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Abstract 

Mutations in rhodopsin (RHO) are a common cause of retinal dystrophy and can be 

transmitted by dominant or recessive inheritance. Clinical symptoms caused by dominant 

and recessive mutations in patients and animal models are very similar but the molecular 

mechanisms leading to retinal degeneration may differ. We characterized three murine 

models of retina degeneration caused by either Rho loss of function or expression of the 

P23H dominant mutation in Rho. Rho loss of function is characterized by activation of 

calpains and apoptosis-inducing factor (Aif) in dying photoreceptors. Retinas bearing the 

P23H dominant mutations activate both the calpain-Aif cell death pathway and ER-stress 

responses that together contribute to photoreceptor cell demise. In vivo treatment with the 

calpastatin peptide, a calpain inhibitor, was strongly neuroprotective in mice lacking Rho 

while photoreceptor survival in retinas expressing the P23H dominant mutation was more 

affected by treatment with salubrinal, an inhibitor of the ER-stress pathway. The further 

reduction of photoreceptor cell demise by co-treatment with calpastatin and salubrinal 

suggests co-activation of the calpain and ER-stress death pathways in mice bearing 

dominant mutations in the Rho gene. 
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Introduction 

Retinitis pigmentosa (RP) is an inherited form of retinal degeneration characterized by 

progressive loss of the peripheral visual field leading to tunnel vision and finally blindness. 

Patients experience difficulties with dark adaptation and night blindness in adolescence 

followed by loss of the mid-peripheral visual field in young adulthood (1). Visual symptoms 

mirror the progressive loss of rod photoreceptors. Causative mutations for RP have been 

identified in several genes (Retnet database: http://www.sph.uth.tmc.edu/retnet). These 

genes encode proteins with very diverse functions and patterns of expression, which can 

be restricted to rods or be expressed by several neurons in the human retina 

(http://rpexp.tigem.it/; (2)). Mutations in Rhodopsin (RHO) represent a common cause of 

RP, accounting for 25% of autosomal dominant RP (adRP) and 8 to 10% of all RP (1) with 

more than 100 different associated mutations identified so far (http://www.hgmd.cf.ac.uk). 

Impairment of the phototransduction cascade caused by RHO loss of function is linked to 

autosomal recessive Retinitis Pigmentosa (arRP) and congenital night blindness (CNB) (3, 

4). The molecular mechanisms underlying cell death caused by either dominant or 

recessive mutations in RHO are still not well characterized.   

RHO is a G-protein coupled receptor localized to rod outer segments where the 

phototransduction cascade is initiated. RHO is the most abundant protein produced by rod 

cells accounting for 30% of their total protein content and is particularly enriched, up to 

90%, in the rod outer segments (5–7). Data regarding the pathogenic mechanism(s) of 

mutant RHO are still controversial. Accumulation of mutant RHO in different subcellular 

compartments, including the endoplasmic reticulum (ER), may trigger the unfolded protein 

response (UPR) with cytoprotective outputs that reduce protein synthesis and up-regulate 

chaperones to cope with stress (8). Excessive mutant RHO accumulation can then lead to 

ER-stress responses that culminate with cell death (9). ER-stress and other mechanisms 
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involving the ER-associated degradation (ERAD) pathway and autophagy have been 

linked to RHO mutation and may all contribute to retinal degeneration (10, 11). Saliba and 

colleagues reported that exposure of p.Pro23His (P23H) mutant RHO, the most common 

mutation in USA (12), to 9-cis-retinal in transfected cells increased plasma membrane 

localization of the mutant protein but did not decrease the formation of aggresomes or 

their detrimental effects (13). Murine models to study effects caused by mutant RHO and 

specifically the P23H mutation are available as transgenic mice and rats (14, 15) that 

suffer a very severe form of retinal degeneration. More recently, two knock-in mouse 

models were generated for the P23H mutation and they show a much slower progression 

of the disease (16, 17).  

Quality control during protein synthesis imposed by the ER activates ER resident 

sensors involved in the UPR to allow only properly folded proteins to leave the organelle. 

Expression of mutant proteins may affect cellular ability to cope with UPR causing the cell 

to activate ER-stress and succumb to apoptosis. The transducers of the UPR/ER-stress 

responses are ER resident proteins: the inositol-requiring enzyme 1 (Ire1), the activating 

transcription factor-6 (Atf6) and the protein kinase R-like ER protein kinase (Perk). Ire1 is a 

ribonuclease that, when activated, splices the mRNA encoding X-box transcription factor 1 

(Xbp1), leading to a frame shift and production of sXbp1, a transcription factor regulating 

expression of chaperones. The Perk pathway is characterized by phosphorylation of Perk 

and eukaryotic initiation factor-2α (eIF2α) resulting in reduction of protein synthesis and 

up-regulation of Atf4 that regulates expression of several cell death related genes (18).  

We previously showed that calpain activation as well as nuclear translocation of Aif 

(Apoptosis-inducing factor) play fundamental roles in photoreceptor cell death in the retinal 

degeneration 1 (rd1) mouse model (19, 20). Aif is a mitochondrial protein that can be 

cleaved by calpains, leaves the mitochondrion through a pore formed by Bax and recruits 
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Cyclophilin A for chromatin fragmentation (21, 22). Aif, as well as ER-stress, were reported 

to be activated in P23H transgenic rodents (23–25).  

In this study we characterized the interrelationship of these calpain-mediated and ER 

stress-mediated cell death pathways in Rhodopsin mutant mice. Specifically, we compared 

the Rho knock-out mouse, a model for arRP, with two lines of mice expressing P23H 

mutant Rho, models for adRP. We isolated expression of the P23H mutation from wild 

type Rho in one of the two models to uncover molecular cytotoxic mechanisms activated 

by the dominant mutation. Co-expression of wild type Rho, in fact, alleviates the 

phenotype and may hinder the characterization of molecular pathways (9). We 

characterized the different contributions of the two pathways by in vivo treatments with 

drugs targeting either calpains or ER-stress. We demonstrated that Rho loss of function 

did not activate ER-stress pathways but induced cell death through activation of calpains. 

In photoreceptors bearing the P23H dominant mutation both pathways were activated but 

ER stress appeared to play a critical role. Finally, we showed the protective effects in more 

than one murine model by targeting both pathways with a drug combination.  
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Results 

Activation of Calpains and Aif in dying rod cells bearing mutations in the Rho gene 

To study the molecular effects of a dominant compared to a recessive mutation in the Rho 

gene, we evaluated cell death pathways activated in rod photoreceptors. We analyzed the 

transgenic mouse expressing human P23H RHO (P23HTg) (14), the knock-in P23H mouse 

(17) bred to eliminate the wild type Rho allele (RhoP23H/-) and compared them to the 

homozygous Rho knock-out mouse (Rho-/-) (26). We chose to study the P23H mutation in 

the absence of wild type Rho in one of the murine models to uncover molecular 

mechanisms activated by the mutation and limit protecting effects from the wild type 

protein (9). The peaks of cell death in the retinas of these chosen murine models were 

post-natal day 9 (PN9) for P23HTg, PN16 for RhoP23H/- and PN45 for Rho-/- (as reported in 

(27) and shown in Figure S1 A). Lack of the wild type allele in the RhoP23H/- retina caused a 

more rapid degeneration compared to the published phenotype in RhoP23H/+ (17, 28). 

Previous studies reported that the P23H mutation did not cause a reduction of Rho mutant 

mRNA rather lower levels of P23H mutant Rho protein as well as unpaired glycosylation 

(16, 17). We thus analyzed Rho protein in mutant retinas from RhoP23H/- and P23HTg (in the 

absence of the endogenous wild type allele) before and at their peaks of cell death. Here 

the P23H mutant Rho monomer (open arrow) appeared less abundant compared to wild 

type Rho at the same age (Figure S1 B), in line with reports analyzing expression of Rho 

in RhoP23H/P23H retinas and other mutant alleles expressed in the absence of wild type Rho 

(9, 17, 28). Retinas expressing only P23H mutant Rho had more forms at higher molecular 

weights that probably represent aggregates/multimers, as reported in vitro and in vivo for 

dominant RHO mutations (9, 29–31). Moreover, immunofluorescence analyses showed 

accumulation of P23H mutant Rho around the nuclei of photoreceptors suggesting that it 

aggregates inside the cells (Figure S1 C). 
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We previously characterized the molecular pathways of cell death in the rd1 mouse 

model of RP and showed that calpain and Aif play key roles in photoreceptor demise (19, 

27). Activation of calpains was reported in several rodent models of RP and we reported 

calpain activation in P23HTg and Rho-/- degenerating retinas (32, 33). In this study we 

confirmed activation of calpains in all the chosen mouse models by assessing the 

cleavage of αII-spectrin, a substrate for calpains (34) as well as by using the previously 

published in situ calpain activity assay (19, 20, 27). Protein analysis confirmed an increase 

of the 145 kDa fragment of αII-spectrin consistent with cleavage by calpains (Figure 1 A, 

arrow). Retinas expressing P23H mutant Rho also showed 120 kDa fragments possibly 

derived from activation of caspases (asterisk). Here we in situ confirmed activation of 

calpains also in RhoP23H/- photoreceptors at PN16 (Figure S1 D). Double labeling of 

calpain activity with TUNEL indicated that about 50% of dying cells in PN9 P23HTg and 

PN16 RhoP23H/- retinas activated calpains while calpains contributed more prominently to 

cell death in the Rho-/- mutant retina by labeling about 90% of TUNEL+ cells (Figure 1 B).  

We then evaluated Aif activation and nuclear translocation by immunofluorescence 

imaging and immunoblotting of nuclear extracts derived from wild type and Rho mutant 

retinas. Aif translocation into the photoreceptor nuclei of these three murine models was 

high at their peaks of cell death (Figure 1 C, arrows and Figure S1 E-G). We counted cells 

with nuclear localization of Aif that were co-labeled by TUNEL and found that about 50% 

of both P23HTg and RhoP23H/- dying cells showed Aif inside their nuclei, similar to cells 

activating calpains (Figure 1 D). A stronger correlation of Aif activation with TUNEL was 

observed in Rho-/- retinas (Figure 1 D). Aif translocation into the nuclei of dying 

photoreceptor cells was confirmed by immunoblotting that compared nuclear extracts from 

wild type and mutant retinas (Figure1 E). Altogether these data demonstrate that calpains 
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are activated and Aif translocates into the nuclei of photoreceptor cells in mouse models of 

RP caused by Rho mutations.  

Activation of calpains can be induced by increase of intracellular calcium as reported in 

the rd1 mutant retina (19, 34). Using a fluorescent dye we compared calcium levels in wild 

type and mutant photoreceptors and found more photoreceptor cells with high levels of 

calcium in retinas bearing mutations in Rho (Figure S2).  

 

Calpains activate Aif in Rho mutant retinas 

To address whether Aif is activated by calpains in Rho mutant retinas we injected mice 

intravitreally with the calpain-specific inhibitor calpastatin peptide either at PN9 (P23HTg) or 

at PN15 (RhoP23H/-) or at PN44 (Rho-/-). Retinas were analyzed at PN10 for P23HTg, PN16 

for RhoP23H/- and PN45 for Rho-/-, respectively. The injection protocol was similar to the 

previously published method (20). Effectiveness of calpastatin peptide treatment was 

confirmed by the reduction of the 145 kDa fragment of αII-spectrin (Figure 2 A, arrow). We 

also observed a significant reduction of the number of photoreceptors activating calpains, 

based on the in situ calpain activity assay (Figure 2 B). Sixteen hours after calpastatin 

peptide injection, we detected a strong reduction of cell death in Rho-/- retinas as defined 

by the loss of TUNEL labeled cells as well as a decrease of cells showing activation of Aif 

(Figure 2 C-E). Activated Aif protein inside the nuclei was undetectable in Rho-/- retinas 

after treatment with calpastatin peptide (Figure 2 C). Calpain inhibition was thus very 

effective in reducing cell demise in retinas bearing recessive mutations in the Rho gene. 

Calpastatin peptide, significantly but at a lower level, reduced cell death and Aif nuclear 

translocation in retinas expressing the P23H mutation (Figure 2 C-E). This limited effect of 

calpain inhibition implies that calpains and Aif are not the only cell death factors triggered 

in photoreceptors cells expressing dominant mutations in Rho.  
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Activation of ER-stress in P23H Rho mutant rods 

Activation of ER-stress was previously shown in rodent P23H mutant retinas (23, 35). We 

wished to define the timing of activation of Ire1 and Perk ER-stress sensors in our murine 

models expressing mutant Rho and correlate this to cell death as defined by TUNEL 

staining. No activation of ER stress sensors was detectable in Rho-/- retinas at any time 

point during degeneration (data not shown), thus the homozygous recessive model was 

not further analyzed in this study. Activation of Ire1, defined by detection of 

phosphorylated Ire1, was observed in P23HTg retinas with a marked decrease at PN10 

(Figure 3 A). To confirm that Ire1 phosphorylation activated the pathway, we evaluated the 

alternative splicing of Xbp1 with specific primers for spliced Xbp1 (sXbp1). Splicing of 

Xbp1 (sXbp1) detectable at PN8 and PN9 but not at PN10 confirmed that activation of the 

Ire1 pathway declined with progression of retinal degeneration (Figure 3 B). Using 

antibodies for phosphorylated Ire1 we confirmed that phosphorylation of the ER-stress 

sensor Ire1 resided in photoreceptor cells and not in other retinal cells (Figure 3 C, arrow). 

Similar results were obtained by analyzing Ire1 phosphorylation and Xbp1 splicing in 

RhoP23H/- retinas (Figure 4 A-C). The Perk pathway otherwise was activated at all 

evaluated time points during retinal degeneration in both mutant retinas as demonstrated 

by phosphorylation of Perk as well as by phosphorylation of Eif2α (Figure 3 D-E and 

Figure 4 D-E). We also confirmed that activation of the Perk pathway occurred in 

photoreceptor cells by immunofluorescence of retinal sections with the anti-phospho-Perk 

antibody (Figure 3 F and Figure 4 F).  

Rods bearing a dominant mutation in Rho not only activate the calpain-Aif pathway but 

also the detrimental ER-stress pathways that together may contribute to retinal 
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degeneration. The individual impact of each of these pathways was tested by in vivo 

treatments with specific inhibitors. 

 

Calpains and ER-stress contributions to cell death in P23H mutant photoreceptors 

To test the impact of calpains on ER-stress we treated P23HTg and RhoP23H/- degenerating 

eyes in vivo with the calpastatin peptide and evaluated activations of ER-stress sensors. 

P23HTg eyes were intravitreally injected at the age of PN9 with calpastatin peptide and 

analyzed 16 hours later; RhoP23H/- eyes were intravitreally injected at the age of PN15 with 

calpastatin peptide and analyzed 16 hours later. The calpain inhibition had no significant 

effect on Ire1 activation (Figure 5 A-D and Figure S3 A-D) nor on the Perk pathway (Figure 

5 E-H and Figure S3 E-H). Blocking calpains, however, significantly reduced cell death in 

both murine models expressing the P23H mutation (Figure 2E and Figure 5M).  

We then interfered in vivo with ER-stress by intraperitoneal injection of salubrinal, an 

inhibitor of Eif2α dephosphorylation and thus of ER-stress (36). Salubrinal protected 

P23HTg rod photoreceptors from cell death reducing by 74% the number of TUNEL 

positive cells and by 50% RhoP23H/- mutant photoreceptors (Figure 5 M). Immunoblottings 

confirmed that salubrinal increased Eif2α phosphorylation in the retina without increased 

activation of Perk (Figure 5 E-H and Figure S3 E-H). We observed that salubrinal 

maintained higher levels of phosphorylated Ire1 and spliced Xbp1 in PN10 P23HTg retinas 

and in PN16 RhoP23H/- retinas (Figure 5 A-D and Figure S3 A-D), ages when 

phosphorylated Ire1 is reduced (see Figures 3 A-B and Figure 4 A-B). The protective effect 

of salubrinal may thus be mediated by a sustained UPR. Salubrinal treatment had no 

effect on calpains because it did not reduce the number of photoreceptor cells activating 

calpains in P23HTg and in RhoP23H/- retinas (Figure 5 N). After interference of ER-stress 

with salubrinal, nuclear translocation of Aif was significantly affected in P23HTg and in 
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RhoP23H/- as defined by nuclear translocation analyses (Figure 5 I-J and Figure S3 I-J) and 

by counting cells double labeled by nuclear Aif and TUNEL (Figure 5 O).  

Bip/Grp79 is a member of the Hsp70 family of chaperones that regulate ER stress 

signaling by binding to Ire1 and Perk. Over-expression of Bip/Grp79 in P23H mutant 

retinas was previously reported to be protective and to reduce retinal degeneration (23). 

We thus analyzed the Bip/Grp79 in retinas before and after treatments and found that 

salubrinal, but not calpastatin, increased Bip/Grp79 protein levels (Figure 5 K-L and Figure 

S3 K-L).  

 

Targeting Calpains and ER-stress has additive protective effects in rod 

photoreceptors expressing P23H mutant Rho 

Data described so far could not define if the different treatments were blocking the same 

cell death pathway at different levels or were interfering with different pathways activated 

in parallel. To address this question we co-treated mice with salubrinal and calpastatin 

peptide in vivo. The effects of salubrinal on the ER stress sensors were maintained also in 

the presence of calpastatin peptide, as demonstrated by increase in phosphorylation of 

Eif2α and of Ire1 (Figure 5 A-H and Figure S3 A-H). The combined treatment with 

salubrinal and calpastatin peptide also increased the levels of Bip/Gpr79 protein in both 

murine models expressing the P23H mutant Rho (Figure 5 K-L and Figure S3 K-L). This 

treatment had a stronger protective effect than either drug alone. In fact, we could 

measure a significant reduction of TUNEL+ cells (Figure 5 M) when compared to 

treatments with calpastatin peptide in both P23HTg and RhoP23H/- retinas. Decrease of cell 

death with the combined treatment was significant when compared to treatment with 

salubrinal only in P23HTg but not in RhoP23H/- retinas. Histological analyses show no 

evidence of toxic effects on photoreceptors or other retinal neurons after treatments 
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(Figure S4 A, C, D). The short time frame between injections and analyses helps 

biochemical studies but does not allow assessment of phenotype rescue with an increased 

number of photoreceptor cells or redistribution of the RHO protein (Figure S4).    

 
 
Discussion 

In this study we report a molecular characterization of cell death pathways in one model of 

recessive RP caused by Rho loss of function and two models of dominant RP caused by 

point mutations in Rho. The most interesting finding is a common mechanism of cell death, 

the calpain-mediated pathway, associated with both recessive and dominant Rho 

mutations. Interestingly, activation of calpains appears to be a general mechanism initiated 

by photoreceptors during retinal degeneration since calpains have been found activated in 

several animal models of RP (19, 20, 24, 25, 27, 33, 34, 37–41). The key role of calpains 

in retinal degeneration was also demonstrated after light damage on a canine model of RP 

bearing a mutation in the RHO gene (42). We also show co-activation of calpains and Aif 

suggesting that calpains may activate Aif in response to mutations of Rho similar to what 

we previously reported in the rd1 mutant retinas (19). The reduction of Aif activation in 

retinas treated with calpastatin peptide, a calpain inhibitor, confirms this hypothesis. 

Calpastatin peptide is able to completely abolish Aif nuclear translocation as well as cell 

death in the Rho-/- retina but not in retinas expressing the P23H dominant mutation. This 

indicates that the main cell death pathway activated in RP linked to recessive mutation in 

Rho is mediated by calpains. We cannot exclude involvement of other mechanisms of cell 

death but prolonged exposure to calpain inhibitors will be required to uncover other 

players.  

Activation of Aif appears to be mediated by calpains in all mutant retinas studied here, 

however expression of the dominant mutation may trigger other mechanisms that affect 
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activation of Aif. In fact, in both animal models bearing the P23H mutation salubrinal 

treatment caused a significant reduction of activated Aif in the retina but not of activated 

calpains. The different effect on Aif and on calpains can be explained by the fact that Aif 

can be activated by several proteases and among those caspases (43, 44). Activation of 

caspases in retinas with dominant mutations in Rho have been previously reported (23, 24, 

33, 42, 45–47) and is also suggested by our analyses of cleavage of the cytoskeletal 

protein αII-spectrin that revealed lower molecular weight fragments in P23H mutant retinas, 

not observed in the retina with Rho loss of function. 

The expression of a dominant mutation in Rho activates additional pathways involving 

ER-stress. Mutations in integral membrane proteins affecting folding cause ER retention 

and are linked to diseases, as also shown for Rho (48, 49). Correlation of the ER-stress 

Perk pathway with intracellular Ca2+ variations and with calpains was previously described 

in retina and brain neurons but not well characterized (50–54). By treatment with drugs 

targeting either calpains or ER-stress, we determined that these are parallel pathways. In 

fact, treatment with calpastatin did not significantly affect phosphorylation of ER-stress 

sensors. Similarly, treatment with salubrinal did not reduce the number of cells activating 

calpains but nearly increased calpain activity even in the presence of calpastatin. 

Salubrinal was reported to only moderately reduce calpain activity when a cancer cell line 

was pretreated with salubrinal before activation of calpains and to increase cytosolic Ca2+ 

in EBV-transformed B cells (55, 56). If indeed salubrinal increases cytosolic Ca2+ in 

photoreceptors as well, this may activate several calpains and not only calpain 1 and 2. 

Calpastatin specifically blocks calpain 1 and 2 that we previously demonstrated to be 

linked to photoreceptor cell death (27). Interfering with the two pathways in co-treatment 

experiments showed a significant benefit when compared to single treatments confirming 

that calpains and ER-stress are independently activated. Our study thus highlights the 
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importance of combined treatments of dominant RP caused by mutations in the RHO gene. 

Neuroprotective effects with salubrinal are consistent with the beneficial effects observed 

in photoreceptors from a patient bearing a dominant RHO mutation (E181K) (57). 

Interestingly, in our studies salubrinal not only increased phosphorylated Eif2α but also 

maintained activation of Ire1. Sustained expression of activated Ire1 was previously shown 

to have protective effects in Drosophila on photoreceptors expressing mutant Rho (58). 

Salubrinal was also previously reported to protect cells from the deleterious effect of ER-

stress in a Drosophila model of retinal degeneration (59).  

Activation of ER-stress is consistent with the observation of high molecular weight Rho 

protein in retinal extracts from mice expressing the dominant mutation. We also observed 

a different distribution of the protein in the photoreceptor cells. These data are partially 

discordant with a study of the knock-in mouse expressing two P23H mutant alleles (28). 

The apparent discrepancy may be due to the different genotypes of the mice used in the 

two studies. In fact, in this study we analyzed mice bearing a single mutant allele in the 

absence of the wild type allele while the published study analyzed mice with two P23H 

mutant alleles. A second explanation may reside with the methods used here for epitope 

retrieval in immunofluorescence experiments and for protein extraction in immunoblotting. 

In fact, different detergents were reported to affect the Rho pattern during immunoblotting 

(60).  

Recessive mutations are rare in the RHO gene and the only confirmed null mutation is 

the E249X mutation identified in one patient (4). The loss of function effects of the second 

mutation, E150K, found in homozygosity in patients is still controversial because molecular 

and functional studies in the recently generated knock-in mouse identify this mutation as a 

slowly progressing adRP (61).  
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In summary, our study demonstrates that dominant and recessive mutations in the Rho 

gene trigger different responses in photoreceptor cells. While clinical symptoms are similar 

in patients with adRP and arRP, RP caused by the P23H mutation is not due to 

haploinsufficiency, and therapeutic strategies will need to account for the different 

molecular events triggered by different mutations. Our study only assessed the effects of 

calpastatin peptide and salubrinal on the retina after 16 hours of exposure analyzing the 

number of TUNEL+ cells and activation of the pathways, these experiments are therefore 

not appropriate to evaluate preservation of the number and morphology of rod and cone 

photoreceptors. Long-term effects of these drugs in the eye as well as neuroprotective 

activities need to be evaluated for their therapeutic use in retinal degeneration. Treatments 

in vivo with salubrinal or continuous expression of calpastatin in the forebrain of transgenic 

mice did not show adverse effects, but long-term exposure in the eye was not assessed 

(62–66). The identification of the two cell death pathways paves the way for specific 

pharmacological screenings to identify new, safe and effective drugs for the treatment of 

this blinding disease.  
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Materials and Methods  
 

Animal care  

All procedures on mice were conducted at CSSI (Centro Servizi Stabulario 

Interdipartimentale) and approved by the Ethical Committee of University of Modena and 

Reggio Emilia (Prot. N. 106 22/11/2012) and by the Italian Ministero della Salute 

(346/2015-PR). Rhodopsin P23H transgenic mice (P23HTg) (14) were kindly provided by M. 

Humphries and T. Dryja and bred on a C57BL/6J genetic background, C57BL/6J wild-type 

mice were purchased from Envigo Italy (Udine, IT). We chose to maintain the endogenous 

murine Rho in this model because, in the absence of endogenous Rho, retinal 

degeneration proceeds rapidly affecting our analyses. Rho-/- mice in a 129/sv background 

(26) were kindly provided by M. Humphries. The P23H knock-in mice in a C57BL/6J 

background (17) were mated with the Rho knock-out mice to obtain mice with one Rho null 

allele and one P23H mutant Rho allele (RhoP23H/-). Mice were maintained in a 12hr 

light/dark cycle and had free access to food and water.  

 

In vivo treatments 

For intravitreal administration, mice at the age of 9 days after birth (PN9) or PN15 or PN44 

were anesthetized with an intraperitoneal injection of 250 mg/kg body weight of avertin 

(1.25% (w/v) 2,2,2-tribromoethanol and 2.5% (v/v) 2-methyl-2-butanol; Sigma, Milan, IT). 

Subsequently, the eyelid was opened and a 34GA needle was inserted adjacent to the 

limbal border of the cornea. 0.5 µl of calpastatin peptide (200 µM solution, with an 

expected final concentration in the eye of 20 µM; Calbiochem, Milan, IT) were delivered 

intravitreously and the control eyes received vehicle only (PBS). Salubrinal was injected 

twice per day intraperitoneally starting at the age of PN7 (50 µl of a 1:50 dilution in 0.9% 
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NaCl of a 5 mg/ml stock solution in DMSO; Calbiochem). Control mice received the same 

volume of vehicle (2% DMSO in 0.9% NaCl).  

 

Calpain activity assay 

Cryosections from unfixed retinas were incubated for 15 min in calpain reaction buffer 

(CRB: 25 mM HEPES-KOH pH 7.2, 65 mM KCl, 2 mM MgCl2, 1.5 mM CaCl2, 2 mM DTT) 

and then exposed for 1 h at 37°C to the fluorescent calpain substrate CMAC, t-BOC-Leu-

Met (A6520, Life Technologies, Monza, IT) at a final concentration of 2 µM as in (20). 

Slides were analyzed at an Axioskop 40 fluorescence microscope (Zeiss, Arese, IT) using 

the filter excitation/emission wavelengths of 365/420 nm.  

 

DNA Nick-End Labeling by TUNEL and immunofluorescence 

Eyes were oriented, fixed in Davidson’s fixative (8% Formaldehyde, 31.5% Ethanol, 2 M 

Acetic Acid), embedded in paraffin and 5 µm sections along the superior-inferior axis were 

collected. Apoptotic nuclei were detected by TdT-mediated dUTP terminal nick-end 

labeling kit (TUNEL, fluorescein; Roche, Milan, IT) used according to the manufacturer’s 

protocols. Sections were boiled with 10 mM Tris-HCl pH 9, incubated at 60°C for 10 min 

and at room temperature for 30 min. Primary antibodies were employed as follows: anti-Aif 

(1:100; Sigma), anti-Perk (1:50, H-300: sc-13073, Santa Cruz Biotechnology), anti-

phosphorylated Ire1 (1:100, Novus Biologicals, Milan, IT), anti-phosphorylated Perk (1:100, 

Cell Signaling), anti-Rho (1:1000, 1D4; Sigma). Secondary antibodies were Oregon 

Green® 488 anti-mouse, Alexa Fluor® 568 anti-mouse, anti-goat and anti-rabbit antibodies 

(Life Technologies). Slides were mounted with mowiol 4-88 (Sigma) and analyzed with an 

Axioskop 40 fluorescence microscope (Zeiss). Quantification of labeled cells was 
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performed by counting all labeled cells in the photoreceptor cell layer passing through the 

optic nerve in at least 3 sections from different animals.  

 

Cytofluorimetric analysis of calcium 

Intracellular calcium levels were determined with the intracellular calcium probe Fluo-4 AM 

(Life Technologies). Retinas were incubated in 19 U/ml papain for 30 min and, after 33-fold 

dilution with DMEM containing 10 U/ml DNAse, retina cells were dissociated by trituration. 

After three washes with PBS, cells were incubated with Fluo-4 AM at 37°C for 30 min in 

Ca2+-free medium. Fluorescence was measured with a Coulter Epics XL-MCL flow 

cytometer (Beckman Coulter) at an excitation wavelength of 488nm. Photoreceptor cells 

stained with anti-Rho antibody 1D4 (1:1000, Sigma) had been previously characterized as 

in (67) and plotted over the forward scatter to define the gating strategy for the following 

intracellular calcium analysis (see Figure S2 A). Fluo4 AM signal was measured at PN10 

for P23HTg, PN16 for RhoP23H/- and PN45 for Rho-/- in at least three different retinas and 

the percentages of cells with high fluorescence were compared to the age-matched wild 

type controls. 

 

RT-PCR 

Total RNA was extracted from murine retinas with Trizol (Life Technologies) and cDNA 

was synthesized using the Transcriptor High Fidelity cDNA Synthesis Kit (Roche).  PCR 

analysis of the spliced form of Xbp1 was performed with primers specifically recognizing 

the spliced variant (sXbp1-f: GGTCTGCTGAGTCCGCAGCAGG and sXbp1-r: 

CAGGCCTATGCTATCCTCTAGGC) with the following protocol: 10 min at 95°C followed 

by 30 cycles composed by 30 sec at 95°C, 30 sec at 64°C and 90 sec at 72°C. The 
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expected PCR product consisted of 718 bp. PCR was normalized with primers for the S26 

gene (S26-f: AAGTTTGTCATTCGGAACATT and S26-r: GATCGATTCCTAACAACCTTG). 

 

Retinal protein extracts and Western blotting analysis  

Retinas were dissected in PBS. Total cell extracts were prepared by homogenizing retinas 

in 20 mM Tris-HCl pH 7.4, 150 mM NaCl, 1% CHAPS, 0.2 mM Na3PO4, 1 mM Na3VO4, 

protease inhibitor cocktail (Sigma) and centrifugation at 17000xg for 10 min. For nuclei-

enriched lysate preparation, retinas were transferred into a 2 ml Dounce homogenizer with 

200 µl of cold homogenizing buffer (20 mM HEPES-KOH pH 7.5, 250 mM sucrose, 10 mM 

KCl, 1.5 mM MgCl2, 2 mM EDTA, 1 mM DTT, 0.2 mM Na3PO4, 1 mM Na3VO4, protease 

inhibitor cocktail from Sigma) and placed on ice for 30 min. The tissue was disrupted with 

40 strokes and centrifuged at 900xg for 5 min at 4°C to isolate the nuclear fraction. The 

pellet was washed twice in cold homogenizing buffer and resuspended in lysis buffer (50 

mM Tris-HCl pH 7.4, 150 mM NaCl, 1% NP-40, 0.1% SDS, 1 mM EDTA, 0.2 mM Na3PO4, 

1 mM Na3VO4, protease inhibitor cocktail from Sigma). The purity of enriched lysates was 

checked by western blotting with a nuclear marker (anti-Histone H3 1:3000; Bethyl 

Laboratories, Bologna, IT) and a cytosol marker (anti-pan-actin, 1:3000, Millipore).  

Equivalent amounts of protein extracts (3 µg for total extracts, 20 µg for nuclear extracts 

and 80 µg for analyses of αII-spectrin) were resolved using SDS-PAGE and 

immunoblottings were performed following standard procedures. The antibodies used for 

immunoblotting were: anti-Aif (1:1000; Oncogene), anti-αII-spectrin (anti-fodrin; 1:2000, 

Enzo Life, Roma, IT), anti-Bip (1:1000, Santa Cruz Biotechnology), anti-Eif2α (1:1000, Cell 

Signaling), anti-Histone H3 (1:3000; Bethyl Laboratories), anti-phosphorylated-Ire1 

(1:2000, Novus Biologicals), anti-phosphorylated-Perk (1:1000, Cell Signaling), anti-

phosphorylated-Eif2α (1:1000, Cell Signaling), anti-Perk (1:1000, Santa Cruz 
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Biotechnology), anti-pan-actin (1:3000, Millipore), and anti-recoverin (1:1000, Millipore). 

Quantification was performed by densitometry analysis of scanned images with ImageJ 

software, corrected for background and plotted as protein/normalizing protein. Data are 

presented as means ± SD of 3 blots with proteins derived as biological replicates from 3 

animals.  

 

Statistical analysis 

Cell counts and densitometry analyses are shown as means ± SD. Paired Student’s t-test 

analysis was performed to compare data derived from at least three different wild-type or 

mock treated mutant retinas to at least three different mutant or drug treated retinas, 

respectively.   
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Legends to figures 

Figure 1. Calpain and Aif activation in retinas bearing mutation in the Rho gene. (A) 

Immunoblot of total protein extracts (PN9 for Rho+/+ and P23HTg; PN16 for Rho+/- and 

RhoP23H/-; PN45 for Rho+/+ and Rho-/-) with an anti-αII-spectrin antibody is shown. All 

mutant retinas manifest an increased intensity of the 145 kDa band (arrow). Retinas 

expressing the P23H mutation also show fragments of αII-spectrin at 120 kDa (asterisk) 

consistent with activation of caspases. The immunoblot was normalized with anti-actin 

antibodies (lower panel). MW: molecular weight markers are shown in kDa. (B) Histogram 

representing the percentages of cells co-labeled with TUNEL and with the calpain activity 

assay. (C) Confocal images showing co-localization (yellow, arrows) of Aif (red) and 

TUNEL (green) inside nuclei of P23HTg retinas at PN9, RhoP23H/- retinas at PN16, and Rho-

/- retinas at PN45. IS = inner segment (containing photoreceptor cytoplasm and 

mitochondria); ONL= outer nuclear layer; INL = inner nuclear layer. Scale bar: 50µm (D) 

Histogram representing percentages of cells co-labeled with TUNEL and with the anti-Aif 

antibody. (E) Immunoblots of nuclear enriched extracts from Rho+/+ PN10 and P23HTg 

retinas at PN8, PN9 and PN10 (8, 9 10 in the figure), from Rho+/- PN20 and RhoP23H/- 

retinas at PN12, PN16 and PN20 (12, 16, 20 in the figure), from Rho+/+ PN30 and Rho-/- 

retinas at PN30, PN45 and PN60 (30, 45, 60 in the figure) using an anti-Aif antibody. 

Immunoblots were normalized with anti-histone H3 antibodies (lower panels). MW: 

molecular weight markers are shown in kDa. 

Figure 2. Neuroprotective effects of calpastin peptide treatment. (A) Total protein 

extracts from mouse retinas were analyzed by immunoblot at the age of PN10 for P23HTg, 

PN16 for RhoP23H/- and PN45 for Rho-/- with an anti-αII-spectrin antibody and in age-

matched controls (Rho+/+ PN10; Rho+/- PN16; Rho+/+ PN45). The reduction of the 145 kDa 
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fragment resulting from calpain cleavage (arrow) in calpastatin peptide (CS) treated retinas 

when compared to vehicle treated control retinas (mock) confirmed the inhibition of calpain 

activation by CS. The immunoblot was normalized with anti-actin antibodies (lower panel). 

MW: molecular weight markers are shown in kDa. (B) Histogram with percentages of 

photoreceptors co-labeled with TUNEL and the calpain activity assay, as detected in situ 

with a fluorescent calpain substrate, indicates a significant reduction of dying cells 

activating calpains after treatment with CS in all models. (C) Immunoblot of nuclear protein 

extracts shows reduced nuclear translocation of Aif in CS treated samples. The 

immunoblot was normalized with anti-Histone H3 antibodies (lower panel). MW: molecular 

weight markers are shown in kDa. (D) Histogram with percentages of photoreceptors co-

labeled with TUNEL and nuclear localized Aif reveals a reduction of dying cells activating 

Aif after treatment with CS in all models. (E) Histogram with percentages of TUNEL-

labeled photoreceptors shows a reduction of photoreceptor cell death after treatment with 

CS. *** P≤0.001; * P ≤0.05 Student’s t-test comparing treated retinas (white bars) with the 

corresponding mock treated controls (gray bars). 

Figure 3. Time course of ER-stress activation in P23HTg. Ire1 and Perk pathway 

activations were analyzed in Rho+/+ and P23HTg retinas at PN8, PN9 and PN10 (8, 9 10 in 

figure). (A) Immunoblot of total protein extracts shows phosphorylation/activation of Ire1 

(phospho-Ire1 antibody) in the mutant retina at PN8, PN9 and PN10, the last at a reduced 

level. The immunoblot was normalized using anti-actin antibodies (lower panel). MW: 

molecular weight markers are shown in kDa. (B) RT-PCR with primers specific for the 

spliced form of Xbp1 (sXbp1) confirmed activation of the Ire1 pathway in PN8 and PN9 

mutant retinas. RT-PCR was normalized with primers specific for S26. MW=molecular 

weight marker showing DNA fragments every 100 bp starting from the lower band at 100 

bp. (C) Immunofluorescence analysis of retinas at PN9 with anti-phospho-Ire antibodies 
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(red in the inner segment, containing the cytoplasm of photoreceptor cells, is indicated by 

an arrow) confirmed activation of the Ire1 pathway in the photoreceptor cells also labeled 

by TUNEL (green). Nuclei are stained with DAPI (blue). Scale bar: 20µm. (D) Immunoblot 

of total protein extracts shows phosphorylation/activation of Perk (phospho-Perk antibody) 

in the mutant retina at all tested time points. The immunoblot was normalized using anti-

Perk antibodies to visualize total Perk protein (lower panel) and to be compared to the 

activated-phosphorylated form shown in the upper panel. MW: molecular weight markers 

are shown in kDa. (E) Immunoblot shows phosphorylation of Eif2α in the mutant retina at 

all tested time points. The immunoblot was normalized using anti-Eif2α antibodies to 

visualize total Eif2α protein (lower panel). MW: molecular weight markers are shown in 

kDa. (F) Immunofluorescence analysis of retinas at PN10 with antibodies anti-P-Perk (red 

in the inner segment, containing the cytoplasm of photoreceptor cells, is indicated by an 

arrow) confirmed activation of the Perk pathway in the photoreceptor cells also labeled by 

TUNEL (green). Nuclei are stained with DAPI (blue). Scale bar: 20µm. IS = inner segment 

(containing photoreceptor cytoplasm and mitochondria); ONL= outer nuclear layer; INL = 

inner nuclear layer; GCL=ganglion cell layer.  

 

Figure 4. Time course of ER-stress activation in RhoP23H/-. Ire1 and Perk pathway 

activations were analyzed in in RhoP23H/- retinas at PN12, PN16 and PN28 (12, 16, 28 in 

figure) and compared to Rho+/- retinas at the same ages. (A) Immunoblot of total protein 

extracts shows phosphorylation/activation of Ire1 (phospho-Ire1 antibody) in the mutant 

retina at all analyzed time points. The immunoblot was normalized using anti-actin 

antibodies (lower panel). MW: molecular weight markers are shown in kDa. (B) RT-PCR 

with primers specific for the spliced form of Xbp1 (sXbp1) confirmed activation of the Ire1 
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pathway in mutant retinas. RT-PCR was normalized with primers specific for S26. 

MW=molecular weight marker showing DNA fragments every 100 bp starting from the 

lower band at 100 bp. (C) Immunofluorescence analysis of retinas at PN16 with anti-

phospho-Ire antibodies (red in the inner segment, containing the cytoplasm of 

photoreceptor cells, is indicated by an arrow) confirmed activation of the Ire1 pathway in 

the photoreceptor cells also labeled by TUNEL (green). Nuclei are stained with DAPI 

(blue). Scale bar: 20µm. (D) Immunoblot of total protein extracts shows 

phosphorylation/activation of Perk (phospho-Perk antibody) in the mutant retina at all 

tested time points. The immunoblot was normalized using anti-Perk antibodies to visualize 

total Perk protein (lower panel) and to be compared to the activated-phosphorylated form 

shown in the upper panel. MW: molecular weight markers are shown in kDa. (E) 

Immunoblot shows phosphorylation of Eif2α in the mutant retina at all tested time points. 

The immunoblot was normalized using anti-Eif2α antibodies to visualize total Eif2α protein 

(lower panel). MW: molecular weight markers are shown in kDa. (F) Immunofluorescence 

analysis of retinas at PN16 with antibodies anti-phospho-Perk (red in the inner segment, 

containing the cytoplasm of photoreceptor cells, is indicated by an arrow) confirmed 

activation of the Perk pathway in the photoreceptor cells also labeled by TUNEL (green). 

Nuclei are stained with DAPI (blue). Scale bar: 20µm. IS = inner segment (containing 

photoreceptor cytoplasm and mitochondria); ONL= outer nuclear layer; INL = inner nuclear 

layer; GCL=ganglion cell layer.  

 

Figure 5. Neuroprotective effects of salubrinal and calpastatin treatments. Mice were 

treated either with salubrinal (SAL) or calpastatin peptide (CS) or with salubrinal and 

calpastatin peptide together (CS+SAL). Protein extracts from retinas treated with drugs or 
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treated with vehicle only (mock) were analyzed at the age of PN9 for P23HTg and PN16 for 

RhoP23H/-.  (A-B) Immunoblots of total protein extracts show increased phosphorylated Ire1 

(upper panels) after treatment with SAL and CS+SAL in P23HTg (A) and in RhoP23H/-  (B) 

retinas. No effect on Ire1 phosphorylation was observed after treatment with CS only. 

Immunoblots were normalized using anti-actin antibodies (lower panel). (C-D) RT-PCR 

using primers specific for the spliced form of Xbp1 (sXbp1) confirms activation of the Ire1 

pathway after treatment with SAL and CS+SAL in P23HTg (C) and in RhoP23H/- (D) retinas. 

No effect on Xbp1 splicing was observed after treatment with CS only. RT-PCR reactions 

were normalized with primers specific for S26. (E-F) Immunoblots of total protein extracts 

show no significant change of phosphorylated Perk (upper panels) in P23HTg (E) and in 

RhoP23H/- (F) retinas after treatments. The immunoblots were normalized using anti-Perk 

antibodies (lower panels). (G-H) Immunoblots of total protein extracts show increased 

phosphorylated Eif2α (upper panels) after treatment with SAL and CS+SAL in P23HTg (G) 

and in RhoP23H/- (H) retinas. Immunoblots were normalized using anti-Eif2α antibodies 

(lower panel). (I-J) Immunoblots of nuclear protein extracts show reduced nuclear 

translocation of Aif (upper panels) in P23HTg (I) and in RhoP23H/- (J) retinas after 

treatments. Immunoblots were normalized using anti-Histone H3 antibodies (lower panel). 

(K-L) Immunoblots on total protein extracts show increased Bip/Grp79 (upper panels) after 

treatment with SAL and CS+SAL in P23HTg (K) and in RhoP23H/- (L) retinas. No effect on 

Bip/Grp79 levels was observed after treatment with CS only. Immunoblots were 

normalized using anti-actin antibodies (lower panel). (M) Graph representing the 

percentages of TUNEL+ photoreceptors in P23HTg (dashed bars) and in RhoP23H/- (gray 

bars) after treatments with either SAL or CS or CS+SAL. A significant reduction of cell 

death was observed in all treated retinas when compared to retinas treated with vehicle 

only (mock). (N) Graph representing the percentages of dying photoreceptors activating 
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calpains (Calpain activity+/TUNEL+) in P23HTg (dashed bars) and in RhoP23H/- (gray bars) 

after treatments with either SAL or CS or CS+SAL. A significant reduction of calpain 

activation in dying cells was detected in P23HTg and RhoP23H/- retinas only after treatments 

with CS when compared to retinas treated with vehicle only (mock). (O) Graph 

representing the percentages of dying photoreceptors with nuclear localized Aif 

(Aif+/TUNEL+) in P23HTg (dashed bars) and in RhoP23H/- (gray bars) after treatments with 

either SAL or CS or CS+SAL. A significant reduction of Aif activation in dying cells was 

detected in all treated retinas expressing P23H mutant Rho when compared to retinas 

treated with vehicle only (mock). *** P≤0.001; ** P≤0.01; * P≤0.05 t-Student comparing 

treated retinas with the corresponding mock controls. MW: molecular weight markers are 

shown in kDa. 

Figure S1. Characterization of murine mutant Rho models. (A) Time course analysis of 

photoreceptor cell death in P23HTg, RhoP23H/-, and Rho-/- mutant retinas by TUNEL assay. 

Peak of cell death was postnatal day 9 (PN9) in P23HTg, PN16 in RhoP23H/-, and PN45 in 

Rho-/-. (B) Immunoblots using anti-Rho antibody (1D4, Sigma) of total protein extracts from 

retinas of RhoP23H/- compared to Rho+/- and Rho-/-TgP23H (P23HTg bred with Rho-/- to analyze 

only the mutant transgenic allele) compared to wild type Rho+/+. Rho monomers are 

indicated by an open arrow. Blots were normalized with an anti-recoverin antibody (lower 

panel, Rec), a protein expressed in photoreceptors, to take into account on-going rod cell 

death at the analyzed time points. MW: molecular weight markers are shown in kDa.  (C) 

Confocal images of immunofluorescence analyses of Rho+/+ and P23HTg retinas at PN10 

and Rho+/- and RhoP23H/- retinas at PN16 labeled with the anti-Rho antibody (green) and 

TUNEL (red). Wild type Rho accumulates in the inner segment (IS) at PN10 and in the 

outer segment (OS) of the more mature retina at PN16 but mutant P23H accumulates 

intracellularly and is retained in the inner segment. Dying cells labeled with TUNEL are 
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detectable only in P23H expressing retinas. Scale bars: 75µm. (D) Analyses of calpain 

activity (blue) and TUNEL (red) of Rho+/+ and P23HTg retinas at PN10, Rho+/- and RhoP23H/- 

retinas at PN16 and Rho+/+ and Rho-/- retinas at PN45. Arrows indicate cells co-labeled by 

TUNEL and the calpain activity assay; arrowheads indicate cells labeled only by the 

calpain activity assay. OS= outer segment; IS = inner segment (containing photoreceptor 

cytoplasm and mitochondria); ONL= outer nuclear layer; INL = inner nuclear layer. (E-G) 

Confocal sections of P23HTg  (E), RhoP23H/- (F) and Rho-/- (G) retinas stained with anti-Aif 

(red) and TUNEL (green) confirming nuclear translocation of Aif in dying cells (arrows). 

Some TUNEL positive cells do not show nuclear translocation of Aif (arrowhead). Merge: 

merged images of the red, green and blue channels. Nuclei were stained with DAPI (blue). 

Figure S2. Analyses of Calcium in murine mutant Rho photoreceptors. (A) Flow 

cytometry characterization of the cell population dissociated from a PN16 Rho+/- retina. 

The cell population and the rod photoreceptor cells labeled with the 1D4 anti-Rho antibody 

(Q2 gate) show a bimodal pattern as previously reported (67). This photoreceptor 

population was gated for all subsequent studies. (B) Histogram representing percentages 

of cells with high levels of Ca2+. A significant increase was observed in mutant retinas (*** 

P≤0.001). (C-E) Flow cytometry outcomes of calcium labeling with Fluo-4 AM 

(fluorescence intensity on the Y axis) in P23HTg and Rho+/+ at PN10 (C); in RhoP23H/- and 

Rho+/- at PN16 (D) and in Rho-/- and Rho+/+ at PN45 (E). Gates applied measure the cell 

percentages with high level of Ca2+. 

Figure S3. Quantification of experiments shown in figure 5. Mice were treated either 

with salubrinal (SAL, green bars) or calpastatin peptide (CS, blue bars) or with salubrinal 

and calpastatin peptide together (CS+SAL, black bars). Protein extracts from retinas 

treated with drugs or treated with vehicle only (mock, white bars) were analyzed at the age 
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of PN9 for P23HTg and PN16 for RhoP23H/-.  (A-B) Quantifications of western blots of total 

protein extracts show significant increase of phosphorylated Ire1 after treatment with SAL 

and CS+SAL in P23HTg (A) or in RhoP23H/- (B) retinas. No effect on Ire1 phosphorylation 

was observed after treatments with CS only. (C-D) Quantifications of RT-PCR analyzing 

the spliced form of Xbp1 (sXbp1) confirm activation of the Ire1 pathway after treatment 

with SAL and CS+SAL in P23HTg (C) or in RhoP23H/- (D) retinas. No effect on Xbp1 splicing 

was observed after treatment with CS only.  (E-F) Quantifications of immunoblots of total 

protein extracts show no significant change of phosphorylated Perk in either P23HTg (E) or 

RhoP23H/- (F) retinas. (G-H) Quantifications of immunoblots of total protein extracts show 

significant increase of phosphorylated Eif2α after treatment with SAL and CS+SAL in 

P23HTg (G) and in RhoP23H/- (H) retinas. No effect on Eif2α phosphorylation was observed 

after treatment with CS only. (I-J) Quantifications of immunoblots of nuclear protein 

extracts show significantly reduced nuclear translocation of Aif after treatment with SAL or 

CS in P23HTg (I) and in RhoP23H/- (J) retinas. (K-L) Quantifications of immunoblots of total 

protein extracts show significant increase of Bip/Grp79 after treatment with SAL and 

CS+SAL in P23HTg (K) and in RhoP23H/-  (L) retinas. No effect on Bip/Grp79 levels was 

observed after treatment with CS only. *** P≤0.001; ** P≤0.01; * P≤0.05 t-Student 

comparing treated retinas with the corresponding controls (white bars). 

Figure S4. Histological analysis of treated retinas. (A, C, E) Histological analysis by 

Hematoxylin-Eosin staining of P23HTg (A), RhoP23H/- (C) and Rho-/- (E) mutant retinas after 

treatments with vehicle only (mock) or with salubrinal (SAL) or calpastatin peptide (CS) or 

with calpastatin peptide and salubrinal together (CS+SAL). ONL= outer nuclear layer; INL 

= inner nuclear layer; GCL= ganglion cell layer. Scale bar: 100µm. (B, D) 

Immunofluorescence analysis of RHO protein (green) in P23HTg (B) and RhoP23H/- (D) 

retinas after treatments with vehicle only (mock) or with salubrinal (SAL) or calpastatin 
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peptide (CS) or with calpastatin peptide and salubrinal together (CS+SAL). Sections were 

co-stained with the anti-PERK antibody (red) identifying the ER. Scale bar: 20µm.  
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Abbreviations  

Aif: apoptosis-inducing factor 

ER: endoplasmic reticulum 

ERAD: ER-associated degradation 

RHO: human Rhodopsin 

Rho: murine Rhodopsin 

RP: retinitis pigmentosa 

UPR: unfolded protein response 
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