
24/04/2024 06:07

Two examples of minimal Cheeger sets in the plane / Leonardi, Gian Paolo; Saracco, Giorgio. - In: ANNALI
DI MATEMATICA PURA ED APPLICATA. - ISSN 1618-1891. - 197:5(2018), pp. 1511-1531. [10.1007/s10231-
018-0735-y]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:



TWO EXAMPLES OF MINIMAL CHEEGER SETS IN THE PLANE

GIAN PAOLO LEONARDI AND GIORGIO SARACCO

Abstract. We construct two minimal Cheeger sets in the Euclidean plane, i.e. unique minimizers of the

ratio “perimeter over area” among their own measurable subsets. The first one gives a counterexample

to the so-called weak regularity property of Cheeger sets, as its perimeter does not coincide with the

1-dimensional Hausdorff measure of its topological boundary. The second one is a kind of porous set,

whose boundary is not locally a graph at many of its points, yet it is a weakly regular open set admitting a

unique (up to vertical translations) non–parametric solution to the prescribed mean curvature equation,

in the extremal case corresponding to the capillarity for perfectly wetting fluids in zero gravity.

Introduction

Given Ω ⊂ Rn open and bounded, its Cheeger constant is defined as

h(Ω) := inf
E⊂Ω

P (E)

|E|
, (1)

where P (E) and |E| denote, respectively, the De Giorgi’s perimeter and the n-dimensional Lebesgue

measure of E. The variational problem associated with the definition of h(Ω) first appeared in [5, 30]

limitedly to convex subsets of the Euclidean plane; see also [10, 29]. A more general formulation is due

to Cheeger, who proved in [7] that the first eigenvalue of the Laplace-Beltrami operator on a compact

Riemannian manifold M is bounded from below by h2(M)/4. Since then, the problem in the Euclidean

setting has commonly been known as the Cheeger problem. A nice, as well as quite surprising, feature of

the Cheeger problem is that it naturally appears in many different contexts such as image processing [1,

4, 6], landslide modeling [15, 16, 17], and fracture mechanics [19]. For further discussion and applications

the reader could refer to the surveys [20, 26].

In particular, the Cheeger problem is closely related to the theory of existence and uniqueness of

graph of prescribed mean curvature [12, 14, 23] which is the cornerstone of the theory of capillary surfaces

(a comprehensive treatise is available in [13]). We recall that for an open, bounded and connected set

Ω ⊂ Rn, a function u : Ω→ R is a classical solution to the prescribed mean curvature equation if

div

(
∇u(x)√

1 + |∇u(x)|2

)
= H(x), ∀x ∈ Ω, (PMC)

for a given Lipschitz function H defined on Ω. Under the assumption of C2 regularity of ∂Ω (or piece-wise

C1 up to a Hn−1-negligible set, see [13, Chapter 6]), the conditions∣∣∣∣∫
A

H dx

∣∣∣∣ < P (A) ∀A ( Ω ,

∣∣∣∣∫
Ω

H dx

∣∣∣∣ = P (Ω) (2)
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were proved to be necessary and sufficient to existence and uniqueness (up to vertical translations) by

Giusti in [14]. Then, whenever H is a positive constant, these necessary and sufficient conditions read

equivalently as

Ω is a minimal Cheeger set , (MC)

that is, Ω is the unique minimizer of (1), and H = h(Ω).

In [23] we have extended Giusti’s results on the existence of solutions to (PMC) and on the charac-

terization of the extremality condition (2) to the class of weakly regular sets Ω. These sets are defined

as open bounded sets with finite perimeter such that

P (Ω) = Hn−1(∂Ω) (PH)

and

min{P (E; ∂Ω), P (Ω \ E; ∂Ω)} ≤ kP (E; Ω) , (3)

for some k = k(Ω) > 0 and for all measurable E ⊂ Ω. We notice that any minimal Cheeger set Ω, for

which the intersection ∂Ω ∩ Ω(1) (where Ω(1) denotes the set of points of density 1 for Ω) has Hn−1-null

measure, is weakly regular. This observation, which has been proved by the second author in [27], provides

a sufficient condition for the weak regularity, which can be more easily checked whenever the domain Ω

is a minimal Cheeger set. As a consequence, for any Ω satisfying (MC) and Hn−1(Ω(1) ∩ ∂Ω) = 0,

the constant mean curvature problem on Ω, for the “extremal” value of the prescribed mean curvature

H = h(Ω), admits a unique solution up to vertical translations. We remark that this extremal situation

corresponds to the physical case of capillarity for perfectly wetting fluids in zero gravity.

It is then natural to ask whether the weak regularity assumption is optimal with respect to the results

proved in [23] on the prescribed mean curvature equation. Related to this question is the following one:

does (MC) imply Hn−1(Ω(1) ∩ ∂Ω) = 0? In the affirmative case, any minimal Cheeger set would be

automatically weakly regular. However, in Section 2 we negatively answer this question by exhibiting a

minimal Cheeger set Ωε in the plane (with ε a suitably small parameter) for which (PH) does not hold.

Of course this set needs to be such that Ω
(1)
ε ∩ ∂Ωε has positive H1-measure. This is ensured by the

presence of a fat Cantor set contained in ∂Ωε, which is negligible for the perimeter measure. This lack

of regularity prevents Ωε from being approximated in measure and perimeter by a sequence of smooth

sets that are compactly contained in Ωε (see [28]) and from admitting a trace operator from BV (Ωε) to

L1(∂Ωε) (see [24, Chapter 9]). Indeed, this approximation property and the existence of a suitable trace

operator represent two crucial tools used in [23]. However, one might expect that such solutions exist

and are unique up to vertical translations, for each one of the two possible values of H that correspond

to counting or not the H1-measure of the fat Cantor set. At the same time, both solutions will become

vertical at the reduced boundary of Ωε. In conclusion, this example shows that it is not possible to

extend the characterization of existence and uniqueness of solutions to (PMC) given in [23, Theorem

4.1] by dropping the assumption of weak regularity of the domain (see the discussion after the proof of

Theorem 2.4).

Then, in Section 3 we build a set Ω0 that turns out to be a minimal Cheeger satisfying H1(Ω
(1)
0 ∩

∂Ω0) = 0, even though its boundary is not regular at all. More precisely, there is a set of positive

H1-measure consisting of points of the reduced boundary of Ω0, at which ∂Ω0 is not locally a graph.

This example is constructed starting from the unitary disk B1 and removing smaller and smaller disks

accumulating towards ∂B1, so that the resulting set displays a kind of “porosity”. This example is of

interest for two reasons. First, Ω0 is weakly regular, so that the results of [23] apply (while the previous
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results due to Giusti and Finn do not) and one deduces the existence and uniqueness up to vertical

translations of the solution to (PMC) in the extremal case of H(x) = h(Ω0). Second, this example shows

the following, quite remarkable fact. On the one hand, a generic small and smooth perturbation of the

disk typically produces a dramatic change of the corresponding capillary solution, possibly leading even

to a non-existence scenario. On the other hand, the construction of Ω0 shows that one can produce non-

smooth perturbations of a disk that, instead, preserve existence and stability of the capillary solution.

Indeed, from this ancestor set, one can build an increasing sequence of minimal Cheeger sets Ωk converging

to the unitary disk both in volume and perimeter, in such a way that the stability result [23, Proposition

4.4] holds.

Proving a set to be a minimal Cheeger is not an immediate fact. There are results allowing to infer

whether a set is a Cheeger set or not and whether it is minimal or not but they apply only in limited

circumstances (and limitedly to the plane), as for instance in the case of convex sets [5, 18] or simply

connected sets with “no bottlenecks” [21]. Given a Cheeger set E in Ω, it is well known that ∂E ∩ Ω is

an analytic hyper-surface (up to a closed singular set of Hausdorff dimension at least n− 8). Then, our

proof of (MC) is achieved by showing that any Cheeger sets E of Ω satisfies ∂E ∩Ω = ∅, which in turns

says that the only Cheeger set can be Ω itself.

1. Preliminaries

We first introduce some basic notations. We fix n ≥ 2 and denote by Rn the Euclidean n-space. Let

E ⊂ Rn, then we denote by χE the characteristic function of E. For any x ∈ Rn and r > 0 we denote

by Br(x) the Euclidean open ball of center x and radius r. Whenever x = 0 we shall write Br instead

of Br(0). Given two sets E,F , we denote their symmetric difference by E∆F = (E \ F ) ∪ (F \ E). In

order to deal with rescaled sets we introduce the notation Ex,r = r−1(E − x), where E ⊂ Rn, x ∈ Rn,

and r > 0. Given an open set Ω ⊂ Rn we write E ⊂⊂ Ω whenever E ⊂ Rn is such that its topological

closure E is a compact subset of Ω. For any measurable set E ⊂ Rn we denote by |E| its n-dimensional

Lebesgue measure. Concerning n-dimensional (measurable) sets, we shall identify two such sets E and

F as soon as |E∆F | = 0, and write E = F for the sake of brevity. Analogously the inclusions E ⊂ F

should be understood up to null sets.

Definition 1.1 (Perimeter). Let E be a Borel set in Rn. We define the perimeter of E in an open set

Ω ⊂ Rn as

P (E; Ω) := sup

{∫
Ω

χE(x) div g(x) dx : g ∈ C1
c (Ω; Rn) , ‖g‖∞ ≤ 1

}
.

We set P (E) = P (E;Rn). If P (E; Ω) < ∞ we say that E is a set of finite perimeter in Ω. In this case

(see [2]) one has that the perimeter of E coincides with the total variation |DχE | of the vector–valued

Radon measure DχE (the distributional gradient of the characteristic function χE).

Definition 1.2 (P-decomposability). A set E ⊂ Rn of finite perimeter is said to be P-decomposable

if there exists a pair of disjoint Borel sets S and T , such that |S|, |T | > 0, E = S ∪ T , and P (E) =

P (S) + P (T ). Otherwise, E is said to be P-indecomposable.

Definition 1.3 (Points of density α). Let E be a Borel set in Rn, x ∈ Rn. If the limit

θ(E)(x) := lim
r→0+

|E ∩Br(x)|
ωnrn

exists, it is called the density of E at x. We define the set of points of density α ∈ [0, 1] of E as

E(α) := {x ∈ Rn : θ(E)(x) = α} .
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We also define the essential boundary ∂eE := Rn \ (E(0) ∪ E(1)).

Theorem 1.4 (De Giorgi Structure Theorem). Let E be a set of finite perimeter and let ∂∗E be the

reduced boundary of E defined as

∂∗E :=

{
x ∈ ∂eE : lim

r→0+

DχE(Br(x))

|DχE |(Br(x))
= −νE(x) ∈ Sn−1

}
.

Then,

(i) ∂∗E is countably Hn−1-rectifiable in the sense of Federer [11];

(ii) for all x ∈ ∂∗E, χEx,r → χHνE(x)
in L1

loc(Rn) as r → 0+, where HνE(x) denotes the half-space

through 0 whose exterior normal is νE(x);

(iii) for any Borel set A, P (E;A) = Hn−1(A ∩ ∂∗E), thus in particular P (E) = Hn−1(∂∗E);

(iv)
∫
E

div g =
∫
∂∗E

g · νE dHn−1 for any g ∈ C1
c (Rn;Rn).

Theorem 1.5 (Federer’s Structure Theorem). Let E be a set of finite perimeter. Then, ∂∗E ⊂ E(1/2) ⊂
∂eE and one has

Hn−1 (∂eE \ ∂∗E) = 0 .

In what follows, Ω will always denote a domain of Rn, i.e., an open connected set coinciding with

its measure-theoretic interior. In other words, we assume that any point x ∈ Rn, for which there exists

r > 0 with the property |Br(x) \ E| = 0, is necessarily contained in Ω.

The next result combines [24, Theorem 9.6.4] and [3, Theorem 10 (a)].

Theorem 1.6. Let Ω ⊂ Rn be a bounded domain with P (Ω) = Hn−1(∂Ω) < +∞. Then the following

are equivalent:

(i) there exists k = k(Ω) such that for all E ⊂ Ω

min{P (E; Ωc), P (Ω \ E; Ωc)} ≤ kP (E; Ω);

(ii) there exists a continuous trace operator from BV (Ω) to L1(∂Ω) with the following property: any

ϕ ∈ L1(∂Ω) is the trace of some Ψ ∈W 1,1(Rn) on ∂Ω.

Definition 1.7 (Cheeger constant and Cheeger set). Let Ω ⊂ Rn be an open, connected and bounded

set. We define the Cheeger constant of Ω as

h(Ω) := inf {P (A)/|A| : A ⊂ Ω, |A| > 0} . (4)

Any Borel set E ⊂ Ω for which P (E)/|E| = h(Ω) is called a Cheeger set of Ω.

We here report some useful results on the Cheeger problem. More details are available in the survey

papers [20, 26].

Proposition 1.8 (Monotonicity of the Cheeger constant). Given any two open, connected and bounded

sets Ω1 ⊂ Ω2 one has h(Ω1) ≥ h(Ω2).

Theorem 1.9 (Existence of Cheeger sets). Let Ω ⊂ Rn be a bounded open set. Then the inf in (4) is a

min, therefore at least one Cheeger set E for Ω exists.

Proposition 1.10 (Properties of planar Cheeger sets). Let Ω ⊂ R2 be an open, bounded and connected

set and E a Cheeger set for Ω. Then the following hold

(i) the free boundary of E, i.e. ∂E∩Ω, is analytical and has constant curvature equal to h(Ω), hence

∂E ∩ Ω is a union of arcs of circle of radius r = h−1(Ω);
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(ii) any arc in ∂E ∩ Ω can not be longer than πr;

(iii) any arc in ∂E ∩ Ω meets tangentially ∂Ω whenever they meet in a regular point of ∂Ω;

(iv) the volume of E is bounded from below as follows

|E| ≥ π
(

2

h(Ω)

)2

. (5)

Notice that if E1, E2 are Cheeger sets of Ω, and if E1 ∩E2 is non-negligible, then one can show that

E1 ∩ E2 is a Cheeger set (see for instance [22, Proposition 2.5]). Coupling this fact with Proposition

1.10(iv) one easily deduces the existence of minimal Cheeger sets (with respect to inclusion) within any

bounded open set Ω. If Ω is the unique minimizer of h(Ω) we shall say it is a minimal Cheeger set.

2. A minimal Cheeger set with a fat Cantor set in its boundary

In this section we provide an example of a minimal Cheeger set, whose perimeter is strictly smaller

than the H1-measure of its topological boundary, that is, it does not verify property (PH). We also note

that, as a consequence of the construction, it is not possible to find a Lebesgue-equivalent open set for

which (PH) holds. Let us start noticing the following, general fact.

Proposition 2.1. If Ω is a minimal Cheeger set such that Hn−1(Ω(1)∩∂Ω) = 0, then P (Ω) = Hn−1(∂Ω).

Proof. Being Ω a minimal Cheeger set such that Hn−1(Ω(1)∩∂Ω) = 0, by [27, Theorem 3.4] the following

relative isoperimetric inequality holds:

min{P (A; Ωc), P (Ω \A; Ωc)} ≤ k P (A; Ω) ∀A ⊂ Ω

which in turn implies ∂Ω∩Ω(0) = ∅, as proved in the same paper (see [27, Lemma 3.5]). The thesis then

follows at once by applying Theorems 1.4 and 1.5. �

In virtue of Proposition 2.1, in order to build a minimal Cheeger set Ω that does not satisfy (PH)

we must ensure that the set of points of density 1 for Ω that are also contained in ∂Ω has positive

Hn−1-measure.

Consider the concentric balls B1, Bε ⊂ R2, where the radius ε < 1 will be fixed later on. We now

define a set F ε ⊂ Bε whose topological boundary contains a “fat” Cantor set with positive H1-measure.

Consequently, the open set Ω := B1 \ F ε will be shown to satisfy (MC), while (PH) fails.

We consider the segment Cε0 = [−ε, ε] × {0} ⊂ Bε and iteratively construct a decreasing sequence

Cεi , i ∈ N, of compact subsets of Cε0 , obtained at each step i of the construction by removing 2i−1 open

segments Sij , j = 1, . . . , 2i−1, of length

H1(Sij) = 21−2iH1(Cεi−1), for all j,

and placed in the middle of each closed segment of Cεi−1, so that the total loss of length at step i equals

2−iH1(Cεi−1). Consequently, the set Cε = limi→∞ Cεi satisfies

H1(Cε) = 2ε

∞∏
k=1

(
1− 2−k

)
> 0 .

The strict positivity of the infinite product can be easily inferred by the fact that the series
∑∞
k=1 log(1− 2−k)

is convergent. Cε is a so-called “fat” Cantor set.

Let now δ > 0 be fixed. We set

fδ(x) =

1−
√

1− (|x| − δ)2
if x ∈ (−δ, δ),

0 otherwise,
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Fδ
−δ δ

Figure 1. The shape of the pla-

nar set Fδ

Figure 2. The set Ωε

and

Fδ = {(x, y) ∈ R2 : |x| ≤ δ, |y| ≤ fδ(x)} ,

which is depicted in Figure 1.

Notice that ∂Fδ is a union of four circular arcs of radius 1. For i ∈ N we set δi = 2−2iH1(Cεi−1) and

let mi
j denote the midpoint of Sij , then define

F ε =
⋃
i∈N

2i−1⋃
j=1

F ij ,

where F ij = mi
j + Fδi . For x ∈ [−ε, ε] we define

f(x) =

∞∑
i=1

2i−1∑
j=1

fδi(x− µij) , (6)

where (µij , 0) = mi
j . We note that F ε is contained in the region bounded by the graphs of f and −f .

Since f is 1-Lipschitz, F ε is necessarily contained in Bε. We now define

Ωε = B1 \ F ε , (7)

whose aspect can be seen in Figure 2.

Proposition 2.2. The open set Ωε defined in (7) satisfies P (Ωε) < H1(∂Ωε).

Proof. In general we have P (F ε) ≤ H1(∂F ε), therefore P (F ε) is finite because H1(∂F ε) is finite by

construction. According to Theorem 1.4 we only need to show that P (F ε) = H1(∂∗F ε) < H1(∂F ε).

Clearly ∂F ε = Cε ∪ (F ε)
(1/2) ∪ F̂ ε, where F̂ ε is the set of corner points of ∂F ε that do not belong to the

segment Cε0 . Since F̂ ε is at most countable, it has null H1-measure and therefore

H1(∂F ε) = H1(Cε) +H1
(

(F ε)
(1/2)

)
= H1(Cε) +H1(∂∗F ε) ,

also owing to Theorem 1.5. The claim follows at once by recalling that H1(Cε) > 0. �

Now we show that Ωε is a minimal Cheeger set as soon as ε is small enough. The proof of this fact

will be obtained through some intermediate steps. First of all, by the boundedness of Ωε and by Theorem

1.9 we know that Ωε admits at least a Cheeger set, from now on generically denoted as E. Then we have

the following, intermediate result.

Proposition 2.3. Let ε < 1/24 and let Ωε be as in (7). Then
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(i) h(Ωε) ∈
(

2, 2
1−ε

]
;

(ii) if E is a Cheeger set of Ωε then any connected component of ∂E ∩ Ωε is a circular arc with

curvature equal to h(Ωε) and length less or equal than πh(Ωε)
−1;

(iii) any Cheeger set of Ωε is P-indecomposable;

(iv) the minimal Cheeger set E0 of Ωε is unique, connected, and 2-symmetric;

Proof. By the inclusions B1 \ Bε ⊂ Ωε ⊂ B1, (i) follows from Proposition 1.8. On the other hand (ii)

follows from Proposition 1.10 (i)-(ii). The proof of (iii) is a bit more involved. By Proposition 1.10 (iv)

we have the following lower bound for the volume of any Cheeger set E:

|E| ≥ π
(

2

h(Ωε)

)2

≥ π(1− ε)2 = π(1− ε)2. (8)

We now argue by contradiction supposing that E is P-decomposable, so that there exist S and T , both

with positive measure, and such that E = S ∪ T and P (E) = P (S) + P (T ). Then S and T are

both Cheeger sets of Ωε (see for instance [26]), hence they must satisfy (8). Since ε < 1/4 we obtain

|E| = |S|+ |T | > 18π/16 > π = |B1|, which is clearly not possible. In order to prove (iv) we notice that,

thanks to the symmetry of Ωε, the reflection Ẽ0 of E0 with respect to one of the two coordinate axes is

a Cheeger set of Ωε, too. By the lower bound on the volume one has |E0 ∩ Ẽ0| > 0, then by well-known

properties of Cheeger sets, such intersection is also a Cheeger set of Ωε. Therefore by minimality of E0

we infer E0 = E0 ∩ Ẽ0 = Ẽ0, which shows the claimed symmetry of E0. Notice moreover that, by the

same argument, E0 is unique. In order to show the topological connectedness of E0, we can suppose

by contradiction, and without loss of generality, that there are just two connected components E1, E2

of E0, and that E2 is obtained by reflecting E1 with respect to one of the axes of symmetry of Ωε.

By (iii) we must have P (E0) < P (E1) + P (E2) = 2P (E1). Moreover the strict inequality implies that

H1(∂∗E1 ∩ Cε0) > 0, so that we obtain

2P (E1) ≤ P (E0) + 2H1(Cε0) = P (E0) + 4ε . (9)

Hence by (9) and the isoperimetric inequality we infer

4

1− ε
|E1| ≥ 2h(Ωε)|E1| = h(Ωε)|E0| = P (E0)

≥ 2P (E1)− 4ε ≥ 4
√
π|E1|

1
2 − 4ε = 4

√
π

2
|E0|1/2 − 4ε

≥ 4π√
2

(1− ε)− 4ε.

Then if ε < 1/24 we find

|E0| = 2|E1| ≥
√

2π(1− ε)2 − 2ε(1− ε) > π,

that is, a contradiction. �

Theorem 2.4. Let ε < 1/24. Then, Ωε defined in (7) is a minimal Cheeger set.

Proof. Let E0 be a minimal Cheeger set of Ωε. By Proposition 2.3 (iv) we know that E0 is 2-symmetric and

unique. Assume now by contradiction that E0 does not coincide with Ωε. This implies that ∂E0∩Ωε 6= ∅,
thus there exists at least one connected component of ∂E0 ∩ Ωε consisting of a circular arc α of radius

r = h(Ωε)
−1, whose endpoints p, q necessarily belong to ∂Ωε. We now rule out all possibilities depending

on where the endpoints p and q are located. This will be accomplished by the discussion of the following
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four cases (hereafter we adopt the same notation introduced in the proof of Proposition 2.2, i.e., we

denote by F̂ ε the set of corner points of ∂F ε that do not belong to Cε0).

Case 1: one of the endpoints of α belongs to ∂B1. Let us assume without loss of generality that

p ∈ ∂B1. In this case we have to distinguish two subcases. First, if q ∈ ∂B1 then α must touch ∂B1 in

a tangential way at both p and q, however the radius r is smaller than 1/2, so that necessarily p = q,

that is, α is a full circle, which is in contrast with Proposition 2.3 (ii). Second, if q ∈ ∂F ε, the arc α can

be symmetric neither with respect to the x-axis nor with respect to the y-axis. Therefore, by symmetry,

∂E0 ∩ Ωε has at least three more other connected components. These components cannot touch, but in

the endpoints. Then, there exist at least two connected components of E0, which yields a contradiction

with Proposition 2.3 (iv).

Case 2: one of the endpoints of α belongs to ∂∗F ε. We can assume that p ∈ ∂∗F ε and q ∈ ∂F ε. In

this case the arc α is contained in the closure of the ball of radius 1 that is tangent to ∂∗F ε at p and does

not intersect F ε (by construction of F ε there is exactly one such ball for any p ∈ ∂∗F ε). Consequently

the only possibility is that p = q, which is not possible as discussed in Case 1.

Case 3: p and q belong to the fat Cantor set Cε. By the assumption on ε coupled with Proposition

2.3 (i) we infer that r = h(Ωε)
−1 > 2ε. Then we observe that α is the smaller arc cut by the chord pq

on one of the two possible circles of radius r passing through both p and q. We finally have that α ⊂ Bε
and thus E0 has a connected component E′0 contained in Bε, but this is not possible as by (8) and the

choice of ε we have

πε2 ≥ |E′0| ≥ π
(

2

h(Ωε)

)2

≥ π(1− ε)2 .

Case 4: one endpoint belongs to F̂ ε, the other to F̂ ε ∪ Cε. As before we can assume without loss of

generality that p is a corner point on the graph of f , where f is defined in (6), and that q ∈ F̂ ε ∪ Cε.
Notice that q must belong to the upper half-plane, otherwise α would cross the segment Cε0 . This means

that q belongs to the graph of f over [−ε, ε]. Moreover, the curvature vector associated with α at p must

have a positive component with respect to the y-axis, otherwise we would fall into the same situation of

Case 3 (i.e., the presence of a too small connected component of E0). Consequently, by comparing the

graph of f (whose generalized curvature is bounded from above by 1) with the arc α (whose curvature

is h(Ωε) ≥ 2) we deduce by the maximum principle that their intersection can only contain p, which

contradicts the fact that q belongs to that intersection. This concludes the discussion of Case 4, and thus

the proof of the theorem. �

It is natural to ask whether solutions u±ε of (PMC) with Ω = Ωε and H(x) = H±ε exist, for the two

prescribed mean curvatures defined as

H−ε = P (Ωε)/|Ωε| and H+
ε = H1(∂Ωε)/|Ωε| =

(
P (Ωε) +H1(Cε)

)
/|Ωε| .

One can thus consider two approximating sequences of sets, {Ω−ε,j}j and {Ω+
ε,j}j , defined in the following

way. The first sequence, {Ω−ε,j}j , is monotone decreasing towards Ωε and is obtained by subsequently

removing each rescaled and translated copy of Fδ from the ball B1. The second sequence, {Ω+
ε,j}j , is

monotone increasing and constructed by removing smaller and smaller tubular neighborhoods of F ε from

B1. Clearly, both sequences converge to Ωε in the L1 sense, however only the first one converges also

in the perimeter sense, as j → ∞. It can be shown that Ω±ε,j is a minimal Cheeger set, for all j large

enough. Now, the idea is to define

H±ε,j = P (Ω±ε,j)/|Ω
±
ε,j |
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and to solve (PMC) on Ω±ε,j with H = H±ε,j , thus obtaining two sequences of solutions u±ε,j that, up

to suitable vertical translations, and relying on the theory of generalized solutions as described in [25]

(see also [14]), will converge to some limit functions u±ε . Then, u±ε will be solutions of (PMC) on Ωε

for H = H±ε , respectively. Notice that both u−ε and u+
ε become vertical at the reduced boundary of

Ωε. This shows that Ωε provides a counterexample to the possibility of extending the characterization

of existence and uniqueness up to vertical translations, that has been proved in [23, Theorem 4.1] under

the assumption of weak regularity of the domain.

3. A minimal Cheeger set with fast-decaying porosity near its boundary

In this section we provide an example of set Ω0 ⊂ R2 that is a minimal Cheeger set, i.e. it satisfies

(MC), and whose perimeter P (Ω0) equals H1(∂Ω0). Its peculiarity is that there is a subset A of the

reduced boundary ∂∗Ω0 with H1(A) > 0, such that ∂Ω0 is not locally a graph at any point x ∈ A.

We define the set J of pairs j = (j1, j2) such that j1, j2 ∈ N and j2 ≤ j1, then for any j ∈ J we set

j + 1 =

(j1 + 1, 1) if j2 = j1,

(j1, j2 + 1) if j2 < j1.

We fix two sequences (εj)j∈J and (rj)j∈J of positive real numbers between 0 and 1
2 , that will be specified

later, and define

ρj = 1− εj, θj = j2 ·
π

2(j1 + 1)
,

xj = ρj (cos(θj), sin(θj)) , Bj = Brj(xj) ,

so that in particular xj is a point of B1 = B1(0) contained in the first quadrant, for all j ∈ J . We write

j � j′ (or equivalently j′ � j) if j precedes or is equal to j′ with respect to the standard lexicographic

order on J . The notion of “limit as j → ∞” is the obvious one associated with this order relation. We

require the following properties on the sequences introduced above:

(i)
∑

j rj ≤ 1/(28 + 1);

(ii) ε1 < 1/4;

(iii) εj+1 ≤ 3
10εj;

(iv) rj ≤ 2−18ε3
j .

Notice that (iii) and (iv) imply that εj− 2εj+1 ≥ rj + 2rj+1. This in turn implies that the closures of the

balls Brj(xj) are pairwise disjoint. We then set

Ω0 := B1 \
⋃
j�0

Bj, (10)

which is an open set since the only accumulation points of the sequence of “holes” Bj are contained in

∂B1. Sequential zoom-ups of how this set is, can be seen in Figure 3. Once proved that this set is a

minimal Cheeger set, it is quite easy to build from it a sequence of minimal Cheeger sets converging to

the unitary ball both in volume and in perimeter by “filling” the holes one at a time. Let indeed Ωk be

the set defined by

Ωk := B1 \
⋃
j�k

Bj .

Clearly Ωk ⊂ Ωh whenever k � h, and as k→∞ the sequence Ωk → B1 both in perimeter and area. It

is clear that their Cheeger constants converge to that of the unit disk B1. Therefore, one can apply the
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Figure 3. Close-ups of the set Ω0 of Section 3.

stability result for solutions of the prescribed mean curvature equation proved in [23, Proposition 4.4] to

this sequence of domains.

Before dealing with the minimality of Ω0, we show that the topological boundary ∂Ω0 coincides with

the reduced boundary ∂∗Ω0.

Proposition 3.1. Under the above assumptions (i)-(iv) one has ∂Ω0 = ∂∗Ω0.

Proof. Of course ∂∗Ω0 ⊆ ∂Ω0. In order to prove the opposite inclusion we fix y ∈ ∂Ω0 and argue as

follows. If y ∈ ∂Bj for some j ∈ J , or y ∈ ∂B1 \ {z = (z1, z2) ∈ R2 : z1 ≥ 0, z2 ≥ 0}, then there exists a

neighborhood Uy of y such that ∂Ω0 ∩Uy is an arc of ∂B1 or ∂Bj, hence trivially y ∈ ∂∗Ω0. Assume now

that y ∈ ∂B1 with non-negative coordinates y1, y2. It is standard to check that, in this case, y ∈ ∂∗Ω0 if

and only if

P (Ω0;Bs(y)) ≤ 2s+ o(s), s→ 0 . (11)

In order to show (11) we first set

J2(j1, s) =
{
j2 ∈ {1, . . . , j1} : |xj − y| < s+ rj < 2s

}
.

Then there exists a least index j1(s) ∈ N such that J2(j1, s) is empty whenever j1 < j1(s), while in

general we obtain

#J2(j1, s) ≤ 1 +
32(j1 + 1)s

π
when j1 ≥ j1(s). (12)

To prove this estimate on the cardinality of J2(j1, s) we observe that for j = (j1, j2) and j′ = (j1, j
′
2)

belonging to J2(j1, s) we have

1

2

∣∣∣(cos θj − cos θj′ , sin θj − sin θj′)
∣∣∣ ≤ |xj − xj′ | ≤ |xj − y|+ |xj′ − y| < 4s , (13)

where for the first inequality we have also used the fact that |xj| > 1
2 for all j. Then, setting

h = |θj − θj′ | =
|j′2 − j2|π
2(j1 + 1)

one easily obtains from (13) that

sinh ≤ |(cos θj − cos θj′ , sin θj − sin θj′)| < 8s ,

whence assuming s < 1
16 one deduces

h ≤ 16s ,
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which implies |j2 − j′2| ≤ 32(j1 + 1)s/π. Then (12) follows at once. In conclusion we find

P (Ω0;Bs(y)) = 2s+ o(s) + P

⋃
j∈J

Bj;Bs(y)

 ≤ 2s+ o(s) +

∞∑
j1=1

∑
j2∈J2(j1,s)

2πrj

≤ 2s+ o(s) + s

∞∑
j1=j1(s)

[2π + 64(j1 + 1)]r(j1,1) = 2s+ o(s)

where the last equality relies on the fact that

kr(k,1) ≤ kε3
(k,1) ≤ kε

3
1

(
3

10

)3(k2−k)/2

which follows by (ii), (iii) and (iv). This latter says that the sum converges. �

By Theorem 1.9, Ω0 admits at least one Cheeger set. We will denote by E a Cheeger set of Ω0. The

main goal now is to show that, necessarily, E = Ω0.

Theorem 3.2. Let εj and rj be such that (i)-(iv) hold. Then, Ω0 is a minimal Cheeger set.

The proof of Theorem 3.2 will require some preliminary results. We start by defining the following

quantity

δ =
1 +

∑
j rj

1−
∑

j r
2
j

− 1 ,

which will be used later on.

Proposition 3.3. Let Ω0 be defined as in (10) and let E be a Cheeger set of Ω0. Assume that (i)-(iv)

hold. Then,

2 ≤ h(Ω0) ≤ 2(1 + δ), (14)

|E| ≥ π

(1 + δ)2
. (15)

Proof. The first inequality in (14) follows directly from the inclusion Ω0 ⊂ B and from Proposition 1.10,

while the second is a consequence of h(Ω0) ≤ P (Ω0)
|Ω0| . Then (15) follows from (5) at once. �

Notice that (i) implies δ < 1/27. Indeed let η =
∑

j rj. Then, since η >
∑

j r
2
j one has

δ =
1 +

∑
j rj

1−
∑

j r
2
j

− 1 ≤ 1 + η

1− η
− 1 ≤ 1

27
. (16)

Thus, by Proposition 3.3 we have

2 ≤ h(Ω0) ≤ 2(1 + δ) < 3 . (17)

Lemma 3.4. Let Γ be an arc swept by a disk of radius r < 1/2 contained in an annulus of inner and outer

radii equal to, respectively, 1/2 and 1. Denote by o the center of the annulus and by a, b the endpoints of

Γ. If the region R enclosed by (the vectors) a, b and Γ is convex then

|p| ≥ min{|a|, |b|} ∀ p ∈ Γ .

Proof. The configuration described in the statement is depicted in Figure 4. To prove the lemma we

argue by contradiction and suppose that there exists p0 ∈ Γ \ {a, b} such that

|p0| = min
p∈Γ
|p| < min{|a|, |b|} .
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B1

B 1
2

Γ

c

o

a

b

p0

Figure 4. The configuration of Lemma 3.4.

If we denote by c the center of the disk sweeping the arc Γ, by minimality of p0 we have that p0, c, o lie

on the same line. Moreover, being the region R convex by our assumption, we infer that c and o lie on

the same half-plane cut by the tangent in p0 to Γ. We now claim that c lies in between o and p0. If this

were not the case one would have |p0 − c| > |p0| which in turn implies r > 1/2 against our hypotheses.

Therefore we have |p0 − c|+ |c| = |p0| and by the triangular inequality

|a| ≤ |c|+ |c− a| = |c|+ |p0 − c| = |p0|,

against our initial assumption. �

Lemma 3.5 (Density estimate). Let E be a Cheeger set of A ⊂ R2. Fix z ∈ A and r > 0 such that

Br(z) ⊂ A. Then

|Br(z) \ E| ≤ πr2/36 ⇒ B2r/3(z) ⊂ E . (18)

Proof. Let us set m(r) = |Br(z) \ E| and define F = E ∪ Br(z) as a competitor. The minimality of E

implies that

P (E)

|E|
≤ P (F )

|F |
=
P (E,R2 \Br(z)) +m′(r)

|E|+m(r)

=
P (E)− P (Br(z) \ E) + 2m′(r)

|E|+m(r)

for almost all r > 0, hence

P (E)

|E|
m(r) + P (Br(z) \ E) ≤ 2m′(r) .

In particular we find that P (Br(z) \ E) ≤ 2m′(r), therefore by the isoperimetric inequality in R2 we

obtain

m′(r) ≥
√
πm(r)

1
2 . (19)

If we now assume by contradiction that m(2r/3) > 0 then we can integrate the differential inequality

m′(t)

m(t)
1
2

≥
√
π
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between 2r/3 and r, thus obtaining

0 < m(2r/3)
1
2 ≤ m(r)

1
2 −
√
πr2

6
≤ 0 ,

that is a contradiction. �

Lemma 3.6. Let Ω0 be constructed as before. If (i)-(iv) hold, then the disk B1/2 is contained in any

Cheeger set E of Ω0.

Proof. By (15) and (16) we have that

|B3/4 \ E| ≤ |B1| − |E| ≤ π −
π

(1 + δ)2
=

2 + δ

(1 + δ)2
πδ ≤ 2 + δ

1 + δ
πδ ≤ 2πδ ≤ π(3/4)2

36
,

hence we can apply Lemma 3.5 and obtain that B1/2 = B 2
3 ·

3
4
⊂ Ω0 is also contained in E. �

Let us fix a Cheeger set E of Ω0 and assume that ∂E ∩ Ω0 6= ∅. Then we consider the (at most

countable) collection {Γk}k∈N of the closures of the connected components of ∂E ∩Ω0. Notice that Γk is

a closed circular arc of radius r = h(Ω0)−1.

We observe that ∪kΓk is locally compact in B1, as only a finite number of arcs can have a nonempty

intersection with Bt, for all 0 < t < 1. Then, we have the following result.

Lemma 3.7. Assume (i)-(iv) and that ∂E ∩ Ω0 6= ∅. Denote by p0 a point of ∪kΓk minimizing the

distance from the origin. Then there exists k0 such that p0 is one of the endpoints of Γk0 .

Proof. Since ∪kΓk ∩B1 is nonempty and locally compact in B1, there exists k0 ∈ N such that p0 ∈ Γk0 .

Assume now by contradiction that p0 is not one of the endpoints a0, b0 of Γk0 , then owing to Lemma

3.6, B1/2 ⊂ E. Thus by Lemma 3.4, the region enclosed by Γk0 and the segments connecting a0 and b0

to the origin cannot be convex. Therefore, since B1/2 ⊂ E, the segment σ0 connecting p0 to the origin

must intersect the boundary of E at some first point q0 strictly closer than p0 to the origin. Indeed, the

Cheeger set locally lies on the convex side of Γk0 near p0. To conclude we need to exclude the possibility

that q0 ∈ ∂Ω0 \ ∂B1, which means that q0 ∈ ∂Bj for some j. Let now consider the shortest of the two

closed arcs of ∂Bj cut by σ0 (note that the arc could degenerate to a single point), and call it γ. Notice

that all the points of γ have a distance from the origin which is strictly less than |p0|. Then γ must

contain at least an endpoint of some Γk, otherwise there would exist an open neighbourhood U of γ such

that U ∩ ∂E ∩Ω0 = ∅, but this cannot hold as U must contain points of E (this comes from the fact that

q0 ∈ γ) as well as points of Ω0 \ E (this is a consequence of the fact that the connected component of

σ0 ∩Ω0 having an endpoint on ∂Bj, and being the closest to p0, is made of points of Ω0 \E). Therefore

q0 ∈ Ω0, hence q0 ∈ Γk for some k, which contradicts the minimality of p0. This concludes the proof. �

Lemma 3.8. Assume (i)-(iv) and let p0 be as in Lemma 3.7. Then letting α be the angle spanned by the

half-tangent to Γk0 in p0 and the segment connecting p0 to the origin, one has

α >
π

2
+
d0

2
, (20)

where d0 = dist(p0, ∂B1).

Proof. Let Bj be the ball whose boundary contains p0. Let p1 be the second endpoint of Γk0 and denote

by p∗ the point of Γk0 minimizing the distance from ∂B1. Since p1 ∈ ∂Ω0, by construction of Ω0 we infer

that either p1 ∈ ∂B1, or p1 ∈ ∂Bj′ with j ≺ j′, therefore the distance d∗ = dist(p∗, ∂B1) must satisfy

d∗ < d0/2. Indeed this holds true if εj−2εj+1 ≥ rj + 2rj+1, which follows from conditions (vii) and (viii).
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Let c be the center of the arc Γk0 and consider the triangle T with vertices p0, c and the origin. Notice

that |p0 − c| = r < 1/2 and |p0| = 1− d0 while by the triangular inequality applied to the triangle T ∗ of

vertices p∗, c, o we have

|c| ≥ |p∗| − r = 1− r − d∗ ≥ 1− r − d0/2 .

Moreover if we assume that α < π (otherwise the estimate would be trivial) then the internal angles of

T at p0 and at the origin (respectively, γ and β) are smaller than π/2. Indeed for α < π we find that

〈p0, νj(p0)〉 < 0 ,

where νj(p0) denotes the outer normal to ∂Bj at p0, thus α > π/2. Then, γ = α−π/2 ∈ [0, π/2). Finally,

|p0| > r, whence β < π/2 as claimed. Consequently the orthogonal projection z of c onto the line through

the opposite side of T must lie between the origin and p0, that is, |p0| = |z|+ |p0 − z|. Then we have

|c|2 − |z|2 = r2 − |p0 − z|2 ,

whence by rearranging terms

|c|2 − r2 = |z|2 − |p0 − z|2

= |p0| · (|z| − |p0 − z|)

= |p0| · (|p0| − 2|p0 − z|)

= (1− d0)(1− d0 − 2|p0 − z|) .

On the other hand

|c|2 − r2 ≥ (1− r − d0/2)2 − r2 = 1 + d2
0/4− 2r − d0 + d0r ,

thus we find

2|p0 − z| ≤ 1− d0 −
1 + d2

0/4− (2− d0)r − d0

1− d0
.

Consequently we have

cos γ =
|p0 − z|

r
≤ 2r(1− d0) + rd0 − d0 + 3d2

0/4

2r(1− d0)

= 1− d0(1− r)− 3d2
0/4

2r(1− d0)
< 1− d0/4 ,

where the last inequality follows as soon as d0 < 1/3. Being d0 ≤ ε1 + r1, this condition is met thanks

to (ii) and (iii). Then, we have

sin2 γ = 1− cos2 γ > 1− (1− d0/4)2 = d0/2− d2
0/4 > d2

0/4

and thus we conclude that

γ > sin γ > d0/2 .

Since α = π/2 + γ, we get (20). �

Lemma 3.9. Assume (i)-(iv) and let p0, Γk0 , d0 and α be as in Lemma 3.8. Let p ∈ Γk0 be a point such

that 0 < |p0 − p| < d0/12. Then, denoting by η the angle in p0 spanned by the half-tangent to Γk0 at p0

and the segment from p0 to p, one has

ξ := α− η > π

2
+
d0

4
. (21)
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Γ

o

p0

c

p

h

m

η

ξ

Figure 5. The configuration of Lemma 3.9.

Proof. Let c be the center of the disk sweeping Γk0 and let h be the projection of p onto the half-tangent

to Γk0 at p0. Since ξ = α− η, by Lemma 3.8, it is enough to provide an upper bound for η.

To this aim we consider the triangles T of vertices p0, ph and h and S of vertices p0, c and m, where

m is the midpoint of the segment p − p0, as in Figure 5. It is easy to see they are similar with angles

π/2, η, and π/2− η. Therefore we have the proportionality relation

|p− h|
|p− p0|

=
|p− p0|

2r
,

whence by recalling that 0 < η < π/2 and that r > 1/3 by (14) and the condition on δ one obtains

η

2
≤ sin(η) =

|p− h|
|p− p0|

=
|p− p0|

2r
<

d0

24r
<
d0

8
. (22)

This upper bound on η combined with (20) yields the claim. �

Remark 3.10. Note that Lemmas 3.8 and 3.9 hold whenever p0 is the endpoint of an arc Γ such that p0

minimizes |p| among p ∈ Γ.

3.1. Proof of Theorem 3.2. We remark that it would not be too difficult to apply a compactness

argument and show that, for a suitable choice of parameters, the set Ωj defined as

Ωj := B1 \
⋃
i�j

Bi ,

is a minimal Cheeger set for all j. Then, by passing to the limit as j→∞ and by exploiting Theorem 2.7

of [22], we would infer that Ω0 is a Cheeger set as well. However, this simple argument tells us nothing

about the uniqueness of the Cheeger set of Ω0. In other words, there seems to be no way of deducing

that Ω0 = limj Ωj is a minimal Cheeger set from the minimality of Ωj. This is due to the lack of uniform
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a-priori estimates in the spirit of the quantitative isoperimetric inequality (see in particular [8, 9]). In

this specific case, the existence of a modulus of continuity ϕ independent of j, such that

P (E)/|E| − h(Ωj) ≥ ϕ(|Ωj \ E|)

for all j and all measurable E ⊂ Ωj, would be needed. By an application of the selection principle

introduced in [8] we could obtain ϕ = ϕj, however it is not clear how to exclude a possible degeneracy of

the sequence {ϕj}j, as j → ∞. Therefore we choose to follow what reveals to be a much more involved

and technically complex path leading to a direct proof of uniqueness. Indeed, by combining the various,

intermediate lemmas proved before we ultimately show that any Cheeger set E of Ω0 must necessarily

satisfy ∂E ∩ Ω0 = ∅. Owing to the connectedness of Ω0 and the fact that B1/2 ⊂ E, this is sufficient to

conclude that E = Ω0. Before delving into the proof, we remark that there are four different kinds of

arcs inside ∂E ∩ Ω0, depending on where their endpoints lie:

(a) arcs Γ with both endpoints on ∂B1;

(b) arcs Γ with both endpoints on ∂Bj for some j;

(c) arcs Γ with an endpoint of ∂B1 and one of ∂Bj for some j;

(d) arcs Γ with an endpoint on ∂Bj and one on ∂Bi with j 6= i.

While cases (a) and (b) can be easily excluded by property (ii) of Proposition 1.10, cases (c) and (d) are

much trickier. For these latter two cases the argument is actually the same: we will build a competitor

that has a smaller Cheeger ratio, thus contradicting the minimality of E. In order to do so, we will also

employ Lemma 3.9.

Proof of Theorem 3.2. Argue by contradiction and suppose ∂E ∩ Ω0 6= ∅.
Step 1. We start by showing that cases (a) and (b) cannot happen. Let Γ be the arc with endpoints

p, q ∈ ∂Bj. Being these points regular, by Proposition 1.10 (iii) the arc Γ must be tangent to Bj in both

points. By Proposition 3.3 and the choice of rj the curvature of Bj is strictly greater than the curvature

of Γ. Therefore one necessarily has that points p and q coincide which implies that Γ is a full circle which

contradicts property (ii) of Proposition 1.10. An analogue reasoning holds for an arc Γ with endpoints

p, q ∈ ∂B1.

Step 2. We now show that cases (c) and (d) cannot happen. We will exhibit a competitor to E that

has a better Cheeger ratio against the minimality of E. Pick the point p0 provided by Lemma 3.7 and

consider the arc Γp0 with endpoint p0. There exists a pair j such that p0 ∈ ∂Bj. Trivially there exists at

least another point q0 on the boundary of Bj from which another arc of ∂E ∩ Ω0 departs. Let z ∈ ∂Bj

be the “north pole”, i.e. the closest point to the origin. Note that there is only a finite number of arcs of

∂E ∩ Ω0 touching ∂Bj. Moreover, since |p0| > r we find that |p0| > |z| (otherwise we would have p0 = z

and this would contradict the fact that p0 minimizes the distance of points of Γp0 from the origin). This

shows that z is contained in a connected component ψ of ∂Bj \ Ej, where Ej denotes the (finite) set of

endpoints of arcs of ∂E ∩ Ω0 that lie on ∂Bj. One of the endpoints of ψ is, of course, p0. Let q0 denote

the other endpoint belonging to the arc Γq0 .

From now on we shall assume that ψ is smaller than a half-circle, otherwise the construction of the

competitor would be even easier.

Since p0 minimizes the distance of ∂E ∩ Ω0 from the origin we have that

dq0 := dist(q0, ∂B1) ≤ dist(p0, ∂B1) =: dp0 .
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o

q0
p0

q
p

Figure 6. The way the competitor is build.

We now fix two points q ∈ Γq0 and p ∈ Γp0 such that

|p− p0| = |q − q0| =
dq0
16
. (23)

We can apply Lemma 3.9 to the couples of points p, p0 and q, q0 obtaining the estimate from below of

the angles ξq and ξp (that correspond to ξ in Lemma 3.9):

ξq, ξp >
π

2
+
dq0
4
. (24)

We now modify the Cheeger set E into Ẽ by adding the region delimited by ∂Bj,Γq0 ,Γp0 and the segment

p − q. To contradict the minimality of E it is enough to show that δP = P (Ẽ) − P (E) < 0 for ε small

enough. It is straightforward that

δP ≤ 2πrj − |p− p0| − |q − q0|+ |p− q| = 2πrj − 2|p− p0|+ |p− q|. (25)

Therefore we need to estimate |p − q| from above. In order to do so, we will employ the angles of

the isosceles trapezoid with vertices p0, q0, q, p (and, respectively, angles γ0 and γ) and the triangle T of

vertices o, p0, q0 (and, respectively, angles σ, α, β), denoted as in Figure 6. We then have
γ0 + γ = π (26a)

α+ β + ξq + ξp + 2γ0 = 4π (26b)

α+ β + σ = π (26c)

where (26a) denotes the (half of the) sum of interior angles of the trapezoid, (26b) the sum of the angles

in p0 and in q0, and (26c) the sum of the interior angles of the triangle T .

Subtracting (26c) to (26b), and combining the resulting equality with (24) we find

2γ0 < 2π + σ − dq0
2

which coupled with (26a) gives

γ >
dq0
4
− σ

2
.

We now estimate σ from above as follows. First notice that its sine is small

sin(σ) =
|p0 − q0|
1− dq0

sin(α) ≤ 4rj ≤ 2−4εj ,

where the last inequality is guaranteed by (viii). Thus σ itself is small, i.e.

σ

2
≤ σ − σ3

6
≤ sinσ ≤ 2−4εj ≤ 2−3dq0 ,
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eventually getting the lower bound

γ >
dq0
8
.

Since |p− q| > |p0 − q0|, the angle γ is smaller than π/2, thus

0 ≤ cos γ ≤ cos

(
dq0
8

)
≤ 1−

d2
q0

27
+

d4
q0

3 · 215
≤ 1−

d2
q0

28
. (27)

From (23), (25) and (27) it follows that

δP ≤ 2πrj − 2|p− p0|+ |p− q|

≤ 2πrj − 2|p− p0|+ 2|p− p0| cos γ + 2rj

≤ 2rj(π + 1) +
dq0
23

(cos(γ)− 1) ≤ 2rj(π + 1)−
d3
q0

211

Since by (viii) we have rj ≤ 2−18ε3
j and dq0 ≥ εj/2, we obtain

d3
q0

211
≥

ε3
j

214
≥ 16rj > 2rj(π + 1) ,

thus δP < 0, a contradiction. This concludes the proof of the theorem. �
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