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Abstract 9 

This article describes the development of a fast and inexpensive method based on digital image 10 

analysis for the automated quantification of the percentage of defective maize (%DM). Defective11 

kernels tend to foster high levels of mycotoxins like Deoxynivalenol (DON), which represents a 12 

risk for the health of humans and of farm animals. In this work, 332 RGB images of 83 mixtures 13 

containing different amounts of defective maize kernels were acquired using a digital camera. The 14 

mixtures were also analysed with a commercial ELISA test kit to determine their concentration of 15 

DON, that resulted highly correlated with the amount of defective kernels. Each image was then 16 

converted into a signal, named colourgram, which codifies its colour-related information content. 17 

The colourgrams were firstly explored using Principal Component Analysis. Then, calibration 18 

models of the %DM values were developed using Partial Least Squares (PLS) and interval-PLS.19 

The best interval-PLS model allowed to predict the %DM values of external test set samples with a20 

root mean square error value equal to 2.6%. Based on the output of this model it was also possible21 

to highlight the defective-maize areas within the images, confirming the significance of the22 

proposed approach.23 
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1. Introduction 28 

The great importance of maize (Zea mays L.) is due to its primary role for multiple uses, including29 

human food, livestock feed, biofuels and bioplastics (FAO, 2006). A current issue of high relevance 30 

related to the consumption of maize as food or feed is its possible contamination with mycotoxins. 31 

Indeed, maize mycotoxins can be directly found in the human food or, as animal feed, they are 32 

ingested by animals and then pass to humans through the food chain. Due to their high toxicity, 33 

mycotoxins represent a major risk for human health. Their ingestion can lead to a wide range of34 

effects, including deterioration of liver or kidney functions, skin necrosis, immunological 35 

disturbances, neurotoxicity and carcinogenicity (Steyn, 1995; Sweeney and Dobson, 1998; Edite 36 

Bezerra da Rocha et al., 2014).37 

Mycotoxins are secondary metabolites naturally produced by some filamentous fungi, which38 

frequently develop in maize. The most common mycotoxins in maize are produced by fungi 39 

belonging to the genera of Fusarium, Aspergillus and Penicillium (Hossain and Goto, 2014). These 40 

microorganisms mainly develop in the field or at the post-harvest stage, when storage conditions are 41 

inadequate. The types and levels of contamination strongly depend on the contaminant fungi42 

species, on the harvesting year and on environmental conditions such as temperature and humidity43 

(Suleiman et al., 2013). One of the most common mycotoxins found in maize is deoxynivalenol 44 

(DON), also known as vomitoxin due to its strong emetic effects. DON is primarily produced by 45 

Fusarium graminearum and Fusarium culmorum, and is one of the most common mycotoxins 46 

found in maize (Kushiro, 2008; Sobrova et al., 2010; Edite Bezerra da Rocha et al., 2014). Because 47 

of the health hazards to humans and animals, the European Parliament has set a limit of 1750 ppb in 48 

the unprocessed maize used in foodstuff (Commission Regulation (EC) No 1126/2007), while in the 49 

animal feed materials the recommendations generally suggest to not exceed 8 ppm of DON 50 

(Commission Directive 2003/100/EC).51 

In order to ensure food safety, proper techniques to estimate the concentration of mycotoxins in 52 

maize have been developed, which are mainly based on chromatographic methods and on 53 
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immunoassays (Maragos and Busman, 2010). These methods allow to gain high sensitivity and 54 

specificity, but present some drawbacks, mainly due to the relatively long times required for the 55 

analysis, to the costs and to the limited amount of analysed sample, which implies the risk of a 56 

poorly representative sampling of large maize batches. These aspects are particularly crucial during 57 

the transfer phase of the maize crops to the warehouse, when it is necessary to evaluate in very short 58 

times large amounts of product conferred by farmers, in order to fix the price and the final 59 

destination of each batch, or to reject it.60 

In this context, the availability of proper systems to perform a fast analysis of representative maize 61 

quantities might constitute a very useful tool, at least for a preliminary assessment in view of more 62 

refined analyses of the accepted batches by traditional wet chemistry methods. To this aim, digital63 

image processing is suitable for screening heterogeneous food or feed matrices like maize, to detect 64 

local defects connected to fungal and toxin contaminations (Udomkun et al., 2017). Some authors 65 

have recently proposed the use of near infrared hyperspectral imaging (NIR-HSI) to detect maize 66 

kernels infected with fungi, and to estimate the degree of infection with a fast and accurate system67 

(Del Fiore et al., 2010; Singh et al., 2012; Williams et al., 2012). Notwithstanding the great 68 

advantages offered by NIR-HSI, the efforts needed to efficiently extract useful information from the 69 

huge amount of hyperspectral data and the relatively high cost of hyperspectral cameras are still 70 

limiting factors for its widespread application in maize monitoring (Ferrari et al., 2013; Ulrici et al., 71 

2013; Calvini et al., 2016).72 

For these reasons, much cheaper instrumentations based on the use of common digital cameras 73 

constitute an interesting alternative for the implementation of fast and non-destructive methods to 74 

monitor maize defects. In fact, although the lack of visible defects does not ensure the complete 75 

absence of mycotoxins, the presence of stained, dark or rotten maize kernels is generally correlated76 

with the presence of fungal infections. In other words, the higher the amount of defective kernels, 77 

the higher the possibility of significant mycotoxins contamination.78 
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In this context, the use of Multivariate Image Analysis (MIA) offers a wide range of effective tools 79 

to properly detect and quantify visible defects through RGB imaging. Essentially MIA consists in 80 

the development and application of various chemometric strategies for the analysis of multivariate 81 

images, consisting of a given number of picture elements (pixels), each one characterized by a 82 

series of spectral variables, or channels (Esbensen and Geladi, 1989; Geladi and Grahn, 1996; Prats-83 

Montalbán et al., 2011; Duchesne et al., 2012; Reis, 2014). Many approaches have been proposed to 84 

characterise food samples based on MIA applied to RGB images, by using information in the 85 

original RGB colour space, in the latent variable space (e.g., using PCA), or in other colour spaces 86 

like Hue, Saturation, Intensity (HSI) (Yu et al., 2003; Pereira et al., 2009; Pierini et al., 2016).87 

In particular, many research works have been reported in the literature, where morphological,88 

textural and colour features extracted from RGB images were used to develop automated systems89 

for monitoring damaged and non-damaged kernels (Ruan et al., 1998; Choudhary et al., 2008). 90 

Valeinte-Gonzàlez et al. (2014) developed an effective approach based on the combined use of 91 

computer vision and Principal Component Analysis (PCA) to identify the damaged regions of92 

single maize kernels. However, in the perspective of an industrial application, the determination of 93 

the degree of defectiveness of a maize batch based on the investigation of single kernels would be 94 

too demanding in terms of time and computational effort.95 

In this context, this study was aimed at developing an automated system for a preliminary 96 

assessment of DON contamination, based on the simultaneous analysis of a dataset of RGB images 97 

of mixtures containing different percentages of defective maize (%DM). The correlation between 98 

the %DM values and the concentration of DON, estimated by means of a commercial ELISA test 99 

kit, was also investigated. Each image was converted into a one-dimensional signal, named 100 

colourgram, which codifies its colour-related information content (Antonelli et al., 2004; Lo Fiego 101 

et al., 2007; Foca et al., 2011; Ulrici et al., 2012). In turn, the colourgrams were used to develop102 

calibration models to predict %DM, using Partial Least Squares (PLS) and the feature selection 103 

algorithm interval-Partial Least Squares (iPLS). Moreover, the reconstruction of the maize images 104 
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considering the colour-related features selected by iPLS allowed to visualize the defective kernels 105 

and thus to evaluate in a critical manner the choices made automatically by the algorithm.106 

107 

2. Materials and methods 108 

2.1 Maize samples 109 

In the present study, two different types of maize kernels were considered: dry maize (13 % 110 

moisture) and wet maize (24 % moisture). For both the maize types, based on their visual aspect the 111 

kernels were manually separated into defective (stained, dark or rotten) and non-defective (uniform 112 

yellow pericarp) kernels (Nguyen V.H., 2013). After the separation between defective and non-113 

defective kernels, the maize samples were sealed in plastic bags and stored in the dark at 4 °C for a 114 

maximum of two days before analysis.115 

116 

2.2 Image acquisition  117 

The RGB images were acquired using a Panasonic DMC-TZ25 digital camera, using a 24 mm focal 118 

length (in 35 mm equiv.), 1/125 s shutter speed, ISO-100 and f/3.5. Before the acquisition sessions, 119 

white balance was set to a constant value by pointing the camera towards a white paper sheet, under 120 

the same lighting conditions used to capture sample images. The images, with 24-bit colour depth 121 

and spatial resolution equal to 4000 × 3000 pixels (corresponding to an image area approximately 122 

equal to 310 × 235 mm) were stored in JPEG format, with an average file size equal to 4.87 MB.123 

In order to have constant and homogeneous lighting conditions, the camera was mounted on a 124 

carton box (Figure 1) whose inner surface was covered with white paper sheets. The lighting system 125 

consisted in a strip of white light-emitting diode lamps (SMD 3528 LED 5V USB, colour 126 

temperature 6500 K) assembled on a metallic support and directed upwards at a 90 degree angle 127 

with the carton box wall. In this manner, the sample was only illuminated by diffused light to avoid 128 

the presence of undesired shadows or reflection effects. A white conveyor belt was used as 129 

background of the images. Furthermore, a colour reference was included in the image scene to130 
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correct possible variations in the lighting conditions. The colour reference, reported in Figure 2, 131 

consisted in a white paper sheet including a series of eight squares (size 1 cm2) of different colours,132 

i.e., white, black, the primary additive colours (red, green, blue) and the primary subtractive colours 133 

(cyan, magenta, yellow), that were obtained using a laser printer (HP LaserJet Pro 200 color MFP 134 

M276n).135 

The acquisition of the RGB images was performed in two subsequent steps. A schematic 136 

representation of the procedure followed for the preparation of the imaged samples is reported in 137 

Figure 3.138 

In the first acquisition step, the amount of defective maize kernels was varied considering 13139 

different levels, corresponding to the following percentages by weight (w/w): 0%, 5%, 10%, 20%, 140 

30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% and 100%. In particular, for dry maize two mixtures141 

were prepared for each considered level, that were split in the two mixture groups D1a and D1b.142 

For wet maize, due to a smaller amount of available defective maize, only one mixture group (W1)143 

was considered. Therefore, in the first step 26 samples of dry maize and 13 samples of wet maize 144 

were considered, for a total of 39 different samples. Each mixture consisted in a total amount of 145 

maize kernels equal to 150 g.146 

For each sample two images were acquired, shuffling the kernels before each acquisition. The same 147 

image acquisition procedure was repeated in a different day in order to check the day-to-day148 

variability. All the samples were acquired in random order to minimise, as much as possible, the 149 

effects of uncontrollable factors. Therefore, on the whole, 156 images (= 39 samples × 2 repeated 150 

acquisitions × 2 measurement sessions) were obtained in this first step.151 

Simultaneously, for each mixture the concentration of DON was determined using a commercially 152 

available ELISA kit (see Section 2.3). The results of this analysis showed that mixtures with an 153 

amount of defective kernels equal to or greater than 10% presented high concentrations of DON.154 

For this reason, a second acquisition step was planned with the aim of collecting additional images155 
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with an amount of defective kernels in the range between 0 and 10%, in order to improve the 156 

performance of the calibration models in proximity to low %DM values.157 

Therefore, in the second acquisition step, additional mixtures were prepared, considering 11 levels 158 

corresponding to percentages by weight (w/w) of defective maize kernels ranging from 0% to 10%, 159 

with steps of 1%. In this case, for both dry and wet maize types two mixtures for each considered 160 

level were prepared, that were split in the D2a and D2b mixture groups for dry maize, and in the 161 

W2a and W2b mixture groups for wet maize. Therefore, in the second step a total of 44 samples 162 

were obtained, each one containing 150 g of kernels.163 

The experimental procedure followed for image acquisition was the same for the previous step,164 

leading to 176 additional images (= 44 samples × 2 repeated acquisitions × 2 measurement 165 

sessions). The digital images acquired during the two acquisition steps were merged together to166 

obtain a final dataset composed of 332 images.167 

168 

2.3 Determination of deoxynivalenol 169 

In order to verify the correlation between the %DM values and the concentration of DON, ELISA 170 

test was performed on the maize samples using AgraQuant® DON 0.25/5.0 Assay (Romer Labs 171 

Inc., USA).172 

Before the first acquisition step, the concentration of DON was determined on the defective and 173 

non-defective kernels of wet and dry maize. In particular, for dry maize 10 aliquots of non-defective174 

kernels and 10 aliquots of defective kernels were randomly collected, while for wet maize 5 aliquots 175 

were collected for each group of kernels. Each aliquot consisted in 20 g of maize kernels, which 176 

were ground and subjected to ELISA test following the standard procedure provided by the 177 

manufacturer.178 

Afterwards, simultaneously with image acquisition, the ELISA test was performed also on the 179 

mixtures imaged during both the acquisition steps. In this case, the entire amount of 150 g of 180 

kernels of each sample was grinded and analysed with AgraQuant kit. The quantification range of 181 
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the AgraQuant DON assay is between 0.25 and 5.0 ppm; therefore, samples containing DON levels 182 

higher than 5 ppm were diluted with deionized water in order to fall within the quantification range. 183 

The dilution was performed up to a maximum quantification value equal to 10 ppm.184 

185 

2.4 Image analysis 186 

2.4.1 Standardization and conversion to colourgrams  187 

The key steps followed for the elaboration of the RGB images are summarized in Figure 2. Firstly, 188 

from each original image the two areas corresponding to the reference (coloured squares) and to the 189 

sample (maize kernels) were automatically selected and stored as separate images. The size of the 190 

obtained images was equal to 305 × 1714 pixels and to 2653 × 3733 pixels for reference images and 191 

for the sample images, respectively. Then, in order to minimize the effect of uncontrollable factors 192 

such as drifts in the acquisition system or variations of the illumination conditions, each sample 193 

image, Si, was standardized using the corresponding reference image, Ri. To this aim, each 194 

reference image, was compared with the reference of the first captured image, that was defined as 195 

the master reference image, MR. In particular, for each channel c (equal to R, G or B), the difference 196 

between the mean value of all the pixels of Ri and the corresponding mean value of all the pixels of 197 

MR was computed as follows:198 

∆�(�) = ��� (�) − !"####(�) (1) 199 

Then, this difference was used to calculate the corrected sample image, CSi:200 

$%�(�) = %�(�) − ∆�(�) (2). 201 

After image standardization, the sample images were converted into the corresponding 202 

colourgrams. Essentially, colourgrams are one-dimensional signals obtained by merging in 203 

sequence the frequency distribution curves of a series of colour-related parameters extracted from 204 

each RGB image, together with the loading vectors and the eigenvalues of PCA models calculated 205 

on the RGB data. In this manner, datasets of RGB images are converted into matrices of signals, 206 
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each one acting like a fingerprint of the corresponding image and codifying its colour-related 207 

information content, while the spatial resolution is lost. The colourgrams matrix can be further 208 

analysed by means of suitable multivariate analysis techniques, allowing to evaluate all the acquired 209 

images together, i.e., to consider the colour-related information of the dataset as a whole.210 

For the conversion of images to colourgrams, the three-dimensional data array corresponding to 211 

each RGB image with size {2653 pixel rows × 3733 pixel columns × 3 R, G and B channels} was212 

firstly unfolded into a two-dimensional matrix with size {9903649 rows (total number of pixels) × 3213 

columns (corresponding to the R, G and B channels)}.214 

Then, this matrix was expanded by adding a series of columns, corresponding to parameters 215 

calculated for each pixel starting from the R, G and B values:216 

· Lightness (L), defined as the sum of the three channel values; 217 

· the relative colours (rR, rG and rB), defined as the ratio between each channel and L; 218 

· Hue (H), Saturation (S) and Intensity (I), obtained by converting the RGB data into the HSI 219 

colour space;220 

· the nine score vectors obtained by calculating three PCA models on the raw, mean-centered 221 

and autoscaled RGB data (three principal components for each PCA model).222 

Then, for each one of the 19 columns of the resulting data matrix, the corresponding 256 points-223 

long frequency distribution curve was calculated. The 19 frequency distribution curves were joined 224 

in sequence to form a unique vector, at the end of which the loading vectors and the eigenvalues of 225 

the three PCA models were also added.226 

The so obtained signal with length equal to 4900 points (= 256 × 19 + 36) is the colourgram, which 227 

retains the colour-related information of the corresponding image. For a more detailed description 228 

of the algorithm used to create the colourgrams, the reader is referred to Antonelli et al. (2004).229 

In this work, the 332 digital images were converted into the corresponding colourgrams, thus 230 

obtaining a colourgrams matrix with size {332 rows × 4900 columns}.231 

232 
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2.4.2 Exploratory data analysis and calibration of the colourgrams matrix 233 

In order to obtain an overview of the dataset structure and to identify possible outlier images, a first 234 

evaluation of the colourgrams matrix was made by PCA. Both mean-centering and autoscaling were 235 

considered as column preprocessing methods to calculate the PCA models, and the number of PCs 236 

was selected according to the analysis of the corresponding scree plots.237 

Subsequently, Partial Least Squares (PLS) regression was applied to the colourgrams matrix in 238 

order to calculate calibration models able to predict the %DM values of the imaged samples. To this 239 

aim, the 332 colourgrams were split into:240 

· a training set composed of 180 signals, corresponding to 45 samples with %DM values 241 

equal to 0, 2, 4, 6, 8, 10, 30, 50, 70, 90 and 100;242 

· a test set composed of 152 signals corresponding to 38 samples, with %DM values equal to 243 

1, 3, 5, 7, 9, 20, 40, 60, 80 and 95.244 

Also for the PLS models, both mean-centering and autoscaling were considered as column 245 

preprocessing methods. The performance of the PLS models was evaluated by means of the Root 246 

Mean Square Error (RMSE) and of the coefficient of determination (R2) statistics, calculated on the 247 

calibration set (RMSEC, R2
Cal), in cross-validation (RMSECV, R2

CV) and in prediction of the test 248 

set (RMSEP, R2
Pred). The optimal number of Latent Variables (LVs) was chosen by minimizing the 249 

value of RMSECV. In particular, a custom cross-validation method was used, subdividing the 250 

samples in 4 deletion groups (D1a+D2a; D1b+D2b; W1+W2a; W2b, see Figure 3).251 

Generally the information contained in the colourgram is partially redundant, since the whole signal 252 

is calculated without choosing a priori some relevant variables on the basis of the specific problem 253 

at hand. The evaluation of the image dataset by PCA and PLS considering the whole colourgram 254 

can be therefore helpful to perform a global assessment of the sources of colour variability of the 255 

analysed samples. However, in order to better focus on the quantification of the %DM values, and 256 

to increase predictive performance and robustness of the calibration models, it is necessary to retain 257 

only the useful (defect-related) colour features by means of proper variable selection algorithms.258 



11 

 

To this purpose, a wide choice of methods is available in the literature, such as interval Partial Least 259 

Squares (Norgaard et al., 2000; Foca et al., 2016), genetic algorithms (Leardi, 2000) and sparse 260 

methods (Rasmussen and Bro, 2012; Calvini et al., 2015). Furthermore, feature selection can be 261 

applied in conjunction with transform methods able to compress the useful information pieces into a 262 

limited number of relevant variables, such as the wavelet transform (Antonelli et al., 2004; Foca et 263 

al., 2011; Pereira et al., 2011; Ulrici et al., 2012).264 

In particular, in the present work the simple but effective interval Partial Least Squares (iPLS) 265 

method (Norgaard et al., 2000; Ferrari et al., 2013) has been applied to the colourgrams matrix.266 

Briefly, the iPLS algorithm starts by subdividing the whole signal in intervals of equal length,267 

defined by the user. In the forward iPLS search strategy that has been used in this work, firstly local 268 

PLS models are calculated on each interval, to select the one leading to the minimum value of 269 

RMSECV. Then, local PLS models are calculated considering all the combinations of the selected 270 

interval together with each one of the other intervals, and the best two-intervals combination is271 

selected again on the basis of the lowest RMSECV value. If the single-interval RMSECV value is 272 

lower than the two-intervals RMSECV value, only the first interval is selected. Otherwise, this 273 

iterative procedure is repeated by increasing each time the number of considered intervals, until no 274 

further decrease of the RMSECV value is achieved.275 

In this work forward iPLS was used considering six different interval size values (256, 128, 64, 32, 276 

16 and 8 variables), and using both mean-centering and autoscaling as signal preprocessing 277 

methods. Finally, the best overall iPLS model was again selected on the basis of the lowest 278 

RMSECV value.279 

280 

2.4.3 Image reconstruction using selected features 281 

In addition to the parameters that are commonly used to evaluate the performance of the calibration 282 

models, the relevance of the best iPLS model results was also assessed by means of a specific 283 

algorithm that allows to represent the colourgram selected variables into the original image domain.284 
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Firstly, the image reconstruction algorithm converts the indexes of the colourgram variables 285 

selected by iPLS into the corresponding colour property values. For example, if one of the selected 286 

regions is in the range from 300 to 319 colourgram units, this region corresponds to the green 287 

channel values from 43 to 62. Then, the original image is segmented according to the selected 288 

range: only the pixels with green values from 43 to 62 are kept, while the remaining ones are set 289 

equal to 0 for all the R, G and B channels. 290 

For each colourgram selected region, the resulting reconstructed image is displayed. In this manner,291 

although no spatial information about the original image is retained in the colourgram, it is however 292 

possible to localize the image areas corresponding to the features of interest.293 

The algorithms used for image correction, conversion in colourgrams and image reconstruction of 294 

the selected features were written in MATLAB language (ver. 7.12, The Mathworks Inc., USA),295 

while PCA, PLS and iPLS models were calculated using PLS_Toolbox (ver 7.5, Eigenvector 296 

Research Inc., USA).297 

298 

3. Results and discussion 299 

3.1 ELISA analysis 300 

As described in Section 2.3, the ELISA test was firstly performed on the groups of manually 301 

selected defective and non-defective maize kernels. Concerning the defective maize, the results of 302 

ELISA test showed that for both dry and wet types the concentration of DON was greater than the 303 

maximum quantification value, equal to 10 ppm. As regards the non-defective maize, the average 304 

concentrations of DON estimated by ELISA were equal to 2.00 ppm and to 1.66 ppm for dry and 305 

wet types, respectively.306 

Afterwards, the ELISA test was also performed on the mixtures of defective and non-defective 307 

maize kernels. In particular, the results of the analysis performed during the first acquisition step308 

showed that mixtures with %DM values greater than or equal to 10 presented concentration values309 

of DON exceeding 10 ppm.310 
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This observation was confirmed by the ELISA test performed during the second acquisition step,311 

where concentrations of DON below the 10 ppm threshold were observed for the mixtures with 312 

%DM values between 0 and 6, as reported in Figure 4. In this range, the concentration of DON was 313 

directly proportional to the %DM value.314 

315 

3.2 Exploratory data analysis of the colourgram dataset 316 

The colourgram dataset was initially investigated by means of PCA considering both autoscaling 317 

and mean-centering as signal preprocessing methods. The PCA model calculated on autoscaled 318 

colourgrams was found to have an optimal dimensionality equal to 3 PCs, accounting for about 319 

65% of the total variance. The score plot of the first two PCs is reported in Figure 5a, where the 320 

samples are coloured according to the %DM values, and in Figure 5b, where the samples are 321 

coloured according to the maize type (dry and wet). Figure 5a shows that the samples are 322 

distributed along PC1 (40 % explained variance) according to the amount of defective kernels, 323 

while Figure 5b highlights that the two maize types are separated along PC2. Also PC3 (not shown)324 

accounts for the separation between dry and wet maize. The separation between the two maize types 325 

observed along PC2 and PC3 can be ascribed to a generally more reddish colour of the non-326 

defective wet maize with respect to the non-defective dry maize.327 

However, it must be underlined that the colourgrams variability due to difference between dry and 328 

wet maize is orthogonal to that ascribable to %DM. For this reason, the moisture content of maize 329 

should have a relatively limited influence on the development of calibration models for the 330 

prediction of the %DM values.331 

The same colourgram dataset was also investigated by means of PCA using mean-centering as 332 

signal preprocessing method. Two PCs were selected, accounting for about 70% of the total 333 

variance. Also in this case, the samples are distributed along PC1 according to the %DM values334 

(Figure 5c), while the separation between dry and wet maize is not clearly visible (Figure 5d). The 335 

arch-shaped distribution of the samples in these PC1-PC2 score plots is due to the fact that PC2 336 
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essentially accounts for the sample heterogeneity: homogeneous samples (i.e., samples that are 337 

either almost completely non-defective or almost completely defective) are located at negative 338 

values of PC2, while heterogeneous samples (i.e., mixtures with significant percentages of both 339 

defective and non-defective maize kernels) have positive values of PC2.340 

341 

342 

3.3 PLS calibration models 343 

The results of the PLS calibration models calculated on the whole colourgrams using both 344 

autoscaling and mean-centering as signal preprocessing methods are reported in the first two rows 345 

of Table 1. Both the PLS calibration models led to satisfactory results, with R2 values always 346 

greater than 0.975. The best PLS calibration model, chosen on the basis of the lowest RMSECV347 

value, was obtained using autoscaling and led to a RMSEP value equal to 3.1%.348 

Figure 6a shows the plot of the %DM values predicted with the best PLS model versus the 349 

experimental %DM values. It is possible to observe that, at low %DM values (from 0 to 10), the 350 

samples of dry maize are generally underestimated (samples mainly under the bisector), while the351 

samples of wet maize are generally overestimated (samples mainly over the bisector).352 

353 

3.4 iPLS calibration models 354 

On the whole, 12 different iPLS calibration models were calculated, considering six different 355 

interval size values both for the mean-centered and for the autoscaled colourgrams. The last two 356 

rows of Table 1 report the results of the iPLS models showing the lowest RMSECV values for each 357 

preprocessing method. The two models led to almost identical results, both in terms of performance 358 

and as for the number of LVs. However, the iPLS model calculated on the autoscaled colourgrams 359 

can be considered as the best one since it is more parsimonious, including only 64 colourgram 360 

variables.361 
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Compared with the corresponding PLS model calculated on the whole colourgram, the best iPLS 362 

model allowed to obtain only a slight reduction of the RMSEP value, from 3.1% to 3.0%. However,363 

compared to Figure 6a, Figure 6b shows that variable selection allowed to drastically reduce the364 

effect of the different maize types (dry/wet) on the estimate of the lowest %DM values (from 0 to 365 

10).366 

Moreover, a detailed visual inspection of the images of the analysed samples revealed that the 367 

actual composition of the mixtures was slightly different from the supposed one, i.e., that the 368 

experimental %DM values were affected by a small experimental error. For example, some samples 369 

with a supposed %DM value equal to 0 (non-defective samples) actually showed the presence of 370 

some defective kernels (some of which are highlighted with black circles in Figure 7a). Similarly,371 

some samples with a supposed %DM value equal to 100% (defective samples) showed the presence 372 

of some maize kernels without defects (black circles in Figure 7b), at least on the kernel side that 373 

was imaged.374 

Therefore, the RMSEP values of the PLS and iPLS models were at least partly affected by the 375 

presence of experimental error in the reference measurement values. Moreover, the presence of few 376 

defective kernels within the non-defective maize could explain the relatively high average value of 377 

DON found with the ELISA test in non-defective dry maize (2.00 ppm), which is slightly above the 378 

limit of 1.75 ppm set for unprocessed maize used in foodstuff by the European Parliament379 

(Commission Regulation (EC) No 1126/2007).380 

Finally, it has to be underlined that the calibration models were calculated considering the four 381 

images acquired for each mixture as separate objects, in order to evaluate the reproducibility of the 382 

%DM estimated values. Therefore, the RMSE values reported in Table 1 include also the within-383 

sample variability and represent an overestimate of the values that would be obtained in a real 384 

application of the models. Indeed, for an industrial application the estimate of the %DM values385 

would be obtained as the average of the values predicted from multiple images acquired in sequence 386 

on different aliquots of the same sample. The application of the same approach to the test set 387 
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objects, considering the average of the four %DM values predicted for each sample, led to a 388 

RMSEP value equal to 2.6% for the best iPLS model. Referring to the data reported in Figure 4, this389 

RMSEP value corresponds approximately to a concentration of DON ranging between 3 and 5 ppm.390 

Although not comparable to the error of the reference analytical methods, this result suggests 391 

however the possibility to use RGB image analysis for a quick preliminary estimate of the degree of 392 

maize contamination by DON, allowing for example the separate storage of the maize batches 393 

depending on their %DM values, and/or to immediately reject those batches whose %DM value is394 

excessively high.395 

396 

3.5 Reconstruction of the selected features 397 

In order to obtain more direct information about variable selection made by the iPLS algorithm, 398 

samples with different %DM values were randomly selected, and the corresponding images were 399 

used for the reconstruction and the visualization of the features selected by the best iPLS model. 400 

First of all, the plot of the regression vector of the best iPLS model was analysed in order to identify 401 

the regions with regression coefficient values greater than zero, corresponding to variables that are 402 

directly proportional to the %DM values. As shown in Figure 8, these regions belong to the403 

distribution curves of green, relative green, intensity and – with a smaller contribution – lightness.404 

As an example, Figure 9 reports the reconstruction of the selected features of green (Fig. 9b),405 

relative green (Fig. 9c) and intensity (Fig. 9d) of a portion of an image containing 50% of defective 406 

maize kernels, together with the original RGB image (Fig. 9a). The reconstruction of the image 407 

considering the selected features demonstrated that the colour-related parameters automatically 408 

selected by the algorithm were actually related to the presence of defective maize kernels. 409 

Furthermore, the portion of the white background pixels that were reconstructed was negligible, 410 

therefore it did not interfere with the identification of defects in maize kernels.411 

412 

413 
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4. Conclusions414 

In the present paper, an approach based on multivariate analysis of RGB images for the 415 

determination of the percentage of defective maize (%DM) has been presented, that could be used 416 

as a fast pre-screening of large maize batches for a preliminary estimate of the degree of maize417 

contamination by DON. In fact, the analyses performed on the investigated samples with a418 

commercially available ELISA test kit demonstrated that the %DM values and the concentration of419 

DON are highly correlated with each other.420 

Through the automated selection of the colour features related to the presence of defective maize 421 

kernels, it was possible obtain a satisfactory prediction of the average %DM values of the test set 422 

samples (RMSEP = 2.6%). Interestingly, the best calibration model was scarcely affected by the 423 

marked colour differences between the two considered maize types (wet and dry). The robustness 424 

towards this source of variability can be reasonably ascribed to the fact that the colour features 425 

selected by the best calibration model were essentially related to the maize defective areas, as it was 426 

confirmed by the inspection of the reconstructed images. 427 

These promising results demonstrated the possibility to develop a fast, cheap and non-destructive 428 

automated system for a preliminary screening of maize quality based on the presence of defective 429 

kernels. Indeed, based on the outcome of this research work, an industrial prototype is currently 430 

under development, which allows to automatically analyse 3 kg of maize in less than 1 min. 431 

Compared with the commercially available ELISA test kits, which usually require 20 minutes to 432 

analyse 20 g maize samples, this system should allow to speed up the transfer phase from 433 

harvesting to the warehouse and to further increase the quality and safety level of the final product.434 

In view of industrial implementation, based on the experience gained in the present work, further 435 

improvements will be made. Firstly, defective and non-defective maize samples used for model 436 

calibration will be submitted to multiple selection steps, thus minimizing the contribution of human 437 

error in the definition of the reference mixture samples. Moreover, a wider dataset of images 438 

including a larger number of batches and of maize varieties will be acquired, in order to better 439 
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estimate the effect of these sources of variability on the prediction error. Further improvements can 440 

be also reasonably gained by implementing a more refined image standardization procedure, in 441 

order to adjust the possible variations of the colour dynamic ranges. In addition to the first 442 

estimation of the degree of maize contamination by DON, the predicted %DM could also constitute 443 

an objective tool to quickly evaluate the maize batches, allowing, e.g., to define three quality 444 

categories that could be stored separately from each other: i) batches that could be potentially used 445 

in foodstuff, after proper evaluation by reference analytical methods; ii) batches that could be only 446 

used in animal feed materials, after proper evaluation by reference analytical methods; iii) batches447 

that could not be used as food or feed.448 

Future developments could lead to automated systems for real-time evaluation of the maize quality 449 

of whole batches, also enabling the removal of defective kernels. Moreover, in an industrial 450 

application, the image reconstruction could also help to inspect outlier samples, to detect foreign 451 

particles or to highlight instrumental faults.452 

453 
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Captures to tables and figures 556 

Table 1 – Results of the PLS models and of the two best iPLS models. 557 

Figure 1 – Experimental setup used for acquisition of the sample images.558 

Figure 2 – Key steps followed for the elaboration of the RGB images.559 

Figure 3 – Diagram representing the different mixture samples considered in the two acquisition 560 

steps. 561 

Figure 4 – Concentration of DON measured by ELISA test vs. percentage of defective maize 562 

kernels (%DM).563 

Figure 5 –PC1 vs PC2 score plots of the PCA models calculated on autoscaled (a and b) and mean 564 

centered (c and d) colourgrams. In (a) and (c) the samples are coloured according to the 565 

concentration of defective kernels, in (b) and (d) the samples are coloured according to maize type.566 

Figure 6 – Results of the best PLS (a) and iPLS (b) calibration models calculated on the autoscaled 567 

colourgram variables: test set predicted %DM vs. experimental %DM values.568 

Figure 7 – RGB images of samples with experimental %DM values equal to 0 (a) and 100 (b). 569 

Figure 8 – Regression coefficients of the best iPLS model.570 

Figure 9 – Original RGB image (a) of a sample with a %DM value equal to 50 and reconstructed 571 

images considering the selected features of green (b), relative green (c) and intensity (d) values.572 

573 

574 



· RGB image analysis was used to quantify the percentage of defective maize (%DM) 
· A positive correlation was observed between %DM and concentration of Deoxynivalenol
· Conversion of images into signals (colourgrams) allowed to use large image datasets
· Feature selection applied to colourgrams led to satisfactory prediction of %DM
· Image reconstruction of the selected features allowed easy defects visualization 

*Highlights (for review)



Table 1 – Results of the PLS models and of the two best iPLS models. 

Calibration 

method
Pretreatment

iPLS

interval size

Included 

variables
LVs RMSEC RMSECV RMSEP R

2
Cal R

2
CV R

2
Pred

PLS Autoscaling - 4900 4 2.0 3.3 3.1 0.997 0.990 0.991

PLS Mean-centering - 4900 6 2.2 5.3 3.4 0.996 0.975 0.988

iPLS Autoscaling 8 64 6 1.8 2.0 3.0 0.997 0.997 0.992

iPLS Mean-centering 16 640 6 1.7 2.0 3.1 0.997 0.996 0.991
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