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ABSTRACT
The two main events occurred during the 2012 seismic sequence on the
Po Plain in Northern Italy (May 20 Mw 5.9 and May 29 Mw 5.8) induced
widespread coseismic surface effects (CSEs), mostly liquefaction
phenomena, which caused severe damages. To prevent risks related to
CSE, an important non-structural measure is to assess locations
susceptible to liquefaction, which is usually done at site scale by means of
deterministic approaches in micro-zonation studies. This paper brings a
novel methodological contribution in the field of CSE susceptibility
mapping at regional scale, by testing and comparing bivariate (Weights of
Evidence) and multivariate (Logistic Regression) methods that, so far, have
not yet been used for such purpose. In a study area of 1480 km2, the
computation used an inventory of CSE as supporting evidence and a set of
maps with geologic, geomorphic, hydrogeological and topographic
factors as causal variables. Both methods provided susceptibility maps
with a significant predictive capability and a fairly good spatial agreement
between each other. In conclusion, this application of data-driven spatial
modelling approaches indicates that such methods can be effectively
used for liquefaction susceptibility zonation at regional scale, which can
be of significant support for spatial planning over large areas.
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1. Introduction

Coseismic surface effects (CSEs) related to liquefaction of saturated sandy deposits are among the
most important indirect hazardous phenomena associated with earthquakes. In free-field condi-
tions, CSEs include phenomena such as soil fissures, sand boils, soil bulging and lateral spreading,
ejections of sand and water from wells (Huang and Yu 2013). In built environments, liquefaction
causes the loss of bearing capacity of soils, thus provoking sudden settlements or even failure of
buildings and severe damages to urban structures and infrastructures (Galli et al. 2012; Huang and
Yu 2013; Civico et al. 2015). In general, soil liquefaction is triggered by strong earthquakes
(Mw > 5.5) within a certain distance from the earthquake epicentre. In saturated sand–silt layers,
located typically within the first 20 m from the ground, shaking causes rapid increase of pore-water
pressure with consequent reduction of effective stress and transition from solid to liquid state (Mar-
cuson 1978; Youd and Idriss 2001). The occurrence of CSE is therefore strongly associated to the
stratigraphy of normally consolidated deposits. The presence of saturated loose silty-sand layers
confined by impermeable silt–clay layers is a major predisposing condition for liquefaction.
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Nevertheless, CSE occurrence in floodplain areas is also related to geomorphological features such as
sandy abandoned streambeds, abandoned river levees, and buried dunes of alluvial sands (Owen and
Moretti 2011; De Martini et al. 2012).

To prevent risks related to CSE, one of the most important non-structural measures is to assess
and map locations susceptible to liquefaction, which is usually done, at site scale, by means of deter-
ministic approaches for micro-zonation studies and, at regional scale, by inference of geologic and
hydrogeological predisposing conditions.

The challenge of this study is to assess and map CSE susceptibility at regional scale in the
Po Plain (Italy) by using bivariate and multivariate geostatistical data-driven methods. Specifi-
cally, the study area includes a 1400 km2 portion of Emilia-Romagna Region in which, during
the May 2012 seismic sequence peaking to Mw 5.9, hundreds of CSEs took place and were
later on inventoried (Emergeo Working Group 2013) and also detected by satellite images
(Chini et al. 2015). The availability of a georeferenced inventory of hundreds of CSEs occurred
during the 2012 earthquake provided the unique opportunity to test geostatistical data-driven
methods to assess liquefaction-prone areas by exploring the relationships between the location
of CSE (supporting evidences) and the variability of geologic, geomorphic, hydrogeological
and topographic conditions (predisposing factors). Indeed, in order to map CSE susceptibility
in the study area, we have applied and compared the Weights of Evidence (WofE) (Bonham-
Carter et al. 1989; Lee et al. 2002) and the Logistic Regression (LR) methods (Cox 1958; Agter-
berg et al. 1993; Gorsevski et al. 2006).

Probabilistic methods such as LR (Liao et al. 1988), Bayesian analysis (Juang et al. 2001;
Juang et al. 2002), Bayesian regression (Cetin et al. 2002; Cetin et al. 2004; Moss et al. 2006)
and Artificial Neural Networks (Pal 2006; Samui et al. 2008; Xue and Yang 2014) have been
recently applied in liquefaction studies at site scale to evaluate the factor of safety against liq-
uefaction of a vertical soil column. These approaches, as well as commonly used deterministic
methods, require a large amount of site-investigations in order to be applied over large areas.
Indeed, the assessment of the factor of safety against liquefaction in a uniform soil layer in
geoengineering practice is based on the ratio between cyclic resistance ratio (CRR) of the soil
and the cyclic stress ratio (CSR) induced by design seismic acceleration (Youd and Idriss
2001; Seed et al. 2003; Cetin et al. 2004; Idriss and Boulanger 2008). The CRR is defined using
in-site investigations such as cone, standard and Becker penetration tests or shear wave veloc-
ity determinations (Youd and Idriss 2001; Jafarian et al. 2010; Monaco 2014). Similarly, to
compute the liquefaction potential index (LPI) of stratified deposits (Iwasaki et al. 1978), the
factor of safety of each single layer must be assessed (Papathanassiou et al. 2015). Thus, over
large areas, the application of deterministic or probabilistic methods to assess LPI is a
demanding task in terms of the large number of in situ tests needed to assess the spatial vari-
ability of geotechnical and hydrogeological properties of the subsoil. Only multiple borings or
soundings allow eventually to cope with under-sampled locations by using different interpola-
tion methods (Baise et al. 2006; Holzer et al. 2006; Chen et al. 2008; Facciorusso et al. 2010;
Pokhrel et al. 2012).

Considering that sectors of the Po Plain have not been investigated by seismic microzonation
studies in all areas, the assessment and mapping of CSE susceptibility by means of spatial geostatisti-
cal approach is believed to be a well-justified option for contributing to the regional seismic risk
planning and management.

2. Study area and coseismic surface effects of 2012

The study area extends for 1480 km2 in the Po Plain, inside the Emilia Romagna Region (Northern
Italy). It includes 19 municipalities within the provinces of Ferrara, Bologna and Modena (Figure 1).
This area is economically well developed, with a highly specialized industrial sector, intensive agri-
culture and high population density. The hydrography of the area is defined by the rivers Po,
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Panaro, Reno and Secchia, flowing through the alluvial flood plain at altitude ranging from +32.3 m
a.s.l to ¡0.2 m, with an average topographic slope lower than 3�.

In May 2012, the area was affected by a seismic sequence that peaked to Mw = 5.9. The main
shocks of May 20 and May 29 induced hundreds of CSEs that were directly or indirectly related to
liquefaction phenomena (Figure 1).

The seismicity of this region is related to active tectonics in the buried front of the Apennines,
which is characterized by faulted-folds (known as Ferrara Folds), forming an N-verging arc located
right below the Plio-Quaternary marine and alluvial sediments of the Po Plain (Pieri and Groppi
1981). The structures responsible for the 2012 earthquake were the most external active Ferrara and
Mirandola thrusts and folds (Bignami et al. 2012). The seismic sequence of 2012 occurred in the
upper 10 km of the crust (Alessio et al. 2012).

The CSEs occurred during the 2012 seismic sequence have been surveyed by different teams
of researchers and have been included into different open access maps and databases (Servizio
Geologico Sismico e dei Suoli 2012; Emergeo Working Group 2013; ISPRA 2013). These
reports include phenomena such as fissures, sand boils, ejections of sand and water from wells,
bulging, lateral spread (Figure 2), as well as hydrological anomalies such as water table fluctua-
tions and changing of water temperature or spill of wet sand from wells. Since Roman times,
the natural and artificial diversions of river courses influence the geomorphology of the Po
plain, shaping landforms particularly susceptible to CSE. The subsoil lithology, down to a
depth of about 20–30 m, is characterized by poorly consolidated fluvial deposits dated from
the Upper Pleistocene to the Holocene. More in detail, the uppermost tens of meters are
essentially constituted by sandy and silty-sand deposits, which are spatially related with river
channels, levees and crevasse splays, representing the paleo-drainage patterns over the flood-
plain (De Martini et al. 2015; Civico et al. 2015). Data from ARPA Emilia Romagna (i.e. the
environmental agency of Emilia Romagna that monitors hundreds of wells in the area) indi-
cate that the level of groundwater in the study area ranges from ¡3.5 m to maximum ¡16 m
below the topographic surface.

Figure 1. Location of the study area in the Italian territory (a) and spatial distribution of the coseismic surface effects along the
municipalities considered as study area (b).
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3. Data and methods

3.1. General approach

The data-driven statistical methods used in this study are the bivariate method of Weights of Evi-
dence (WofE) (Bonham-Carter et al. 1989; Lee et al. 2002) and the multivariate method of LR (Cox
1958; Agterberg et al. 1993). Both have been extensively applied in others fields of geosciences such
as mineral exploration (Bonham-Carter et al. 1989; Agterberg et al. 1993), landslide susceptibility
(Carrara et al. 1995; Guzzetti et al. 2005; Gorsevski et al. 2006; Regmi et al. 2010), groundwater
spring potential evaluations (Corsini et al. 2009), avalanches prediction (Ghinoi et al. 2002) and for-
est fires susceptibility (Viegas et al. 1999).

Although recent technological developments have facilitated the application of spatial statistical
modelling (van Westen et al. 1997; Carrara et al. 1999; Guzzetti et al. 1999; Guzzetti 2005), the
implementation of such methods requires an important preliminary phase of data acquisition and
information processing aimed to the proper selection of supporting evidences and of causal factors
to be considered. In this research, susceptibility modelling with WofE and LR is based on the use of
a subset of all the CSE occurred during the 2012 earthquake (as supporting evidence) and of a set of
maps representing independent predisposing factors. The considered predisposing factors are static
local terrain conditions, such as lithological, hydrogeological and geomorphological conditions that,
according to literature, play the bigger role in determining CSE (Martelli 2012; Monaco 2014).

Figure 2. Coseismic surface effects examples related with liquefaction phenomena: sand boils (a), cracks (b), cracks with liquefac-
tion (c), sand ejections from well (d). Source: Martelli (2012).
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Moreover, the absolute elevation of topographic surface and the distance to faults were also consid-
ered as predisposing factors. On the other hand, the 2012 earthquake seismic acceleration was not
considered, since it is indeed a triggering parameter that, as such, should by no means be included
in a susceptibility assessment. Another subset of CSE has then been used for model validation using
Prediction Rate Curves (PRCs) and the Ratio of Effectiveness (RofE) (Chung and Fabbri 2003), as
detailed in Section 3.4.

All thematic maps regarding supporting evidences and predisposing factors were generated using
ArcGIS Desktop 10.3 software. The WofE and LR models were run in the freeware Arc-SDM Spatial
Data Modeller extension (Sawatzky et al. 2004). Both CSE evidences (inventory dataset) and the pre-
disposing factors maps (causal factors dataset) were converted from vector to raster structure with a
cell size of 5 £ 5 m and projected in WGS 1984 UTM Zone 32 N.

3.2. Dataset: CSE inventory map

The liquefaction-related CSE inventory map (Figure 1) was obtained by merging information from
three main databases: Servizio Geologico Sismico e dei Suoli (2012); Emergeo Working Group
(2013) and ISPRA (2013). The CSE inventory map indicates the position of almost 2000 CSEs
occurred in May 2012. The lack of information about the actual dimension of each CSE evidence in
the field did not allow defining the areal dimension of all the liquefaction phenomena. Therefore,
CSEs were indicated as point features. In addition, terrain fissures, which are in truth linear features,
were recorded as points located in the middle of the line. The integrated CSE inventory map
includes 1910 total point features referring to different types of CSE mainly occurred in the district
of Sant’Agostino, in San Carlo and in Mirabello, which are hamlets built along the Reno river aban-
doned riverbed.

For modelling purposes, the conversion of 1910 point features into raster format resulted in only
1875 cells with a CSE evidences attribute. The CSE inventory map was subdivided in two sub-data-
sets: a modelling sub-dataset with 1306 CSE supporting evidences (70%) used to train WofE and LR
models, and a validation sub-dataset with 569 CSE supporting evidences (30%) used to test and
compare the predictive performances of the modelling results. The sub-datasets are the result of dif-
ferent tests of random partitions, which were continued until the percentage of the CSE sampled in
the modelling sub-dataset provided a well-distributed representation of CSE occurrences.

3.3. Dataset: predisposing factors maps

The selected predisposing factors for CSE susceptibility modelling were the following: geomorpho-
logical units; lithological units; water table depth; topographic surface elevation; distance to faults
and overthrusts (see also Table 1). The predisposing factors were classified in categorical layers and
further reclassified into integer format to be included in the modelling process.

The geomorphological units were digitized from a geomorphological map of the Po Plain ‘Carta
Geomorfologica di Pianura’ at 1:250,000 scale (Castiglioni et al. 1997). The geomorphological map
used in this study is an adaptation of the previous map with more detailed data. From the original
analogical map, the main fluvial geomorphological forms were digitalized in vector format and then
converted to raster structure. The five geomorphology classes considered were: (1) crevasse splay;
(2) levee well defined; (3) levee less defined; (4) abandoned riverbed; and (5) no fluvial landform
(Figure 3(a)).

The lithological units were defined based on the official geologic map ‘Carta Geologica di pianura
dell’Emilia-Romagna 1:250,000’ (Servizio Geologico, Sismico e dei Suoli 1999). Specifically, eight
lithological units were considered (Figure 3(b); Table 1): (1) medium fine sand, in beds tens of cm
thick; (2) sandy silt; (3) silty clay; (4) silt and clayey silt; (5) clayey silt and sandy silt; (6) medium to
fine sand; (7) medium fine sand, silt and silty clay; (8) medium and coarse sand. Lithological units 6
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and 7 belong to deltaic and coastal deposits, whereas unit 9 corresponds to the Po riverbed that is
part of the study area. All remaining lithological units are associated with the alluvial plain deposits.

Groundwater depth in the phreatic and upper confined aquifers was mapped using a dataset pro-
vided by the Regional Agency for Prevention, Environment and Energy of Emilia-Romagna region
(ARPAE) based on a network of hundreds monitored wells. Data regarding the year 2012 were ras-
terized by interpolation of 1 m isolines. Considering that the maximum groundwater depth associ-
ated to the possible occurrence of CSE is about 16 m in these phreatic and upper confined aquifers
(Papathanassiou et al. 2012; Monaco 2014), the water table depth was divided into seven classes: (1)
3.5–4.5 m; (2) 4.5–5.5 m; (3) 5.5–6.5 m; (4) 6.5–7.5 m; (5) 7.5–10.5 m; (6) 10–13.5 m; (7) 13.5–
16.5 m (Figure 3(c)).

Topographic surface elevation was assessed using a Digital Elevation Model (DEM) with a spatial
resolution of 5 £ 5 m derived from interpolation of contour lines and elevation points of the
Regional Technical Map at the scale 1:5000. Nine classes of elevation were defined: (1) 0–3 m; (2) 3–
6 m; (3) 6–9 m; (4) 9–12 m; (5) 12–15 m; (6) 15–18 m; (7) 18–21 m; (8) 21–26 m; (9) 26–32 m
(Figure 3(d)). The interval of the classes for water table depth and the altimetry were defined

Table 1. Predisposing factors and coseismic surface effects (CSE) frequency distribution.

Causal factors ID Variables
Area
(km2)

Area
(%)

N.
CSE

Area with CSE
(km2)

Area with CSE
(%)

Geomorphology 1 Crevasse splay 56.7 3.8 213 5.3 11.5
2 Levee well defined 59.1 4.0 196 4.9 10.6
3 Levee less defined 158.6 10.7 586 14.7 31.8
4 Abandoned riverbed 47.7 3.2 105 2.6 5.7
5 No fluvial features 1160 78,3 745 18,6 40.4

Lithology 1 Medium fine sand, in beds tens of
cm thick

445.8 30.1 1120 28.0 60.7

2 Sandy silt 156.2 10.5 49 1.2 2.7
3 Silty clay 539.4 36.4 603 15.1 32.7
4 Silt and clayey silt 29.3 2.0 0 0.0 0.0
5 Clayey silt and sandy silt 0.0 0.0 0 0.0 0.0
6 Medium to fine sand 146.0 9.8 0 0.0 0.0
7 Medium fine sand, silt and silty clay 27.9 1.9 0 0.0 0.0
8 Medium and coarse sand 125.8 8.5 72 1.8 3.9
9 Po riverbed 11.4 0.8 1 0.0 0.1

Water table 1 3.5–4.5 329.9 22.3 648 16.2 35.1
(meters) 2 4.5–5.5 460.6 31.1 130 3.3 7.1

3 5.5–6.5 279.3 18.8 625 15.6 33.9
4 6.5–7.5 103.1 7.0 344 8.6 18.7
5 7.5–10.5 174.6 11.8 96 2.4 5.2
6 10.5–13.5 87.1 5.9 1 0.0 0.1
7 13.5–16.5 47.2 3.2 0 0.0 0.0

DEM (meters) 1 0–3 61.2 4.1 6 0.2 0.3
2 3–6 196.4 13.2 0 0.0 0.0
3 6–9 343.5 23.2 520 13.0 28.2
4 9–12 295.0 19.9 403 10.1 21.8
5 12–15 194.3 13.1 679 17.0 36.8
6 15–18 128.2 8.7 177 4.4 9.6
7 18–21 146.8 9.9 33 0.8 1.8
8 21–26 80.1 5.4 27 0.7 1.5
9 26–32 35.6 2.4 0 0.0 0.0

Distance to faults 1 0–500 675.8 45.6 1023 25.6 55.4
(meters) 2 500–1000 330.3 22.3 440 11.0 23.8

3 1000–2000 256.0 17.3 335 8.4 18.2
4 2000–300 116.3 7.9 23 0.6 1.2
5 3000–4000 41.3 2.8 6 0.2 0.3
6 >4000 62.4 4.2 18 0.5 1.0

Po riverbed is included in the target area.
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considering the density of the evidences. For this reason, water table depth and topographic surface
elevation present wider intervals for theirs last two correspondent classes.

The distance to faults and overthrusts map was based on the structural lineaments indicated in
the official geologic map ‘Carta geologica regionale 1:25,000’ (Servizio Geologico, Sismico e dei Suoli
2005). The Euclidean calculation allowed obtaining a raster that was subdivided into six classes of
distance from structural lineaments: (1) 0–500 m; (2) 500–1000 m; (3) 1000–2000 m; (4) 2000–
3000 m; (5) 3000–4000; (6) >4000 m (Figure 3(e)).

3.4. Formulations of the models

The WofE is a simple statistical method based on Bayes’ theorem (Lee 1989; Agterberg et al 1993;
Bonham-Carter 1994; Denison et al. 2002). The method is applicable when sufficient data are avail-
able to estimate the relative importance of evidential themes via statistical means (Bonham-Carter
1994) computing prior (unconditional) probability and posterior (conditional) probability. The
method computes the conditional probability that an event (in this case CSE) does or does not
belong to a given set of overplayed causal factor maps. If a casual factor is B, the classes in it are Bi
and supporting CSE evidence is (s), and using the Bayes’ theorem, it is possible to calculate the con-
ditional probability for each class Bi as follows:

P sjBið Þ ¼ P Bijsð Þ � P sð Þf g=P Bið Þ; (1)

Figure 3. CSE sub-dataset and conditioning factor maps used to model CSE susceptibility. Training dataset: 1 (70%), validation
dataset: 2 (30%) (a), Geomorphology (b), Lithology (c), Water table depth (d), Elevation (e), Distance to faults (f). For conditioning
factors, see legend codes in Table 1.
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where P(Bijs) is the conditional probability to have Bi given s, P(s) is the prior probability to find s
within the study area (SA), and PBi is the prior probability to find the class Bi within the study area.

Then, the conditional probability to have s when the class Bi is not present is

P
�
Bi^j s� ¼ P

�
Bi^j s�� P sð Þ� �

=P Bi^ð Þ; (2)

where P(Bi^js) is the conditional probability not to have the class Bi given s, P(s) is the prior proba-
bility to find s within the study area AS, and P(Bi^) is the prior probability not to find the class Bi
within the study area.

In the WofE, the weight of every class of causal factors is calculated by a combination of positive
and negative correlation values defined with Bayes method (W+ and W¡) and by the difference
between them (contrast ‘C’). This method assigns positive and negative weights (Wi+ and Wi¡) to
each pixel of the predisposing factors maps.

Wþ ¼ ln P Bi│s
� �

=P Bið Þ� �
; (3)

W� ¼ ln P Bi│s
� �

=P Bi^ð Þ� �
;

�
(4)

The difference between the two weights is known as the weight contrast C. The magnitude of the
contrast reflects the overall spatial association between the predictable variable and the CSE.

C ¼ Wþ �W�: (5)

A value of contrast equal to zero indicates that the considered class of causal factor is not signifi-
cant for the analysis. A positive (negative) contrast indicates a positive (negative) spatial correlation
between factor class and CSE occurrence.

The susceptibility map is obtained by a linear combination of weights of different factor classes.
Then, the value of posterior probability Pp(s) is given by the following formula:

Pp sð Þ ¼
X

Wi� lnP sð Þ: (6)

The LR is a multivariate statistical method suitable for estimating the probability of a dichotomous
dependent variable, such as the occurrence or absence of the phenomenon, from its relations with
independent variables (Cox 1958; Agterberg et al. 1993). The method considers several physical
parameters (variables) that may affect the probability of an event and yields coefficients for each var-
iable based on sample data. The algorithm of logistic regression applies maximum likelihood estima-
tion after transforming the dependent variable into a logit variable (natural log of the odds of the
variable occurring or not). In this way, LR estimates the probability of a certain event occurring.

The resulting probability values express the degree of CSE susceptibility, and they range between
0 and 1. LR can be applied when the variables show conditional dependence, contrary to the WofE
method. It can also be performed using categorical or continuous variables as well if they are not
normally distributed (Hosmer and Lemeshow 1989). The correlation between the CSE evidences in
a terrain unit area and the casual factors conjunction is expressed by the following equation:

logit Pð Þ ¼ log
ezð Þ

1� Pð Þ
�

¼ z:

�
(7)
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P ¼ ezð Þ
ez þ 1ð Þ

� �
¼ P ¼ 1

1þ e�zð Þ
� �

; (8)

where P is the probability that a unit area falls into CSE or no CSE liquefaction condition. LR fits a
special s-shaped curve by taking a linear regression, that may produce any y-value between ¡1 and
+1, and transforming it with the function that produces a probability (p probability) between 0 (as
y approaches minus infinity) and 1 (as y approaches plus infinity). Z is the linear combination of:

Z ¼ b0þ b1x1 rð Þ þ b2x2 rð Þ þ � � � þ bmXm rð Þ þ e; (9)

where b0, b1, … are the regression parameters; x1(r), x2(r), …, xm(r) are the independent variables
for each cartographic unit; e is the error associated to the curvilinear approximation of the model.

In the logistic function (Equation (9)), the input is z and the output is P. The variable z represents
the exposure to some set of independent variables (xm), whereas P represents the estimated proba-
bility of CSE, given that set of explanatory variables. It must be noted that the LR approach does not
require, or assume, linear dependencies between the dependent term and the variables considered
(independent set of variables representing causal factors). An exponential function is involved. Coef-
ficients b are estimated through the maximum likelihood criterion and correspond to the estimation
of the more likely unknown factors. In LR, the coefficients b express the relative importance of the
classes. A positive b coefficient indicates that the class contributes to susceptibility, whereas a nega-
tive b coefficient class reduces CSE susceptibility. Coefficients b close to zero indicate little relation
between the class and the response variable (e.g. CSE) and coefficients equal to zero indicate the
class is not influencing the susceptibility.

3.5. Models application and validation procedures

The conditional independence existing among predisposing factors is a prerequisite of the WofE and
LR methods to avoid overestimations of the posterior probability (Blahut et al. 2010; Pereira et al.
2012). In this work, we assume that auto-correlation among variables can exist. For that reason, final
results are not considered in probabilistic terms but only to rank susceptibility within the study area.
The susceptibility classes are defined following the same principle.

The predictive capability of the outputs of the WofE and LR models was assessed by using the
PRC and Success Rate Curve (SRC) (Chung and Fabbri 2003; Schmitt 2010) and by computing their
area under the curve (AUC) (Begueria 2006; Zêzere et al. 2007). Another procedure herein used to
estimate the real predictive capability of each class of susceptibility and then for model comparison
was the RofE (Chung and Fabbri 2003) of CSE susceptibility classes. Chung and Fabbri (2003)
pointed out that a RofE equal to 1 indicates a random and unsupportive class prediction. Good class
power predictions correspond to RofE higher than 3 (less than 0.2) for high (low) susceptibility clas-
ses. Hence, the numeric representations can be assumed as quantitative measures of the predictive
power of the class when the probability function is used to assess the susceptibility of future CSE.

In order to compare the CSE susceptibility maps obtained by the two models, the susceptibility
maps have been classified using the same number of classes, defined by ranking results in decreasing
order of susceptibility and by fixing the limits between classes by using the same values, for all mod-
els of cumulated spatial extent. The limited scores obtained for the posterior probability provided by
LR have forced us to subdivide the study area into only four classes, where the first 30% was discrim-
inated in three classes representing each 10% of the total study area. The fourth class occupies the
70% of the target area and corresponds to the low and very low susceptibility.
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The degree of spatial correlation and the relative degree of class dispersion between CSE suscepti-
bility maps obtained with WofE and LR was estimated on the basis of the Cohen’s kappa coefficient
(Cohen 1960; Hoehler 2000).

Finally, to highlight the extent to which CSE susceptibility should be considered more certain, the
output of the two models were merged so to obtain a final synthetic map of the more susceptible
zones that highlights which areas are considered at a high level of susceptibility by one or both
models.

4. Results

4.1. Distribution of CSE with respect to predisposing factors

The distribution of the CSE in the different classes of each predisposing factor is represented in
Table 1. Regarding geomorphological features, it should be highlighted that fluvial landforms cover-
ing 27% of the study area include 60% of all the CSEs (Figure 3(a) and Table 1). As can been seen,
the majority of CSEs were distributed along the main ancient fluvial landforms. This finding is con-
sistent with the fact that levees, crevasse splays or abandoned riverbed or land reclamation areas
generally act as preferential location for the CSE occurrence (Civico et al. 2015).

The sub-surface lithology seems also to play a discriminant role, as almost 60% of CSE are associ-
ated to the medium fine sand of alluvial deposits (1) and 32.7% to the silty clay lithology class (3)
(Figure 3(b) and Table 1). The CSE distribution seams also directly related to groundwater depth. In
the study area, 35% of CSE are associated to groundwater depth of 3.5–4.5 meters and another 53%
of CSE is located in areas with groundwater depth between 5.5 and 7.5 m (Figure 3(c) and Table 1).
This is consistent with the observation of Monaco (2014), which indicates 15 m as the maximum
groundwater depth associated to liquefaction phenomena. Despite the almost flat morphology of
the Po Plain, in order to verify any possible influence of elevation on CSE occurrence, the DEM was
also included in this evaluation. The elevation ranges of 12–15 m a.s.l. has the highest percentage of
CSE (36.8%) (Figure 3(d) and Table 1). This elevation is generally associated to the levee of the
ancient riverbeds and fluvial depositions forms. For what concerns the distance to faults, the 55.5%
of CSE occurs in the class 0–500 m, i.e. very close to tectonic structures. The remaining 44.5% is dis-
tributed in progressively lower percentages as distance to tectonic structures increases (Figure 3(e)
and Table 1).

4.2. CSE susceptibility using WofE and LR models

The application of the WofE method resulted in the positive and negative weights (W+ and W¡)
and, consequently, in the weights contrasts (C) listed in Table 2. Regarding geomorphological fea-
tures, the higher positive values of C are obtained with respect to well- or less well-defined levees
and crevasses splays. Concerning lithology, the higher positive values of C are obtained for medium
fine sand, whereas significant negative C is obtained for sandy silt and the Po riverbed deposits. As
for groundwater depth, the higher positive values of C correspond to the range of depth 6.5–7.5 m
and the maximum negative C to the class 10–13.5 m below the ground. Other classes are poorly
characterized by the contrast. Elevations class from 12 to 15 m shows the higher positive C value.
The distance to faults shows the higher positive C value in the class from 0 to 500 m, and the C
becomes significantly negative for classes representing distances higher than 2 km.

The application of the LR method resulted in the b coefficients summarized in Table 2. Since the
b coefficients indicate the importance of each variable in the post-probability calculation, it can be
stated that the lithology, again, is the most important conditioning factor. In particular, the lithology
class ‘medium fine sand’ shows the highest b coefficient. Positive values are obtained also for other
lithological units: sandy silt, silty clay, medium and coarse sand and Po riverbed deposits. Depth to
groundwater presents positive regression coefficients for all the classes. On the other hand, the
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lowest values of b coefficients are associated to the distance to faults and to the DEM. Nevertheless,
the significant negative values for classes of distances to fault higher than 2 km indicate that these
classes are inversely correlated to the CSE occurrences.

The application of the WofE method to the entire dataset of predisposing factors returned poste-
rior probability values ranging from 0 to 0.507, whereas the application of LR generated posterior
probability values ranging from 0 to a maximum of 0.252.

In order to retrieve classified susceptibility maps, the WofE and LR probability values have been
divided into four classes by ordering probability values in decreasing order. The higher susceptibility
classes (‘very high,’ ‘high’ and ‘moderate’) are defined at fixed 10% intervals of the study area. The
‘low to very low’ class is assigned to the low probability values obtained in the remaining 70% of the

Table 2. Statistical parameters obtained for each predisposing factor for the total of CSE using WofE and LR models. Higher values
of W+ and C for WofE and beta coefficient for LR are highlighted in bold.

Casual factors ID Variables
Area
(km2)

No.
points W+ Contrast LR beta coeff.

Constant
value

Geomorphology ¡29.548
1 Crevasse splay 56.7 168 11.894 12.846 1.557
2 Levee well defined 59.1 144 0.9934 10.666 1.762
3 Levee less defined 158.6 428 1.096 13.687 1.738
4 Abandoned riverbed 47.6 68 0.4586 0.4781 1.178
5 No fluvial landform 1.160 529 ¡0.6822 ¡17.052 0

Lithology
1 Medium fine sand, in beds tens of

cm thick
445.8 817 0.7087 12.952 11.062

2 Sandy silt 156.2 39 ¡12.848 ¡13.666 9.541
3 Silty clay 539.4 433 ¡0.1169 ¡0.1781 10.509
4 Silt and clayey silt 29.3 0 0 0 –
5 Clayey silt and sandy silt 0.0 0 0 0 –
6 Medium to fine sand 146 0 0 0 –
7 Medium fine sand, silt and silty

clay
27.9 0 0 0 –

8 Medium and coarse sand 125.8 47 ¡0.8819 ¡0.9348 10.254
9 Po riverbed 11.4 1 ¡2.333 ¡2.34 0.971

Water table (meters)
1 3.5–4.5 329.9 459 0.4332 0.602 10.551
2 4.5–5.5 460.6 100 ¡14.245 ¡1.719 0.920
3 5.5–6.5 279.3 477 0.6381 0.8705 10.844
4 6.5–7.5 103.1 237 0.9351 10.581 11.209
5 7.5–10.5 174.6 63 ¡0.9167 ¡0.9938 9.219
6 10.5–13.5 87.1 1 ¡43.648 ¡44.247 5.514
7 13.5–16.5 47.2 0 0 0 -

DEM (meters)
1 0–3 61.2 5 ¡24.026 ¡24.411 ¡1.377
2 3–6 196.4 0 0 0 –
3 6–9 343.5 372 0.1824 0.2447 0.436
4 9–12 295.0. 290 0.0854 0.1078 –
5 12–15 194.3 485 10.174 13.274 0.729
6 15–18 128.2 138 0.1761 0.1945 ¡0.055
7 18–21 146.8 27 ¡15.908 ¡16.748 ¡2.082
8 21–26 80.1 20 ¡12.855 ¡13.261 ¡0.676
9 26–32 35.6 0 0 0 -

Distance to faults
(meters)

1 0–500 675.8 764 0.2257 0.4643 0.714
2 500–1000 330.3 310 0.0397 0.0514 –
3 1000–2000 256.0 229 ¡0.0083 ¡0.01 –
4 2000–300 116.3 16 ¡1.881 ¡19.507 ¡1.754
5 3000–4000 41.3 6 ¡18.263 ¡18.501 ¡1.225
6 >4000 62.4 12 ¡15.462 ¡15.803 0.614
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study area. In both the WofE and LR susceptibility maps (see Figure 4), the medium, high and very
high susceptibility zones are concentrated along levees or areas characterized by medium to fine
sand, in the districts of Bondeno to Mirandola and Concordia, as well as San Felice and Sant’Agos-
tino (Figure 4).

4.3. CSE susceptibility models validation and comparison

The two statistical models were validated and compared through the PRC computed using the vali-
dation subset (that includes 569 CSE). Both methods show very similar results, with AUC of the
PRC of 0.83 for WofE and 0.85 for LR, and slightly lower values for the AUC of the SRC of both
methods (Figure 5). According to Guzzetti et al. (2006), when the overall model returns an AUC
greater than 0.8 (i.e. 80%), the model can be considered an acceptable predictor. Looking at the

Figure 4. CSE susceptibility maps produced with WofE (upper map) and the LR method (lower map).
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trend and benchmark values of the PRC and SRC (Figure 5), both models predict about 60% of vali-
dation CSE within 10% of area, 70% of validation CSE in 20% of the study area and 90% of valida-
tion CSE in 50% of the study area. In both models, the values of RofE corresponding to the very
high susceptibility class is higher than 6, thus much higher than for the other susceptibility classes
that, indeed, remain lower than 1 (Table 3). This, also, is an indicator of good quality of the
prediction.

The degree of spatial correspondence between CSE susceptibility maps was assessed using the
Cohen’s kappa coefficient (K) and on the total spatial agreement. Despite the moderate K value (K =
0.68), the total spatial agreement within the study area reaches 85.67% (Table 4). Specifically, the
very-high, high, moderate and low to very low susceptibility classes in the WofE and LR models
returned a spatial agreement in the order of 80%, 53%, 50% and 96%, respectively. This highlights
some differences in the spatial distribution of susceptibility classes between the two models, espe-
cially in the high and moderate classes. Consequently, an attempt has been made to create a synthe-
sis map that shows which areas are classified as being at very high, high and moderate susceptibility
by both models. This resulted in a final map that highlights the zones indicated as susceptible by
both models should be considered more probably affected by future CSE occurrences (Figure 6). In
practice, the area classified from very high to moderate susceptibility by both the models covers
24.6% of the study area and includes 73% of the inventoried CSE of May 2012.

Figure 5. Success rate curve (SRC) and predictive rate curves (PRC) of WofE and LR models, and quantification of the area under
the curve (AUC).

Table 3. Percentage of the study area, percentage of CSE predicted and Ratio of Effectiveness obtained for each CSE susceptibility
model classes.

Model Classes Susceptibility value % of study area % of CSE predicted within the class Ratio of effectiveness

WofE Very high 0.0507–0.0027 10 60 6
High 0.0027–0.011 10 6 0.6
Moderate 0.0011–0.0008 10 9 0.9
Low to very low 0.0008–0.00 70 25 0.4

LR Very high 0.252–0.021 10 63 6.3
High 0.021–0.011 10 7 0.7
Moderate 0.011–0.007 10 7 0.7
Low to very low 0.007–0.00 70 23 0.3
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5. Discussion

The aim of the study was to compare bivariate and multivariate analyses with two different data-
driven methods (WofE and LR) in order to evaluate liquefaction-based CSE susceptibility in the cen-
tral part of the Po Plain. Here, on May 2012, the two main shocks, of a long seismic sequence,
induced widespread CSE near the epicentral area.

The outcomes obtained by the parallel application of WofE and LR data-driven methods raise
some points of discussion. Both methods have provided acceptable results, expressed by PRCs,
obtained using an independent validation dataset, showing an AUC above 80%.

Both models indicated that the spatial distribution of susceptible zones is mostly controlled by
fluvial landforms as crevasse splays, fluvial levees, and ancient riverbeds. This is in agreement with
previous studies that considered the presence of paleo riverbeds, out-of channels fans among the
main controlling factor for the occurrence of CSE during the 2012 seismic sequence (Papathanas-
siou et al. 2015). The medium to fine sandy lithology associated to these facies beside the shallow
water table depth represents the other main casual factors which are outlined in the distribution of
susceptibility areas. The elevation of ground surface provides a positive contribution to susceptibility

Table 4. Spatial agreement and CSE susceptibility class dispersion between models. The grey boxes in diagonal direction show the
spatial degree of overlapping for each class of susceptibility.

Spatial total agreement 85.67%
Kappa 0.68
Map 1 WofE/Map 2 LR Susceptibility classes intervals based

on the equal % subdivision of study
area

Susceptibility classes
Low to very low
(30%–100%)

Moderate
(20%–30%)

High
(10%–20%)

Very high
(0%–10%)

Sum
map 1

Low to very low (30%–100%) 67.59 2.08 1.04 0.00 70.72
Moderate (20%–30%) 2.45 4.97 1.26 0.00 8.68
High (10%–20%) 2.24 1.80 5.30 1.32 10.65
Very high (0%–10%) 0.00 0.24 1.89 7.81 9.94
Sum map 2 72.28 9.09 9.50 9.14 100

Figure 6. Overlapping of very high to moderate liquefaction susceptibility zones classified by WofE and LR CSE susceptibility
models.
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prediction just in one class of elevation that for the southern part of the study area appears associ-
ated mainly to the levees of fluvial geomorphological landforms. As shown in the output maps
(Figure 4), the susceptible zones cover the central part of the study area, displaying two wide extreme
areas (east and west zones) of low and very low susceptibility for all the maps produced. On the
other hand, the central classes of susceptibility seemed to be more spatially scattered, showing also a
higher degree of discrepancy between the models’ classification.

6. Conclusion

The existing body of research and the literature produced after the May 2012 earthquakes focused to
assess the liquefaction potential at municipality level with deterministic methods. CSE-liquefaction
susceptibility assessments evaluated with geostatistical approach remains an open research field
rarely tested.

During the last few decades, both deterministic and probabilistic conceptual understanding and
procedures have remained strictly centred on liquefaction potential evaluations performed in situ.
Starting from site evaluations, the susceptibility assessment over large areas is generally based on
interpolations methods, which contain intrinsic not liquefaction phenomena-related generalization
processes. In this sense, this work demonstrates that CSE susceptibility can be assessed at the
regional scale based on the statistical relationship between CSE evidences and a dataset of terrain
variables assumed as CSE predisposing factors with good accuracy using bivariate and multivariate
geostatistical data-driven methods.

From a methodological perspective, this study has pretended to propose a contribution in the
branch of CSE susceptibility evaluations at regional level. Considering the results obtained and the
quality of the susceptibility maps produced within this study, we conclude that WofE and LR can be
applied as assertive methods for susceptibility evaluations over large areas as the first level of lique-
faction analysis. However, the predictive capacity of CSE susceptibility models is strongly dependent
on the completeness and accuracy of the CSE inventory. Recently, the use of differential synthetic
aperture radar (DInSAR) coherence data has been proved to be effective to map the surface liquefac-
tions effects in Japan (Chini et al. 2013) and in Italy (Chini et al. 2015), which can be used to
improve the susceptibility models in future work. Besides the validated accuracy of the obtained
results, geostatistical data-driven methods demonstrated to be reliable, particularly for their low
operational cost and promptness of procedures. One of the advantages of the CSE susceptibility
maps produced with the statistical approach deals with the capability to assess the susceptibility to
CSE for all the study area, including also those areas that are not taken into consideration by the offi-
cial microzonation cartography (areas outside urbanization planning). In addition, throughout the
susceptibility maps, the applied approach allows to promptly fulfil a synthetically overview of the
phenomena at regional scale. Furthermore, the outputs consent to spatially differentiate the phe-
nomena into different degrees of susceptibility within the municipality boundaries. Considering the
degree maps detail, the susceptibility delineated resulted to be more precise than the first level of
seismic microzonation studies (e.g. PTCP). Although by a conservative point of view these maps
cannot be directly applied to land-use restrictions, they represent a useful cartographic reference
during emergency or in planning long-term risk reduction strategies and should be considered as a
part of the background knowledge documentation within the official seismic risk cartography.

These supporting reasons suggest testing the approach presented in this study in other seismic
areas beyond Emilia, characterized by similar geological and fluvial-dominated environments and
potential liquefaction susceptibility proneness.
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