 =

cR
2
γ1∂ξf2,

where

γ1 = − 2

cR

1

(c12 + c22α1λ1) [Z21 − Z11 − ϑ(Z22 − Z12)]
, (37)

with dimension of elastic compliance, i.e. inverse of stress. Upon returning

to the original variables by means of the approximate operator relation [17,

Eq.(3.20)]

∂2ξτ ≈
cR
2ε

(
∂211 − c−2R ∂2tt

)
and introducing the auxiliary harmonic function φ1(x1, x2, t) = ε−1φ

(0)
1 (ξ, λ1x2, τ),

we have (
∂211 − c−2R ∂2tt

)
φ1(x1, 0, t) = γ1∂1f2(x1, t). (38)

Therefore, the case of normal loading reduces to the following hyperbolic-elliptic

formulation for the auxiliary function φ1 which

• satisfies the homogeneous elliptic equation

(
∂222 + λ21∂

2
11

)
φ1 = 0 (39)

in the domain E+2 ,

• with boundary values on the surface x2 = 0 given by the hyperbolic equa-

tion (38) and the depth-wise decay condition (5).

In particular, boundary values may be found independently from (38), i.e. with-

out solving the problem in the domain.
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A similar formulation may be derived for shear loading, through the com-

patibility condition

(Z21 − Z11)∂τφ
(0)∗
1 + (Z22 − Z12)∂τφ

(0)∗
2 − 1

c66(α1 − λ1)
f1 = 0, at x2 = 0.

Consequently, the boundary condition for the elliptic equation (39) takes the

form

∂2ξτφ
(0)∗
1 (ξ, 0, t) =

cR
2
γ2∂1f1(ξ, t),

or, equivalently, we get the following hyperbolic equation for the harmonic con-

jugate φ∗1(x1, x2, t) = ε−1φ
(0)∗
1 (ξ, λ1x2, τ)

(
∂211 − c−2R ∂2tt

)
φ∗1(x1, 0, t) = γ2∂1f1(x1, t), (40)

where we have let the compliance

γ2 =
2

cR

1

c66(α1 − λ1) [Z21 − Z11 − ϑ(Z22 − Z12)]
.

Finally, we note that in light of Eqs.(24), Eqs.(38) and (40) may be reinter-

preted as hyperbolic equations for the surface displacement. Indeed, to leading

order, we have

u1(x1, 0, t) = (1− ϑ)φ1(x1, 0, t),

u2(x1, 0, t) = (α1 − ϑα2)φ∗1(x1, 0, t),

whence Eq.(38) may be rewritten as

(
∂211 − c−2R ∂2tt

)
u1(x1, 0, t) = (1− ϑ)γ1∂1f2(x1, t), (41)

whereas, for shear loading, Eq.(40) becomes

(
∂211 − c−2R ∂2tt

)
u2(x1, 0, t) = (α1 − ϑα2)γ2∂1f1(x1, t). (42)

4. Isotropic case

In the case of an isotropic half-plane, we have

c11 = c22 = λ+ 2G, c66 = G, c12 = λ, β = λ+G,

14



where λ is Lamé’s constant and G is the shear elastic modulus. Consequently,

in a linearly isotropic solid, the elastic wave speeds collapse into either cd =√
(λ+ 2G)/ρ or cs =

√
G/ρ, respectively the longitudinal and the transversal

wave speed,

c1 = c2 = cd > c6 = cs.

Then, the constants a0 and a1 allow for a simple interpretation

a0 = ρ2(c2d − c2R)(c2s − c2R), a1 = ρ2(c2d + c2s)
(
c2h − c2R

)
,

with c2h = 2/(c−2d + c−2s ) being the harmonic mean of the speeds squared. Be-

sides, given that Eq.(2) reduces to

cc = 2
cs
cd

√
c2d − c2s

and in light of c2d > 2c2s, it is a straightforward matter to prove that ch < cc, as

expected. Using the property of the harmonic mean, we conclude

cs < ch < cc < cd,

from which the condition (14) for having real λ reduces to

cR < cs,

that is indeed guaranteed by Eq.(22). Therefore, in the isotropic case, only

purely real attenuation indices are possible.

Besides, we have (λ1 and λ2 may be freely swapped)

λ21,2 = 1− c2R
c2d,s

, α1 = −λ−11 α2 = −λ2,

and

ϑ = (λ1λ2)−1
(

1− c2R
2c2s

)
.

Eq.(41) gives, in the isotropic case,

(
∂211 − c−2R ∂2tt

)
u1(x1, 0, t) =

1− k42
4GB

∂1f1(x1, t),

15



being (we use the notation in [17])

k1 =

√
1−

c2R
c2d

= λ2, k2 =

√
1−

c2R
c2s

= λ1,

and

B =
k2
k1

(1− k21) +
k1
k2

(1− k22)− 1 + k42.

In the same fashion, Eq.(42), in the isotropic case, reduces to

(
∂211 − c−2R ∂2tt

)
u2(x1, 0, t) = −1− k42

4GB
∂1f1(x1, t).

5. Illustrative examples

In this Section, we consider two classical problems of elastodynamics and

demonstrate the efficacy of the developed asymptotic model. First, we consider

Lamb’s problem for a normal load and then we present the analysis of a steady-

state moving load problem in the near-resonant regime.

5.1. Lamb’s problem for a normal load

Lamb’s problem considers the effect of a normal (or tangential) point load

suddenly applied onto the surface of an elastic half-space [20]. To this aim, we

let f1 ≡ 0 and f2(x1, t) = P0δ(x1)δ(t) in the boundary conditions (4) and begin

by considering the conventional approach to the problem by means of integral

transforms. On applying the Fourier-Laplace transform pair to Eqs.(3), we get

c66
d2uFL1

dx22
−
(
s2c11 + ρp2

)
uFL1 + ısβ

duFL2

dx2
= 0, (43a)

ısβ
duFL1

dx2
+ c22

d2uFL2

dx22
−
(
s2c66 + ρp2

)
uFL2 = 0, (43b)

where uFLj (x2) are the Fourier-Laplace transforms of the displacements uj(x1, x2, t),

j = 1, 2, along x1 and t, i.e.

uFLj (s, x2, p) =

∫ +∞

0

exp(−pt)dt
∫ +∞

−∞
uj(x1, x2, t) exp(ısx1)dx1.

Here, ı is the imaginary unit and s and p denote the Fourier and Laplace trans-

form parameters, respectively. Eqs.(43) may be recast into the single fourth

16



order ODE

a2
d4uFL1

dx42
− s2

(
c11c22 − c212 − 2c12c66 + (c22 + c66)ρ

p2

s2

)
d2uFL1

dx22

+ s4
(
c11 + ρ

p2

s2

)(
c66 + ρ

p2

s2

)
uFL1 = 0,

that clearly corresponds to the Fourier transform of the bi-harmonic operator

(12) in which we substitute c2R with −p2/s2. The decaying solution of this fourth

order ODE is found in the form

uFL1 (x2) = C1 exp (−q1sx2) + C2 exp (−q2sx2) , (44)

where C1 and C2 are complex-valued functions of s and p. To warrant decay,

the attenuation coefficients appearing in the exponentials need have positive

real part, i.e. <(sqj) > 0, j = 1, 2. Besides, they are solution of the secular

equation for Rayleigh wave propagating in orthorhombic crystals [27, §5.3.3.1]

(cfEqs.(13))

q21 + q22 =
c11c22 − c212 − 2c12c66 + (c22 + c66)ρp

2

s2

a2
,

q21q
2
2 =

(
c11 + ρp

2

s2

)(
c66 + ρp

2

s2

)
a2

.

Hence, from Eq.(43a), the transformed vertical displacement reads

uFL2 = C1F (q1) exp (−q1sx2) + C2F (q2) exp (−q2sx2) , (45)

wherein we let the dimensionless functions

F (qj) = −ı
c66q

2
j − ρ

p2

s2 − c11
βqj

, j = 1, 2.

The Fourier-Laplace transform of the boundary conditions (4) yields

duFL1

dx2
(0) + ısuFL2 (0) = 0, ısc12u

FL
1 (0) + c22

duFL2

dx2
(0) = P0,

which, upon substituting Eqs.(44) and (45), gives a linear algebraic system in

the unknowns C1 and C2. After some algebraic manipulations, the transform

of the horizontal displacement on the surface is found

uFL1 (0) = C1 + C2 = −ı P0
Q(−p2/s2)

sR (−p2/s2)
, (46)
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where

Q (z) = c11 − ρ z − c12

√
(c11 − ρ z) (c66 − ρ z)

a2
,

and R(c2) has been defined in (21). It is clear that the function R(c2) possesses

a single zero, associated with the Rayleigh wave speed, at c2R = −p2/s2 < c21,

which is a pole for Eq.(46). The near-resonance regime is to be found right

in the neighborhood of this pole, wherein the RHS of Eq.(46) may be well

approximated by the leading order term of its Taylor expansion

R

(
−p

2

s2

)
≈ −R′(c2R)

(
p2

s2
+ c2R

)
and Q

(
−p

2

s2

)
≈ Q(c2R).

In this context, the speed c appearing in the asymptotic approach is a measure

of the distance from this pole, i.e. c2 = −p2/s2. Whence, in the vicinity of the

Rayleigh pole,

uFL1 (0) = ıγ3
sc2RP0

p2 + c2Rs
2
,

where the constant

γ3 = − 2

c2R

χ2
1χ6

(√
a2χ1 − c12χ6

)
ρc22χ2

1(χ2
1 + 3χ2

6)− c212(χ2
1 + χ2

6) + 2
√
a2χ1χ6(2χ2

1 − ρc11)
,

is expressed in terms of the density, stiffness components, and the Rayleigh wave

speed, with the positive quantities

χ1 =
√
c21 − c2R, χ6 =

√
c26 − c2R.

It may be verified from (15) and (23) that

γ3 = (1− ϑ)γ1,

where γ1 given by Eq.(37). Hence, on the surface x2 = 0, for the displacement

uFL1 [
∂211u1 − c−2R ∂2ttu1

]FL
= −ıγ3sP0 = [γ3P0δ

′(x1)δ(t)]
FL

the inversion of which is straightforward

(
∂211 − c−2R ∂2tt

)
u1 = γ3P0δ

′(x1)δ(t).
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This hyperbolic equation is in fact Eq.(41), with f2 = P0δ(x1)δ(t). Thus, not

surprisingly, the contribution of the Rayleigh pole matches the derived asymp-

totic formulation.

We now derive the Rayleigh wave field for the Lamb problem through the

asymptotic formulation. We begin by solving on the surface x2 = 0 the hyper-

bolic equation (38) specified for Lamb’s normal load, namely(
∂211 −

1

c2R
∂2tt

)
φ1(x1, 0, t) = γ1P0δ

′(x1)δ(t).

Employing the fundamental solution of the 1D wave operator, see e.g. [25], we

deduce

φ1(x1, 0, t) =
cR
2
γ1P0 [δ(x1 − cRt)− δ(x1 + cRt)] .

Then, using Poisson’s formula for Laplace operator in the half-plane [33, §5.4.4],

the harmonic function φ1 is immediately retrieved

φ1(x1, x2, t) =
x2
π

∞∫
−∞

1

(x1 − r)2 + x22
φ1(r, 0, t)dr

=
γ1P0cR

2π
x2

[
1

(x1 − cRt)2 + x22
− 1

(x1 + cRt)2 + x22

]
.

The full-field displacement is determined accordingly

u1,2(x1, x2, t) =
γ1P0cR

2π
(Û−1,2 − Û

+
1,2),

where

Û∓1 = λ1
x2

(x1 ∓ cRt)2 + (λ1x2)2
− ϑλ2

x2
(x1 ∓ cRt)2 + (λ2x2)2

and

Û∓2 = α1
x1 ∓ cRt

(x1 ∓ cRt)2 + (λ1x2)2
− ϑα2

x1 ∓ cRt
(x1 ∓ cRt)2 + (λ2x2)2

.

Figs.2 and 3 present the displacement profiles U−1,2 in terms of the dimensionless

co-ordinate η = ξ/x2.

5.2. Steady-state moving load problem

We now consider the action of a normal line load in steady motion along

the surface x2 = 0 with constant speed c, this time not necessarily close to
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Figure 2: Displacement profile Û−
1 for Lamb’s normal load problem as obtained from the

asymptotic analysis for carbon epoxy composite

Figure 3: Displacement profile Û−
2 for Lamb’s normal load problem as obtained from the

asymptotic analysis for carbon epoxy composite
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the Rayleigh wave speed cR. For this setup, we let for the loading f1 = 0

and f2 = f(x1 − ct). Following the original approach in [2], we first derive

the problem general solution in the subsonic regime c < cR and then draw a

comparison with the results of the asymptotic formulation letting the speed of

the load approach the resonant surface wave speed (see also [14]). In going

through the derivations, it will become apparent that the asymptotic model

is basically obtained by perturbation of this steady-state moving load problem

solution around Rayleigh’s critical speed.

First of all, Eqs.(3) are re-written in terms of the moving coordinate ξ =

x1 − ct

(c11 − ρc2)∂2ξξu1 + c66∂
2
22u1 + β∂2ξ2u2 = 0, (47a)

β∂2ξ2u1 + (c66 − ρc2)∂2ξξu2 + c22∂
2
22u2 = 0, (47b)

subject to the boundary conditions

∂ξu2 + ∂2u1 = 0, (48a)

c12∂ξu1 + c22∂2u2 = f(ξ). (48b)

According to [10] and [3], in the subsonic regime Eqs.(47) allow a solution in

terms of a single plane harmonic function. Indeed, the system (47) may be

rewritten as the product of two stretched Laplace operators for either unknown,

say

∆1∆2u1 = 0.

The solution to this PDE is readily found by superposition of a pair of plane

harmonic functions

u1(ξ, x2) = φ1(ξ, λ1x2) + φ2(ξ, λ2x2), (49)

and plugging this back into Eq.(47a) lends

u2(ξ, x2) = α1φ
∗
1(ξ, λ1x2) + α2φ

∗
2(ξ, λ2x2), (50)

wherein the coefficients αj are defined as in Eq.(17) provided that cR is replaced

by the moving load speed c. Unlike the leading order analysis of Sec.3.1, substi-

tution of this solution into the boundary conditions (48) yields a inhomogeneous
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linear system that is regular inasmuch as c 6= cR. The solution to this system

is readily obtained by Cramer’s rule

∂ξφ1 = Q1(c2)f, (51)

where

Q1(c2) =
λ1
(
c12λ

2
2 + c11 − ρc2

)
(λ1 − λ2)R(c2)

, (52)

with R(c2) defined in Eq.(21). Clearly, the resonant nature of the Rayleigh wave

is seen from (52).

The connection between the harmonic functions is given by

φ2(ξ, 0) = −ϑφ1(ξ, 0),

Integrating Eq.(51) provides a Dirichlet-type boundary condition for the elliptic

equation (39), namely

φ1(ξ, 0) = Q1(c2)

∫
f(ξ)dξ. (53)

Thus, making use of the harmonic form of the solution allows significant sim-

plification, since the vector problem of elastodynamics is now reduced to the

solution of a scalar elliptic equation.

For the sake of illustration, we consider the case of a point normal load

travelling at constant speed c, i.e. f(ξ) = P0δ(ξ). Then, integration of Eq.(53)

gives

φ1(ξ, 0) = Q1(c2)P0

[
H(ξ)− 1

2

]
,

where the arbitrary integration constant 1/2 (stemming in light of the steady-

state nature of the problem) is chosen as to preserve symmetry and H(ξ) is

Heaviside’s step function. Then, the harmonic function φ1 = φ1(ξ, x2) may be

determined over the interior of the half-plane by means of Poisson’s formula

φ1(ξ, x2) =
P0

π
Q1(c2) arctan

ξ

x2
.

The displacement field immediately follows from Eqs.(49)

u1(ξ, x2) =
P0

π
Q1(c2)Û1, Û1 = arctan

ξ

λ1x2
− ϑ arctan

ξ

λ2x2
,
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Figure 4: Displacement profile Û1 for the steady state motion of a point load acting on
carbon epoxy composite material and moving at speed c = 1000 (solid), 1500 (dashed) and
2000 (dotted) m/s

Figure 5: Displacement profile Û2 for the steady state motion of a point load acting on
carbon epoxy composite material and moving at speed c = 1000 (solid), 1500 (dashed) and
2000 (dotted) m/s

and from Eq.(50)

u2(ξ, x2) =
P0

2π
Q1(c2)Û2 Û2 = α1 ln

(
ξ2

λ21x
2
2

+ 1

)
− ϑα2 ln

(
ξ2

λ22x
2
2

+ 1

)
.

Indeed, on account of the fact that ln z = 1
2 ln |z|2 + ı arg z is an analytic

function of z (in the cut plane), its real and imaginary parts are harmonic

conjugated functions and, letting z = 1 + ıξ/x2, we have |z|2 = ξ2/x22 + 1,

arg z = arctan ξ/x2, together with the required decay condition.

Figs.4 and 5 plot the displacement profiles Û1,2 in terms of the dimensionless

variable η = ξ/x2 at different load speeds.

Let us now implement the asymptotic formulation in the case of near-

resonant speed for the moving load, i.e. when condition (6) is satisfied. Then,
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from Eq.(38) we have at x2 = 0(
1− c2

c2R

)
∂2ξξφ1 = γ1∂ξf,

from which we immediately deduce (compare with Eq.(53))

φ1(ξ, 0) = Q2(c2)

∫
f(ξ)dξ,

with

Q2(c2) =
c2Rγ1
c2R − c2

.

Similarly to the analysis given for Lamb’s problem, it may be seen that the ex-

pression for Q2(c2) corresponds to the leading order term in the Taylor expan-

sion about the Rayleigh speed of Eq.(52), which gives the amplitude coefficient

Q1(c2) for the exact solution.

6. Conclusions

In this paper, an explicit asymptotic model is derived which accounts for the

Rayleigh wave contribution to the dynamic field induced by stresses acting on

the surface of an orthorhombic half-plane. The model is set in terms of a single

plane harmonic function and it allows to reduce the vector problem of elastody-

namics to a scalar elliptic equation with boundary values given by an hyperbolic

equation. Indeed, the model incorporates time dependence through the 1D wave

equation (Eqs.(38) and (40) for the normal and shear load, respectively), which,

once solved on the half-plane surface, provides the boundary values for a Laplace

equation in the interior. This approach allows to easily tackle generally involved

propagation problems and obtain their far-field approximation, which is sensi-

tive to the propagated field. Moreover, the hyperbolic equations (41) and (42)

immediately lend the surface displacement.

In order to illustrate the proposed asymptotic formulation, two classical

problems are considered, namely Lamb’s problem for normal load and the

steady-state propagation of a line load in the subsonic regime. In the case

of Lamb’s problem, a pair of opposite moving Rayleigh waves are generated on
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the surface and their effect in the interior is immediately determined by Pois-

son’s integral formula. This displacement field matches the behaviour found by

using the integral transform method and then approximating the solution in the

transformed domain by a Taylor series centered at the Rayleigh pole (i.e. the

residue of the Rayleigh pole). Conversely, the steady-state propagation problem

lends itself most easily to a solution in terms of a single plane harmonic function

and, in the limit as the speed approaches the Rayleigh wave speed, the results

of the asymptotic model are retrieved. Thus, it is shown that the proposed

approach is obtained by perturbing the steady-state solution for a load moving

at the critical speed.

Finally, we note that this approach can be generalized to include complex

conjugate attenuation parameters associated with oscillatory decay (although

this situation is non-trivial for it is set outside the scope of harmonic solutions),

to 3D problems and surface waves in a coated half-space, transient moving load

problems treated similarly to [12], surface waves in case of impedance boundary

conditions [34] and also extensions of the parabolic-elliptic model for bending

edge waves to anisotropic plates [16, 22].
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