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Introduction
In this short communication, we summarise our recent find-
ings on the use of the Relevance Index (RI) to identify crit-
ical states in complex systems.1 The RI had been origi-
nally introduced to identify key features of the organization
of complex dynamical systems, and it has proven able to
provide useful results in various kinds of models, including
e.g. those of gene regulatory networks and protein-protein
interactions (Villani et al., 2015; Filisetti et al., 2015). The
method can be applied directly to data and does not need
to resort to models, possibly helping to uncover some non-
trivial features of the underlying dynamical organization. In
a nutshell, the RI is based upon Shannon entropies and can
be used to identify groups of variables that change in a co-
ordinated fashion, while they are less integrated with the
rest of the system. The RI of a set of variables S is de-
fined as r(S) = I(S)

M(S;U\S) , where I(S) is the integration
of S and M(·) is the mutual information between S and the
rest of the system. These groups of integrated variables may
form the basis for an aggregate description of the system,
at levels higher than that of the single variables and it can
be applied also to networks, that are widespread in complex
biological and social systems. We have found that the RI
can also be used to identify critical states. In addition, it
can also be used to detect situations that approach critical-
ity, thus providing early warning signals that can be useful
for controlling the behaviour of a system. Studying criti-
cality through information-theoretical measures has already
been documented in previous works, such as (Prokopenko
et al., 2011; Wang et al., 2011), in which Fisher informa-
tion (FI) is used to identify the critical state in both the Ising
model and Boolean networks. Informally, FI measures the
amount of knowledge an observation carries about an un-
known parameter. FI is expected to be maximal where con-
trol parameters assume the critical value, because at phase
transition systems are most sensitive to control parameters.
Here, our use of information theory is considerably differ-
ent: the RI measures the extent to which groups of variables

1These results have been published in (Roli et al., 2017).

are dynamically related; we experimentally observed that,
even for small groups, this measure reaches its maximum
at criticality. The reasons why it is able to capture critical
states is subject of ongoing work. We also remark that the
aim of this contribution is only to show that the RI can be
effectively used to detect critical states and a comparison of
different measures of criticality and the RI is planned for fu-
ture work. In general, criticality refers to the existence of
two qualitatively different behaviours that the same system
can show, depending upon the values of some parameters.
Criticality is then associated to parameter values that sepa-
rate the qualitatively different behaviours. However, slightly
different meanings of the word can be found in the liter-
ature, two major cases being (a) the one related to phase
transitions and (b) dynamical criticality, sometimes called
the “edge of chaos”. In the former case, the different be-
haviours refer to equilibrium states that can be observed by
varying the value of a macroscopic external parameter. In
the latter case, the different behaviours are characterized by
their dynamical properties: the attractors that describe the
asymptotic behaviour of the system can be ordered states,
like fixed points or limit cycles, or chaotic states. These two
meanings are related but not identical.2

Results
In our experiments we considered two different kinds of sys-
tems, in which the term “criticality” takes different mean-
ings: the Ising model for phase transitions, and the Random
Boolean Network model for dynamical criticality. The two
cases above do not differ only for the different kinds of crit-
icality they show, but also for other important physical and
mathematical properties: the Ising model is an ergodic sys-
tem close to equilibrium, while the RBNs are dissipative,
non ergodic systems. Moreover, the Ising model is inher-
ently stochastic, while the RBN model is deterministic. For
both the models, we computed the RI of randomly sampled
groups of variables of varying size. Our main finding is that
the RI is able to satisfactorily locate the critical points in
both cases, notwithstanding their differences and evidenc-

2See (Roli et al., 2015) for a more detailed discussion).
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Figure 1: Plot of RI for 10 × 10 Ising lattice. The median
of the average RI values for groups of size 2 to 10 is plotted
against T . The curves shift up with group size. The peaks
of RI correspond to the susceptibility peak (see Figure 2),
which in turn corresponds to the critical value of the control
parameter.

Figure 2: Plot of median susceptibility values for 10 × 10
Ising lattice. The peak of susceptibility empirically identi-
fies the critical T value.

ing that in these systems criticality involves groups of dif-
ferent size. An excerpt of the results is shown in Figures 1,2
and 3. Results show also that the RI behaves robustly against
sampling effort and system size. Moreover, a detailed anal-
ysis shows that, while still detecting critical states, the RI
varies across RBN critical ensembles, supporting the obser-
vation that critical RBNs exhibit a spectrum of different be-
haviours. Our analysis also supports the statement that the
information provided by the dynamics of a RBN along its
transients might differ from that of its attractors, providing
a richer picture of system’s dynamical behaviour. Detailed
results can be found in (Roli et al., 2017).
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