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ABSTRACT  

In the present work, the interfacial stress arising between thin structures bonded to a 2D 

elastic substrate has been investigated. Chebyshev polynomials have been adopted to 

approximate the shear stress occurring across the contact region. Perfect adhesion has been 

assumed among the coating structures and the underlying substrate, leading to a singular 

integral equation which has been reduced to an algebraic system. Thin bonded structures 

having several geometric configurations under different load conditions have been 

considered. In particular, the stress concentration in the neighbourhood of the coating edges 

and around the points of load application has been evaluated in detail. 
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1. Introduction 

A variety of devices employed in high-tech industries, mainly in microelectronics, 

electrochemistry, semiconductors and optical electronics, involves thin films. Micro-electro-

mechanical systems (MEMS), biomedical components, chemical reactors, integrated circuit, 

solar cells, flat panel displays and protection systems are typically based on thin film coatings 

technology. In particular, flip-chip microprocessor packages, high power tunable microwave 
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devices, disk resonators, bulk ceramics-based phase shifters, coplanar-plate capacitors and 

varactors represent some modern systems involving coatings deposit and thin film layers 

(Gevorgian, 2010).      

In most engineering applications, thin films and coatings have not a primary structural 

function; nonetheless, the most part of thin film-based devices are often subject to high stress 

levels and, in turn, to damaging phenomena like fractures and excessive permanent 

deformations which can compromise the usefulness and functionality of this kind of 

components (e.g. Freund, 2000; Hsueh, 2002). Thus, the design of thin film-substrate systems 

requires the accurate knowledge of the mechanical interaction between the bonded structures 

and the underlying substrate, with particular reference to the interfacial stress arising across 

the contact region (Freund et al., 2003; Shen, 2010). In particular, the proper evaluation of the 

local effects, like stress and strain localizations, becomes essential in order to predict the 

functionality and performances of structures coated by thin films. 

The contact problem of thin elastic structures like ribs, bars and rods welded to an elastic 

substrate was largely investigated by many researchers. In particular, the work of Melan 

(1932) is one of the first studies devoted to evaluate the mechanical stiffener-substrate 

interaction. Melan analyzed the contact problem of an infinite bar loaded by a longitudinal 

force applied at its midpoint and bonded to an infinite or semi-infinite plate. He obtained a 

close form solution for the interfacial shear stress and the axial force acting in the bar, 

founding a singularity of the interfacial stress of logarithmic kind in the neighbouring of the 

point of load application. The problem of an infinite flat sheet axially loaded at the boundary 

and stiffened by a finite cover was considered also by Reissner (1940). Buell (1948) studied a 

semi-infinite stiffener bonded to a semi-infinite plate through a proper series expansion of the 

Airy stress function for the cover. Koiter (1955) solved the problem of the load diffusion in an 

infinite elastic layer stiffened by a semi-infinite sheet axially loaded at one end by using the 

Green function of the infinite or semi-infinite elastic space. He solved the singular integral 
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equation of Prandtl type governing the problem by using Mellin transformation and Laplace 

transforms, founding an interfacial stress characterized by a square-root singularity in the 

neighbourhood of the sheet edge. Brown (1957) studied the same problem considering 

various load conditions by using complex potentials. Rybakov (1977) analyzed the 

frictionless contact problem of an infinite elastic rod periodically riveted in some points to a 

semi-infinite plate by adopting a complex potentials representation for the displacement field 

and the internal forces in the stiffener. In this reference, the forces acting in the rivets are 

determined by solving a system of linear algebraic equations. Later, the same author solved 

the problem by taking into account a fracture occurring in the stiffener (Rybakov, 1982). 

The study of the coating-substrate system was extended to bonded structures of finite 

dimension also. For instance, Benscoter (1949) studied the contact problem of a finite strip 

welded to an infinite shell by using the stress field of an elastic half plane loaded by a 

horizontal force acting at its free surface. He evaluated the magnitude of the axial force in the 

cover by solving numerically a singular integral equation. Arutiunian (1968) solved the 

problem adopting a series representation for the unknown interfacial stress, solving the 

integral equation by means of contour integrals in complex domain. Later, a simpler method 

was proposed by Morar and Popov (1971) and Erdogan and Gupta (1971), who solved the 

problem by using series of Chebyshev polynomials to approximate the interfacial shear stress. 

Successively, various methods have been proposed to evaluate the stress and strain field in 

single or multi-coated systems. For example, Hu (1979) adopted a finite difference technique 

to evaluate the stress transferred to the surface of an elastic half plane by a bonded film. A 

proper refinement of the grid elements was used by the author in order to correctly estimate 

the interfacial stress near the film edge. Conventional Finite Element (FE) programs were 

used by Djabella et al. (1993) to evaluate contact stress in multi-layered systems subject to a 

specified pressure distribution acting on a portion of the boundary. Jain et al. (1995) 

investigated the stress field in an elastic layer induced by a bonded strip-like film via FE 
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models, founding the distribution of the shear and normal stress in the substrate and the axial 

stress in the overlying film. A numerical analysis based on a proper Boundary Element (BE) 

method has been used by Takahashi et al. (1997) to investigate the singular nature of the 

interfacial stress in film-substrate systems subject to thermoelastic strain. The authors 

analyzed the interfacial stress distribution of a coating made of different superconducting 

ceramics bonded to a ceramic or metallic substrate. 

 By means of the elementary theory of bent plates, Zhang et al., (2005) evaluated the stress 

distribution in multilayered systems under thermal strain, comparing the results with the 

numerical solution provided by FE simulations. However, the authors recognized that their 

model can not be used to properly estimate the strength of interfacial stress singularities. 

In the present paper, some analytical models based on the use of orthogonal Chebyshev 

polynomials are proposed to study the contact problem of thin structures bonded to a 2D 

elastic substrate under several loading conditions. Perfect adhesion is supposed between the 

bonded structure and the underlying half plane. This condition leads to a singular integral 

equation which can be reduced to an infinite system of linear algebraic equations. The 

solution of the algebraic system allows the evaluation of the displacement and stress field of 

the system, with particular reference to the strength of stress singularities in the neighbouring 

of the points of load application and at the edges of the coating. The mechanical interaction 

between the bonded structure and the substrate is found governing by a rigidity parameter 

involving the axial stiffness of the cover and the mechanical parameters of the underlying 

substrate.  

       The paper is organized as follows. The problem of a coating bonded to the substrate and 

subject to thermal load or, similarly, two opposite axial forces acting at the coating ends is 

considered in Section 2. The film-substrate interaction is discussed varying the rigidity 

parameter of the system. The comparison with the Koiter solution in terms of strength of 

stress singularity is given also. A coating with variable thickness under thermal load is solved 
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in Section 3. Interfacial stress, axial displacement and axial force in the coating are reported 

for a given geometric configuration. The contact problem of a coating subject to a single axial 

force applied at one edge is solved and discussed in Section 4 for several values of the rigidity 

parameter, founding a large agreement with respect the strength of stress singularities 

predicted by the Koiter solution. Section 5 concerns the study of a film partially detached 

from the underlying half space. For a certain location of the interior detachment, a comparison 

with the results obtained by solving the contact problem of a perfectly bonded film is 

reported. The interfacial stress singularities in the neighbourhood of the ends of the contact 

region have been investigated. Finally, the problem of a coating subject to an interior axial 

force is treated in Section 6. A comparison between the obtained results with the Melan 

solution is given and discussed. 
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2. Film subject to two opposite axial forces or a uniform thermal variation 

The case of an elastic film of total length 2a and thickness δ welded to an elastic half-plane 

and subject to a uniform thermal variation or, similarly, loaded by two opposite axial forces 

applied at its ends, as reported in Fig. 2.1, is considered in the present section. A Cartesian 

coordinate system (O, x, y) placed at the interface between the film and the underlying half 

plane is adopted, with the origin located at the midpoint of the film. Linear elastic and 

isotropic behaviour is assumed for both the half plane and coating. Generalized plane stress or 

plane strain condition can be considered; nonetheless, in the present study, a plane strain 

regime is assumed. In that follows, E0, ν0 and α0 represent the Young modulus, the Poisson 

ratio and the coefficient of thermal expansion of the film, respectively, whereas E and ν are 

the Young modulus and Poisson ratio of the half plane. 

The contact region [−a, a] equals the length of the film. The thickness δ of the coating is 

assumed very thin, making it possible to neglect its flexural stiffness and, in turn, to ignore 

the effects produced by the vertical component of stress. Thus, only interfacial shear stress 

τ(x) arises across the contact region. 

The  strain of the coating u0,x(x) takes the form: 

u0,x
 (x, 0) =  

2
0

0

1 (ξ) dξ
δ

− ν
τ∫

 a

 xE
 − Δε,             for  |x| ≤ a,       (2.1) 

where  Δε = (1 + ν0) α0 ΔT or Δε = −F(1 − ν0
2)/(E0 δ) represents the constant component of 

horizontal strain of the coating due to thermal load or two opposite axial forces, respectively. 

The Green function (Cerruti solution) for a homogeneous half space loaded by a tangential 

force Fx acting on its free surface is known in closed form (Kachanov et al., 2003): 

u(x) = 
22(1 )  lnxF x

E 
− ν

−
π

,     v(x) = (1 )(1 ) sign( )
2xF x

E
− 2ν + ν

− .                       (2.2) 

By using expression (2.2)1, the following expression for the horizontal strain of the half 
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plane u,x(x) is obtained by superposition (Johnson, 1985; Barber, 2002): 

u,x(x) =  
22(1 ) ξ  d

−

− ν τ( )
−  ξ

π ξ −∫
 a

aE x
.                                     (2.3) 

The assumption of perfect adhesion between the coating and the half space leads to the 

following condition: 

u0,x(x) = u,x(x),      for |x| ≤ a,                                                                        (2.4) 

whereas the equilibrium condition of the free surface of the half plain leads to the following 

boundary condition: 

τ(x) = 0,       for  |x| > a.              (2.5) 

The substitution of the expressions (2.1), (2.3) in equation (2.4) yields the following 

singular integral equation with Cauchy kernel for the unknown interfacial shear stress: 

2 2
0

0

1 2(1 )ξ  d  d
δ −

− ν − ν τ(ξ)
τ( ) ξ + ξ = Δε

π ξ −∫ ∫
 a  a

 x aE E x
,       for |x| ≤ a.                          (2.6) 

In Arutiunian (1968), equation (2.6) is solved through a technique based upon contour 

integrals in complex domain, as reported in Muskhelishvili (1952), by assuming the unknown 

function τ(ξ) in power series. 

In the following, a simpler approach is adopted by approximating the contact shear stress 

through series of orthogonal Chebyshev polynomials displaying a square root singularity at 

the film edges. The same procedure was recently proposed by Villaggio (2003) to investigate 

the brittle detachment of a stiffener bonded to an elastic half plane, founding the critical load 

that causes the crack propagation by adopting the Griffith criterion for fracture. 

Thus, the following expression for the interfacial shear stress is adopted: 

τ(x) = 
2

 = 1,3,5

( / )
1 ( / )

∞

−
∑ n n

n

E C  T x a
x a

,      for  |x| ≤ a,                        (2.7) 
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Tn(x/a) being the orthogonal Chebyshev polynomials of first kind of order n. 

Note that equation (2.7) satisfies the equilibrium condition of the film along x axis: 

( ) d
−

τ∫
 a

a
x x  = 0,   (2.8) 

holding the relation (A1) (see Appendix). 

Then, by introducing (2.7) in the equation (2.6), after the replacement t = x/a, one obtains: 

2 2
1

1
2 (1 )  + 1 ( ) Δn n

n
C t U t =

n

∞

−
=

γ⎧ ⎫− ν − ε⎨ ⎬
⎩ ⎭

∑ ,     for  |t| ≤ 1,                                     (2.9) 

where Un(t) indicate the Chebyshev polynomials of second kind, and  γ = 
2
0

0

 (1 )− ν
 δ

a E
E

. The 

dimensionless parameter γ can be interpreted as the stiffness of the coating with respect that 

of the half plane and, as showed in the following, it will govern the mechanical response of 

the film-substrate system.  

In order to obtain equation (2.9), identities (A2)-(A3) reported in Appendix have been used. 

Equation (2.9) can be solved by applying the Bubnov-Galerkin method, which consists to 

integrate the equation in the [−1, 1] domain, after multiplication by Un-1(t) (Grigolyuk and 

Tolkachev, 1987). Then, by using the properties of Chebyshev polynomials, equation (2.9) 

reduces to the following infinite system of algebraic equations for the unknown coefficients 

Cn: 

2

1 3

4 2  (1 )  + 
πn nm nm m

n

C B = A
m

∞

=

γ Δε ⎧ ⎫− ν   δ⎨ ⎬ π⎩ ⎭
∑

, ,

,      m = 1, 3, 5, …, ∞,                          (2.10) 

δnm being the Kronecker delta, and the expressions of coefficients Bnm and Am have been 

reported in Appendix (see equations (A4) and (A5), respectively). 

The series in (2.10) is truncated to N terms, ad the system is solved finding the coefficients 

Cn (n = 1, 3, …, N−1). The surface displacements for the half plane can be evaluated by 

superposition, integrating the Green functions for a distribution of tangential forces: 
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u(t) = 2

=1,3,

2 (1 ) ( )− − ν ∑
N

n
n

n

Ca  T t
n

, (2.11) 

v(t) = 2
1

=1,3,

(1 )(1 ) ( ) 1
N

n
n

n

Ca  U t t
n −− 2ν + ν −∑ ,                                                           (2.12) 

where relation (A6) has been used (see Appendix). 

The longitudinal stress in the coating σ0(x) is obtained by integrating the contact shear stress 

in the region [x, a]. The boundary condition of vanishing tractions at the half plane surface 

along the y direction requires σyy(x, 0) = 0. By using the constitutive relations it follows that 

the horizontal stress on the half plane surface σxx(x, 0) can be expressed as a function of the 

horizontal component of the elastic strain only, namely σxx(x,0) = [E/(1−ν2)] e ( )x0ε . So (|t| ≤ 

1): 

σ0(t) = 2
0 1

1,3

( ) 1
Ν

n
n

n = 

CE  U t t
n − γ −∑ ,        σxx(t, 0) = 1

1,3

2 ( )−− ∑
Ν

n n
n = 

E C  U t .  (2.13) 

As predicted by the equation (2.7), the shear stress exhibits a square root singularity at the 

edges of the film. The singular behaviour of the interfacial stress at the film ends (x = ±a) can 

be properly investigated by means of the shear stress singularity factor KII: 

KII(±a) = 
1,3

lim 2π( )  τ( ) = π  
Ν

nx a n = 
 a x x E a C

→±
± ∑m .  (2.14) 

   

2.1 Results 

In the present section, the mechanical response of a coating-substrate system subject to a 

thermal load –ΔT is discussed. A number of terms equals to 40 has been considered in the 

series expansion, leading to an accurate evaluation of the mechanical response of the system. 

The dimensionless shear stress τ(x)/(E Δε) and axial displacement u(x)/(a Δε) are shown in 
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Fig. 3.2a) and b), respectively, for different values of the parameter γ. 

As γ increases, both interfacial shear stress and horizontal displacement decrease, due to 

the diminishing of the coating stiffness and, in turn, the effects transmitted to the half plane. 

In fact, γ is proportional to the ratio E/E0, and it can be interpreted as a measure of compliance 

of the cover with respect to that of the half space. Moreover, for high values of γ, the effects 

of the coating are significant at the edges of the coating only; conversely, for small values of 

γ, the contact shear stress and the axial displacement become considerable near the middle of 

the cover also. It should be noted that the relative displacement among the edges of the 

coating depends on coefficient C1 only, namely: 

[u(a)−u(−a)]/a = γπC1/2−2Δε.  (2.15) 

Moreover, it is worth noting that in the limiting case of γ → 0 (very stiff cover), the 

horizontal displacement tends to display an almost linear trend, and the coating behaves like a 

truss subjected to thermal load only, since in this case the coating is much stiffer than the 

substrate which has no sensible constraint effects on the coating. This is confirmed by the 

asymptotic value of the unknown coefficients of system (2.10): 

C1 = Δε/2,   and   C3, C5, …, CN  = 0,           for γ → 0. (2.16) 

Thus, from eq. (2.11), the total axial displacement of the coating u(a)−u(−a) turns out to be 

2a(1−ν2)Δε, as expected for a rigid film subject to an axial uniform strain Δε, whereas 

the interfacial shear stress can be approximate as 

τ(x)/(EΔε) = 
2

1
2 1 ( / )x a−

,   for γ → 0.                         (2.17) 

This behaviour is reflected in Figs. 2.3a-b also, where the dimensionless normal stress in the 

coating σ0(t)/(E0Δε) and the half plane surface σxx(t, 0)/(EΔε) is reported. It should be noted 

that, differently to the shear stress, the horizontal component of normal stress σxx(x, 0) takes 

finite values in each point of the contact region. 
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The normalized shear stress singularity factors KII(a)/(E Δε a0.5) are reported in Fig. 2.4a 

varying the parameter γ. As γ increases, the normalized KII factors decrease due to the fact 

that the magnitude of the shear stress decreases, as showed by Fig. 2.2a. Conversely, for stiff 

coatings, the KII factor increases, and for the limiting case of an inextensible film one finds: 

II
ε( ) π  

2
K a = E a Δ

± ± ,           for γ → 0, (2.18) 

or, in dimensionless form, KII(±a)/(E a0.5Δε) = π0.5/2 ≅ 0.886227. 

As reported previously, the loading case of a thermal variation is similar to that of two 

opposite axial forces applied at the ends. This load condition resembles the situation of the 

problem of Koiter, who solved the contact problem of a semi-infinite rod bonded to a semi-

infinite plate and loaded at the edge by an axial force F, founding the following expression for 

the axial stress N(x) in the coating (Grigolyuk and Tolkachev, 1987, p.150): 

( ) ( )( )2 2( ) 2γ1 1 γ 0.25425 0.1061 Log(γ ) γ 0.008627 ...
π

N x x x x x
F

⎡ ⎤
= − − − + −⎢ ⎥

⎣ ⎦
, (2.19) 

where x denotes the longitudinal coordinate of the coating starting form the point of load 

application and the width of the rod-substrate system is taken unitary. By differentiating eq. 

(2.19) with respect x, the expression for the shear stress is obtained, from which, accordingly 

to (2.14), one finds: 

KII*(±a) = E Δε a/ γ /(1 − ν0
2). (2.20) 

The strength of interfacial stress predicted by Koiter, in dimensionless form, i.e. KII*(±a)/(E 

Δε a0.5/(1−ν0
2)), is reported in Fig. 2.4a. As predicted by eq. (2.20), the singularity strength of 

the interfacial stress is monotonic decreasing with γ. As shown, a large agreement between the 

stress singularity factors KII(±a) and KII*(±a) is found, confirming the square root singular 

behaviour of the Koiter solution. Thus, the Koiter solution can be used as a valid 

approximation to assess interfacial stress concentrations in coating-substrate systems provided 
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that, approximately, γ > 10. Moreover, it is worth noting that, differently to the stress field in 

the neighbouring of an interfacial crack tip predicted by linear elastic fracture mechanics, here 

no oscillations of the shear and normal stress are found. 

 

3. Film with variable thickness under thermal load 

A coating of length 2a having variable thickness and bonded to a homogeneous isotropic half 

plane, as reported in Figure 3.1, is considered in the present section. On assumes that a 

uniform thermal variation ΔT acts on the system. The case of other loading conditions, like 

two opposite axial forces applied at the ends of the coating, can easily solved by following the 

same procedure here reported. 

Similarly to a coating with uniform thickness, the total axial strain of the coating u0,x(x) under 

plain strain condition assumes the form: 

u0,x
 (x, 0) =  

2
0

0

1 (ξ) dξ
 δ( )

 a

 xE x
− ν

τ∫  − Δε,             for  |x| ≤ al + ar,       (3.1) 

where δ(x) = δl  for – a ≤ x < al − ar and δ(x) = δr  for al − ar ≤ x ≤ a. 

The horizontal strain for the half plane u,x(x) is given in Eq. (2.3). 

The interfacial shear stress can be expressed as 

τ(x) = 
2

 = 1, 2,

( )
1 )

∞

− (
∑ n n

n

E C  T x/a
x/a

,      for  |x| ≤ a,                        (3.2) 

Note that, differently from eq. (2.7), expression (3.2) contains even terms also, due to the fact 

that symmetry condition with respect the y axis is lost because the variation of coating 

thickness. By following the same procedure reported in the previous section and making use 

of the expression (3.2), the compatibility condition (2.4) across the contact region leads to the 

following equation: 
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2 2
1

=1, 2,

2 (1 )  + 1 ( ) Δn n
n

tC t U t =
n

∞

−

γ( )⎧ ⎫− ν − ε⎨ ⎬
⎩ ⎭

∑ ,     for  |t| ≤ 1,                                     (3.3) 

being t = x/a, and γ(t) = γl = 
2
0

0

(1 )

l

E a 
E δ

− ν   for  – 1 ≤ t < (al − ar)/a, and  γ(t) = γr = 
2
0

0

(1 )

r

E a 
E δ

− ν    

for (al − ar)/a ≤  t ≤ 1. 

By applying the Bubnov-Galerkin method to Eq. (3.3) one finds: 

2

=1, 2,
2 (1 )  + + 

∞ γ γ⎧ ⎫− ν     Δε ⎨ ⎬
⎩ ⎭

∑ l r
n nm l nm r nm m

n

C B D D = A
n n

,      m = 1, 2, 3, …                          (3.4) 

where −
β =

+
l r

l r

a a
a a

 and expressions of Dlnm, Dr mn have been reported in equations (A7) of the 

Appendix. 

The algebraic system (3.4) is solved for the unknown coefficients Cn, leading to the 

evaluation of the interfacial stress and, in turn, the stress and displacement fields of the 

system. 

The horizontal components of stress and displacement of the coating and the half plane 

surface can be evaluated through equations (2.11-2.13), provided that also the even terms are 

included in the series.  

Similarly to expression (2.14), the KII factors are evaluated as follows: 

KII(a) = 
1, 2,

 π  
Ν

n
n = 

E a C∑ ;       KII(−a) = 
1, 2,

 π  ( 1)
Ν

n
n

n = 
E a C−∑ . (3.5) 

It should be noted that, for β = ±1, the solution of the contact problem for a coating of 

uniform thickness with γ = γl or γ = γr, respectively, is exactly retrieved. 

 

3.1 Results 

The results reported in the present section are related to a coating having variable thickness 
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for which β = 0 and γl = 10. The dimensionless shear stress and the axial displacement are 

reported in Figs. 3.2a-b, respectively, for several values of γr. As reported in the figure, the 

shear stress drops in correspondence of thickness variation, except for γr = 10, since that for 

this value of γr a coating with uniform thickness is retrieved. The jump exhibited by the shear 

stress is due to the fact that the horizontal strain and, in turn, the normal stress in the film is 

discontinuous in the point of thickness variation, as showed by Fig. 3.3a. The peak of the 

shear stress assumes finite values, and its magnitude increases (in modulus) increasing the 

thickness variation of the film, as showed by Fig. 3.4. As expected, for large values of γr, the 

axial displacement is nearly linear in the stiffer part of the coating, whereas it assumes a non 

monotonic trend in the left side of the system, as showed in Fig. 3.2b. Note that the point of 

zero displacement moves toward the midpoint of the stiffer part of the film. The KII factors at 

the edges of the film are reported in Fig. 3.3b varying γr. Similarly to the case of a coating of 

uniform thickness, a monotonic decreasing trend of the KII(±a) factors with γr is found. As 

expected, the KII factors calculated at the left edge of the film are not sensibly affected by 

variations of γr; in particular, for γr > 20 an almost constant value of KII(−a) is obtained. Note 

that KII(a) = KII(−a) for γr = 10. 

 

 

4. Film subject to an axial force applied to a film end 

In the present section, the contact problem of  an elastic film bonded to a half-plane and 

loaded by an axial force applied at one edge, as reported in Fig. 4.1, is considered. 

The horizontal component of strain of the coating u0,x(x) and half plane surface are given by 

equations (2.1) and (2.3), respectively, where Δε = 0. 

The interfacial shear stress is represented in the form: 
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τ(x) = 
2

 = 0,1,2,

( / )
1 ( / )

∞

−
∑ n n

n

E C  T x a
x a

,      for  |x| ≤ a.                        (4.1) 

The equilibrium condition of the coating along the axial direction can be written as: 

( ) d
−

τ∫
 a

a
x x  = F,  (4.2) 

leading to the evaluation of coefficient C0: 

0
0γ π δ

F FC
E a π   E

= = . (4.3) 

The compatibility condition u0,x(x) = u,x(x) inside the contact region |x| ≤ a leads to the 

following equation (t = x/a) 

2 2
1 0

=1, 2,
2 (1 )  + 1 ( ) C  arcos( )

∞

−

γ⎧ ⎫− ν − −γ ⎨ ⎬
⎩ ⎭

∑ n n
n

C t U t = t
n

,     for  |t| ≤ 1,                            (4.4) 

which, after some algebraic manipulations, reads 

2 +1

n 1 2

π2 (1 )  + ( 1)
N

m
n nm nmC B =

m m=

γ π ⎧ ⎫− ν   δ − −⎨ ⎬2⎩ ⎭
∑

, ,

,      m = 1, 2, 3, …, N,                          (4.5) 

where the series has been truncated to the Nth term. 

The horizontal and vertical displacements of the half plane surface take the form: 

u(t) = 2
0

=1,2,
2 (1 )  Log (2) + ( )

N
n

n
n

Ca C  T t
n

⎡ ⎤
− − ν ⎢ ⎥

⎣ ⎦
∑ ,       for  |t| ≤ 1, (4.6) 

v(t) = 2
0 1

=1,2,
(1 )(1 )  arcos( ) + ( ) 1−

⎡ ⎤
− 2ν + ν −⎢ ⎥

⎣ ⎦
∑

N
n

n
n

Ca C t  U t t
n

,     for  |t| ≤ 1,            (4.7) 

The horizontal component of stress in the coating is evaluated through the following 

expression (|t| ≤ 1): 

σ0(t) = 2
0 0 1

1,2,
 arcos( ) + ( ) 1−

⎡ ⎤
 γ −⎢ ⎥

⎣ ⎦
∑
Ν

n
n

n = 

CE C t  U t t
n

,      (4.8) 
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whereas the horizontal stress in the half plane surface is given by expression (2.13)2. 

The KII factors are evaluated through expressions (2.14), where the series start from n = 0, 

taking into account the coefficient C0 also. 

For the limiting case of very stiff coatings one finds 

 C1, C2, …, CN, → 0,    for γ → 0. (4.9) 

It follows that 

II 0( ) π  K a = E a C± ± ,       for γ → 0, (4.10) 

or, in dimensionless form, KII(±a)/(F/a0.5) = π−0.5 ≅ 0.564190. 

 

4.1 Results 

Some results related to the contact problem of a coating subject to an axial force applied at its 

left edge are reported in the present section. The interfacial shear stress is showed in Fig. 4.2a 

in dimensionless form, namely τ(x)/(F/a), for different values of γ. For very stiff coatings, the 

shear tractions are reasonably approximated by the symmetric law 

τ(x)/(F/a) = 
2

1
π 1 ( / )x a−

,   for γ → 0.                         (4.11) 

It is worth noting that, in the neighbouring of the point of load application, the shear stress 

increases as γ increases. Conversely, at the opposite edge of the coating, the shear stress 

increases as γ decreases. This behaviour is reflected in Fig. 4.3b, where the KII factors at the 

film edges are reported varying γ. As shown in the figure, the strength of interfacial stress 

singularity at the loaded edge is monotonic increasing with γ, and its trend largely agree with 

that predicted by Koiter also for small values of γ. Note that, in order to plot the KII* factors 

provided by the Koiter solution, a proper normalization of the stress singularity factors has 

bees adopted in Fig. 4.3b (cf. Tullini N., Tralli A., Lanzoni L., Interfacial shear stress analysis 
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of bar and thin film bonded to 2D elastic substrate using a coupled FE-BIE method. 

Submitted for publication): 

KII*(−a)/(F/ a ) = γ . (4.12) 

As shown, the free edge of the film is characterized by KII factors monotonic decreasing 

with γ. The axial displacements in dimensionless form, i.e. u(x)/(aF/(E0δ)), are reported in 

Fig. 4.2b and are quite similar to those of a coating subject to thermal load (see Section 2.1). 

The axial displacement between the edges of the coating can be evaluated as: 

[u(a)−u(−a)] = a γ π(C0 − 0.5C1).  (4.13) 

Thus, it follows that [u(a)−u(−a)]/a tends to unity for γ → 0, as found for a bar axially loaded 

by and end force of magnitude F and subject to an uniform distribution of tractions along its 

length equilibrating the force F.  

The dimensionless normal stress in the coating σ0(x)/(F/δ) is reported in Figure 4.3a. As 

expected, an almost linear trend is found for a rigid film. Conversely, as γ increases, the stress 

tends to localize near the point of load application, and it rapidly diminishes going toward the 

free edge of the film. 

 

 

5. Detached film under thermal load 

An elastic thin film having total length 2a and constant thickness δ, subject to a uniform 

thermal variation –ΔT (or, similarly, two opposite axial forces, see Section 2) and partially 

detached from the underlying half plane, is studied in the present section (see Fig. 5.1).  

The system can be analyzed by considering two separate coatings, named “l” and “r” in Fig. 

5.2, having length 2al and 2ar, respectively, and subjected to thermal load and an unknown 

axial force F acting at its ends, transmitted by the detached portion of the coating (cf. Wang et 
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al., 2000). Two unknown distributions of interfacial shear stress, τl(ξ) and τr(ξ) occur across 

the contact region. The y axis of the reference system is placed at the midpoint of the internal 

debonding whose length equals 2ad. 

The condition of perfect adhesion between the coatings and the half plane, together with the 

compatibility condition of the longitudinal displacement of the coating and the half plane in 

the detached region leads to the following equations: 

u,x(x) = u0l,x(x),  for  – 2al − ad ≤ x ≤ − ad ;  (5.1a) 

u,x(x) = u0r,x(x),  for  ad ≤ x < ad + 2ar ; (5.1b) 

u(ad) − u(−ad) = u0r(ad) − u0l(−ad);  (5.1c) 

where u,x(x) denotes the axial strain of the half plain, u0l,x(x) and u0r,x(x) represent the axial 

strain of the coatings “l” and “r”, u0r(ad) and u0l(−ad) are the horizontal displacements at the 

right and left end of the coatings and u(ad)−u(−ad) is the relative displacement of the 

corresponding points of the half plane. 

As usual, the interfacial stresses are assumed as  

τl(x) = 
2

 = 0,1,2,

1

∞ ⎛ ⎞
⎜ ⎟
⎝ ⎠⎛ ⎞

− ⎜ ⎟
⎝ ⎠

∑ l d
ln n

n l
l d

l

x+a +aE C  T
ax+a +a

a

,      for  – 2al − ad ≤ x ≤ −ad, (5.2a) 

τr(x) = 
2

 = 0,1,2,

1

∞ ⎛ ⎞− −
⎜ ⎟
⎝ ⎠⎛ ⎞− −

− ⎜ ⎟
⎝ ⎠

∑ d r
r n n

n r
d r

r

x a aE C  T
ax a a

a

,      for  ad ≤ x < ad + 2ar. (5.2b) 

The equilibrium condition of the two bonded portion of the coating along the x axis leads the 

determination of the coefficients Cl0 and Cr0: 

0 0;    .= =l r
l r

F FC C
E a  π E a  π

   (5.3) 

By introducing expressions (5.2) in Eqs. (5.1a)-(5.1c), the following equations are found: 
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( )

( )

2

2 2 2
1 2

=1, 2, = 0,1,

0

1
2 (1 )  + 1 ( ) +2 (1 )

1

 arcos( ) Δ for  | | 1;π

∞ ∞

−

+ −⎧ ⎫γ
− ν − − ν⎨ ⎬

−⎩ ⎭

γ − − ε,   ≤

∑ ∑
j

r r
l

lj l j l rj
j j r

l l l l

t t
C t U t C =

j t

= C t t

  (5.4a) 

( )2

2 2 2
1 2

=1, 2, = 0,1,

0

1
2 (1 )  1 ( ) 2 (1 )

1
  arcos( ) Δ for  | | 1;

∞ ∞

−

− −⎧ ⎫γ
− − ν + − − − ν⎨ ⎬

−⎩ ⎭

γ − ε,   ≤

∑ ∑
j

l l
r

rj r j r lj
j j l

r r r r

t t
C t U t C =

j t
= C t t

 (5.4b)  

2
0 0 0 0

=1, 2, =1, 2,

2
0 0

2 (1 )

2  (1 )  /( δ) 2  Δ for  | | 1;

l l lj lj r r rj rj
j j

d d l

C A C A C A C A =

= a F E a t

∞ ∞⎛ ⎞
− ν + − −⎜ ⎟

⎝ ⎠
− ν − ε,   ≤

∑ ∑  (5.4c) 

where the result (A3) has been used, and tl = l d

l

x+a +a
a

,  tr =
− −d r

r

x a a
a

, γl = 
2
0

0

(1 ν )
δ
−lE a  

E
,  

γr = 
2
0

0

(1 ν )
δ
−rE a  

E
. The coefficients Al0, Alj, Ar0 and Arj are reported in expressions (A8). 

If the series expansions are truncated to the Nth term and Eqs. (5.4a)-(5.4b) are imposed in 

N collocation points inside the regions – 2al − ad ≤ x ≤ − ad and ad ≤ x < ad + 2ar, respectively, 

an algebraic system of 2N+1 equations is obtained, which can be solved for the unknowns 

coefficients Clj, Crj (j = 1, 2,…, N) and the force F acting at the ends of the detached portion 

of the coating. As known, the optimal collocation points tlk, trk are the roots of the Chebyshev 

polynomial of first kind of order N, namely: 

tlk, trk  = (2 1)cos π
2 
k

N 
−⎡ ⎤

⎢ ⎥⎣ ⎦
,        for  k = 1, 2, …, N.  (5.5) 

 

5.1 Results 

Figs. 5.3a-b show the dimensionless interfacial stress τ(x)/(EΔε) and the axial displacement 

u(x) /(a Δε) of a coating having γ = 20, detached between 0.3a and 0.4a, i.e. for al = 1.6 a and 
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ar = ad = 0.2 a. The interfacial stress is similar to that of a perfectly bonded film, except in the 

neighbourhood of the detached zone, where it is unbounded. This similarity occurs also for 

the axial displacement, as showed in Fig. 5.3b. It should be noted that a small difference with 

respect the case of a perfectly bonded film occurs in correspondence of the detached region, 

where the axial displacement of the detached coating exhibits a linear trend. The axial 

displacement in the coating has a continuous slope, since the axial force and the axial strain 

are continuous even though the presence of a detached zone. The dimensionless axial stress 

σ0(x)/(E0 Δε) is almost coincident with that of the bonded film in correspondence of the 

bonded region, as reported in Fig. 5.4a, whereas it equals the constant value F/δ in the 

detached portion of the coating. The dimensionless stress singularity factors ΚΙΙ /(E√a Δε) at 

the edges of the film and at the ends of the detached region are reported in Fig. 5.4b varying γ. 

Similarly to the case of a perfectly bonded film loaded by thermal variation, the KII factors at 

the film edges are monotonic decreasing with γ, and are well approximated by the Koiter 

solution. The KII factors in the neighbourhood of the film ends, namely x = −2al − ad and x = 

ad+2ar are almost coincident. At the ends of the internal debonding the dimensionless KII 

factors assume lower values, and for x = ad the strength of interfacial stress singularity is 

greater than that evaluated at x = −ad. This is due to the fact that the portion of the coating at 

the right side of the detached region is stiffer than the other portion, thus exhibiting larger 

values of KII, accordingly to the trend of the KII factors showed in Fig. 2.4 for a perfectly 

bonded film.  

 

6. Film subject to an interior axial force 

In the present section, a coating subject to an interior axial force is considered, as reported in 

Fig. 6.1.  

Similarly to the procedure utilized to study a partially detached film, the coating can be 
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divided in two portions having length 2al and 2ar, respectively, subjected to the axial forces 

F1 and F−F1 applied at its ends, as shown in Fig. 6.2. 

Instead of condition (5.1c), here the adjunctive compatibility condition consists to impose the 

same relative displacements at the limits of the contact region between the half plane and the 

film, namely: 

u(2ar) −u(−2al) = u0l(0) − u0l(−2al) + u0r(2ar) − u0r(0);  (6.1) 

with obvious significance of symbols u(x), u0l(x), u0r(x). 

The procedure is analogous to that reported in the previous section to solve the contact 

problem of a partially detached film, thus it has been omitted in the present section.   

In the neighbourhood of the point of load application the obtained results have been 

compared with the Melan solution, here reported for unitary width of the film-substrate 

system (Grigolyuk and Tolkachev 1987, p.142): 

( ) 1 γ γ γ γsi cos ci sin
2 2 2 2

N x x x x x
F π

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
, (6.2) 

( ) γ γ γ γ γci cos si sin
2 2 2 2 2

x x x x x
F

τ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
,    (6.3) 

where N(x) and τ(x) denote the axial force in the film and the interfacial shear stress, and ci(x) 

and si(x) are the sine and cosine integral function, respectively.  

 

6.1 Results 

The results reported in the present section refer to a coating axially loaded at the midpoint, 

i.e. for al = ar = 0.5 a. The interfacial shear traction τ(x)/(F/a) and the axial displacement u(x) 

/(aF/(E0 δ)) of the film are reported in dimensionless form in Figs. 6.3a-6.3b for γ = 1, 10, 

100. As expected, for low values of γ, the Melan solution agrees with the obtained results in 
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the region close to the point of load application, whereas for γ ≥ 100 the Melan solution 

practically holds for all points of the coating. 

As depicted in Fig. 6.4a, as γ increases, the shear stress tends to concentrate in the 

neighbouring of the point of load application, whereas it tends to diminish at the edges of the 

film, similarly to the case of a coating subject to an axial force acting at one end (see Fig. 

4.2a). Moreover, for a very rigid film, an almost bilinear trend is assumed by the axial 

displacement, which decreases increasing γ. The dimensionless axial stress in the film σ0(x) 

/(F/δ) is reported in Fig. 6.5a and, similarly to Fig. 4.3a, it rapidly vanishes going toward the 

film edges. The KII factors in the neighbourhood of the film edge (x = a) are reported in Fig. 

6.5b varying γ for two load conditions: the solid line refers to an axial force applied at the 

midpoint (x = 0), whereas the dashed curve is related to an axial force acting at the free edge 

(x = −a). Accordingly to eq. (5.10), both curves start from 0.564190. As expected, the dashed 

curve stays below the solid one. This confirms that an axial force acting at the midpoint of the 

film produces larger effects at the film edge than the same force applied to the opposite edge 

of the coating. As expected, this difference diminishes increasing γ, as showed by Fig. 7.5b, 

and for large values of γ, almost the same KII(a) factors are expected for these two loading 

conditions. 

 

7. Conclusions 

The contact problem of thin coating structures bonded to a homogeneous elastic half plane 

has been considered in the present paper. The singular interfacial stress arising across the 

contact region has been approximated via series expansion of orthogonal Chebyshev 

polynomials. This allows to reduce the compatibility condition of strains among the coating 

structure and the underlying substrate to a linear algebraic system. The rigidity parameter γ 

involving the geometric dimension of the coating and mechanical parameters of the half plane 
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and the bonded structure is found governing the film-substrate mechanical interaction. The 

contact problem of thin structures having several geometric configurations under different 

loading conditions has been examined. A coating subject to a uniform thermal variation has 

been studied first, founding analogies with the load case of two opposite axial forces acting at 

the film ends. Moreover, a coating having non uniform thickness subject to thermal load has 

been examined. The load case of a horizontal force applied at one edge of the film has been 

studied also. The obtained results in terms of stress singularity factors have been compared 

with those predicted by the Koiter solution, founding a large agreement between them. In 

particular, the Koiter solution appears adequate to predict stress concentrations in the 

neighbourhood of the film edges approximately for γ >10. A coating partially detached from 

the half plane under thermal load has been considered, founding at the coating edges almost 

the same values of stress singularities of a bonded coating. Conversely, in the neighbourhood 

of the limits of the detached region, lower values of the stress intensity factors have been 

found. The contact problem of a coating loaded by an internal axial force has been solved 

also, and the results have been compared with those predicted by the Melan solution. In 

particular, for this load condition, the Melan solution is retrieved for almost the point of the 

coating provided that the parameter γ is large enough to resemble an infinite strip, namely for 

γ ≥ 100. Actually, the analytical results agree well with respect the Melan solution also for 

lower values of γ in the neighbouring of the point of load application.  
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Appendix 

Some formulas and results used in the main text are reported in the following. 

The equilibrium condition (2.8) is satisfied by the shear stress (2.7) since that: 

 1

1 2

if   = 0,( )  d
0,   if  0.1

n  nT t t =
nt−

π,   ⎧
⎨ ≠− ⎩

∫  (A1) 

Eq. (2.9) has bee obtained by using the following identities: 

 1

22
1

arccos( ) for  = 0,
( )  d 1 ( ) 1 ,   for 0,1

n
 t

n

t  n
T =

  U t t n
n −

,   ⎧ξ ⎪ξ ⎨
− ≠− ξ ⎪⎩

∫       (A2) 

( ) ( )
 1

11 2

2 2

0,    for  = 0, 1
( )  d ( ),    for 0, 1

( ) 1
sign( ) 1 sign( ) 1 ,   for 0, 1.

n
n

n

n | x |< ,
T t t = U x n | x |< ,

t x t
x x x x x n | x |>

−
−−

⎧
⎪
⎪π  ≠⎨

− ⎪
⎪−π − − − ≥
⎩

∫    (A3) 

The coefficients Bnm and Am in eq. (2.10) assume the form: 

[ ]min{ , }1 cos ( )
+2 1

n m

nm mn
k 

n m
B B

n m k= 1,2,

+ − π
= =

− −∑ ,      for  m = 1, 3, 5, …, ∞, (A4) 

1 cos( )
m

mA
m

− π
= ,       for m = 1, 3, 5, …, ∞. (A5) 

The expression (2.11) for the axial displacement has been obtained by using the result: 

 1

1 2

ln(2),      for  = 0,
( ) ln  d

( ),   for > 0.1
n

n

n
T t x t t =

T t nt n
−

−π  ⎧
⎪− ⎨ π

−   − ⎪⎩
∫  (A6) 

The expression of the coefficients Dl nm, Dr nm used in eqs. (3.4) are: 

1
sin( ) sin( ) d ;

β

−
= = ϑ ϑ ϑ∫l nm l mnD D n m           

if    ,
π ,   if  .
2

l mn

r mn
l mn

D  n m
D =

D n m

− ,  ≠  ⎧
⎪
⎨

− =⎪⎩

 . (A7) 

The coefficients Al0, Alj, Ar0 and Arj used in eq. (5.4c) are: 
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Figure Captions 

Figure 2.1. Film bonded to a half plane and subject to a) uniform thermal load or b) two 

opposite axial forces. 

 

Figure 2.2. Film subject to thermal variation −ΔT: dimensionless a) interfacial shear stress and 

(b) axial displacement of the coating for different values of γ. Symmetry holds for negative x 

coordinate. 

 

Figure 2.3. Film subject to  thermal variation −ΔT: dimensionless normal stress a) in the 

coating and b) at the half plane surface for different values of γ. Symmetry holds for negative 

x coordinate. 

 

Figure 2.4. Film subject to a thermal variation −ΔT: normalized shear stress singularity factors 

KII in the neighbourhoods of the film ends varying γ and comparison with KII* factors 

provided by the Koiter solution. 

 

Figure 3.1. Coating having variable thickness under thermal load. 

 

Figure 3.2. Coating having variable thickness subject to thermal load –ΔT: dimensionless a) 

interfacial shear stress and b) axial displacement of the coating for β = 0, γl = 10 and different 

values of γr. 

 

Figure 3.3. Coating having variable thickness subject to thermal load –ΔT: dimensionless a) 

normal stress in the coating for some values of γr and (b) KII factors at the film edges for β = 

0, γl = 10 and different values of γr. 
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Figure 3.4. Dimensionless shear stress in the coating across the thickness variation (x = 0) for 

β = 0 and γl = 10 varying γr. 

 

Figure 4.1. Film bonded to a half plane and subject to an axial force at one end. 

 

Figure 4.2. Dimensionless a) interfacial shear stress and (b) axial displacement of the coating 

for different values of γ. 

 

Figure 4.3: Dimensionless a) normal stress in the coating for different values of γ and (b) KII 

factors at the film edges varying γ. 

 

Figure 5.1. Film partially detached from the underlying half plane and subject to thermal load 

−ΔT. 

Figure 5.2. Sketch for studying the contact problem of a partially detached coating under 

thermal load −ΔΤ. 

 

Figure 5.3. Detached film subject to thermal load −ΔT: dimensionless a) interfacial shear 

stress and b) axial displacement of the coating for γ = 20. 

 

Figure 5.4. Detached film loaded subject to thermal load −ΔT: dimensionless a) normal stress 

in the coating for γ = 20 and (b) KII factors at the film edges and at the ends of the detached 

region varying γ. 

 

Figure 6.1. Film bonded to a half plane and subject to an internal axial force. 
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Figure 6.2. Sketch for studying the contact problem of a film bonded to a half plane and 

subject to an interior axial force. 

 

Figure 6.3. Film subject to an internal axial force at the midpoint: dimensionless a) interfacial 

shear stress and comparison with Melan solution, b) axial displacement of the coating for 

some values of γ. Symmetry holds for negative x coordinate. 

 

Figure 6.4. Film subject to an internal axial force at the midpoint: dimensionless a) axial force 

in the film and comparison with Melan solution for some values of γ (symmetry holds for 

negative x coordinate), b) KII factors at x = a loaded by an axial force acting at x = 0 and x = 

−a varying γ. 

 

 

 

 


