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Statistical Assessment of Performance of Algorithms
for Detrending RR Series

Antonio Fasano1 and Valeria Villani2

Abstract— Detrending RR series is a common processing
step prior to HRV analysis. Customarily, RR series, which are
inherently unevenly sampled, are interpolated and uniformly
resampled, thus introducing errors in subsequent HRV analysis.
We have recently proposed a novel approach to detrending un-
evenly sampled series, which is based on the notion of weighted
quadratic variation reduction. In this paper, we extensively assess
its performance on RR series through a statistical analysis.
Numerical results confirm the effectiveness of the approach,
which outperforms state-of-the-art methods. Furthermore, it
is statistically uniformly better than competing algorithms. A
sensitivity analysis shows that it is robust to variations of its
controlling parameter. The algorithm is simple and favorable
in terms of computational complexity, thus being suitable for
long-term HRV analysis. To the best of the authors’ knowledge,
it is the fastest algorithm for detrending RR series.

I. INTRODUCTION

Heart rate variability (HRV), that is the variation over
time of the period between consecutive heartbeats, is a
noninvasive quantitative marker of autonomic activity. It is
used to investigate the balance between the sympathetic
and parasympathetic branches of the autonomic nervous
system [1]. HRV is assessed from RR interval time series, or
tachograms, by computing some time or frequency-domain
metrics [1]–[3]. HRV analysis is usually preceded by a
detrending step of the RR series. This is mainly due to the
fact that most frequency-domain metrics require estimation
of the power spectral density and slowly-varying trends
introduce nonstationarity, which adversely affects subsequent
analysis [1]. Further, the analysis of slow trends in short-term
HRV is considered a dubious measure [1].

Classical approaches to RR series detrending consist of
subtracting the trend estimated using first or higher order
polynomials [4], [5]. More recently, a technique based on
smoothness priors was proposed in [6]. The major limitation
of these approaches lies in the fact that they apply to
uniformly sampled series, despite RR series are inherently
unevenly sampled. Thus, linear or cubic spline interpolation
and resampling are required prior to detrending [2], [5].
However, it has been shown that the interpolation-resampling
process introduces significant errors in the spectral analysis
of HRV [7], [8]. In particular, it overestimates the total power
in the LF and HF bands, and the LF/HF ratio, the most used
frequency-domain measures of HRV [2], [7]. Recently, an
algorithm, called smoothing by Gaussian process priors, for
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detrending RR unevenly sampled series has been proposed
in [9].

In our recent paper [10] we have proposed a novel
approach to detrend unevenly sampled series, which is based
on the notion of weighted quadratic variation reduction
(WQVR). It does not rely on the interpolation-resampling
process. Hence, detrending by WQVR can be followed by
spectral analysis using the Lomb-Scargle periodogram [2],
which is tailored to unevenly sampled data. Moreover, the
algorithm is simple and remarkably fast, thus lending itself
to the detrending of 24-hour RR series for long-term HRV
analysis [1].

In this paper, we carry out a comparative analysis with
state-of-the-art algorithms and provide a complete statistical
assessment of detrending performance of our and competing
approaches. Numerical results highlight the superiority of
detrending by WQVR, which outperforms state-of-the-art
algorithms. Further, we introduce the concept of statistically
uniformly better algorithm, which characterizes the algo-
rithms that have uniformly better performance over the full
range of reconstruction errors, and show that our approach
is statistically uniformly better than competing algorithms.
Finally, a sensitivity analysis shows that it is robust to
variations of its controlling parameter.

II. MATERIALS AND METHODS

A. RR series

For a quantitative assessment of the performance of our de-
trending algorithm and competing approaches, we considered
synthetic RR series (trend-free) affected by simulated trends.
The synthetic RR series, denoted by R(0), was generated
according to the model described in [11], with LF/HF ratio
equal to 0.5, heart rate with mean 60 bpm and standard
deviation 5 bpm, and duration 4.5 minutes. Then, R(0) was
corrupted by synthetic trends ξi rendered as white Gaussian
noise (µ = 0, σ2 = 1) low-pass filtered with bandwidth
0.05Hz, unevenly sampled at the time of the series R(0).
The resulting series is denoted by R̃i = R(0) + ξi. We
generated 300 independent realizations of synthetic trends
ξi.

B. Detrending RR series by WQVR

We shortly recall the rationale behind the approach based
on WQVR, further details are given in [10]. Trends are low1

“variability” components of RR series. Thus, provided that
we introduce a suitable measure of “variability”, a trend

1Low with respect to RR series “variability”.



can be estimated searching for the low-variability component
closest, in some sense, to the RR series. The estimated trend
is then subtracted from the RR series.

We quantify the variability of a generic vector introducing
the weighted quadratic variation (WQV) [10]. Given a vector
x = [x1 · · ·xn]T ∈ Rn, with n ≥ 2, and the set W =
{w1, . . . , wn−1}, with wk > 0, the weighted quadratic
variation of x, denoted by [x]W , is defined as

[x]W
.
=

n−1∑
k=1

w2
k (xk − xk+1)

2
= ‖DWx‖2 , (1)

where ‖·‖ is the Euclidean norm and DW is the (n−1)×n
matrix with entries

[DW ]ij = wi (δi,j − δi+1,j) (2)

where δi,j is the Kronecker delta. It is possible to prove that
the definition (1) is well posed and the WQV is a consistent
measure of variability.

The WQV is well suited for measuring the variability of
unevenly sampled series. Indeed, by suitably choosing the
set of weights W it is possible to introduce into the WQV
information about the – possibly uneven – sampling grid.
Indeed, let x = [x1, . . . , xn]

T be a vector collecting samples
of a series taken at (non-uniform) times t1, . . . , tn, with ti <
ti+1. By setting weights to

wk =
1

tk+1 − tk
, k = 1, . . . , n− 1 (3)

[x]W becomes a measure of variability that takes into ac-
count both values and sampling times.

Now, let us apply these results to RR series

RRk = Rk+1 −Rk, k = 1, . . . , n (4)

where Rk is the time lag of the kth R-peak. The correspond-
ing time instants are

tk =

k−1∑
i=1

RRi, k = 1, . . . , n (5)

with t1 = 0. Thus, taking into account both (3) and (5), the
weights for RR series become

wk = RR−1k , k = 1, . . . , n− 1. (6)

In the following, we denote by R̃ the vector collecting
n samples of an RR series, which is affected by a slowly
varying trend, by x the vector of estimated trend, and
by R the corresponding RR series detrended. We propose
to estimate the trend x by solving the following convex
optimization problem minimize

x∈Rn

∥∥∥x− R̃
∥∥∥2

subject to [x]W ≤ ρ
(7)

where weights are set according to (6) and ρ is a nonnegative
constant that controls the WQV of the estimated trend. It is
possible to prove [10] that the solution to (7) is given by

x =
(
I + λDT

WDW

)−1
R̃ (8)

where I denotes the n×n identity matrix, and λ = λ(ρ) is a
nonnegative parameter that controls the degree of variability
of the estimated baseline. It is in one-to-one correspondence
with ρ. Once estimated, the trend can be removed from the
RR series by subtraction

R = R̃− x =
[
I −

(
I + λDTD

)−1] R̃. (9)

It is possible to prove that trend estimation using (8) is
very fast [10], as its complexity is O(n), i.e., linear in the
size of the RR series to detrend.

C. Competing algorithms

We compared our algorithm with: i) the smoothness priors
(SP) approach [6], which is one of the most used, if not
the most used, techniques for RR series detrending; ii)
the smoothing by Gaussian process priors (SGP) method
[9], which can handle unevenly sampled series. SP was
implemented using the code provided in [6]. It can handle
only uniformly sampled data. As a consequence, the corre-
sponding detrended series R(SP)

i was unevenly resampled at
the same time of R(0), to allow a meaningful comparison of
performance. For SGP we used the MATLAB script made
available by the authors on the website reported in [9].

D. Performance metrics

The quality of detrending was assessed through the fol-
lowing errors

εi(algk) =
∥∥∥R(algk)

i −R(0)
∥∥∥2 , i = 1, . . . , 300 (10)

where R(algk)
i is the series detrended using algorithm algk ∈

{WQVR,SP,SGP}. Performance of different algorithms is
measured in terms of the empirical distribution function of
the corresponding errors (10), namely

F̂algk(ε) =
1

N

N∑
i=1

χ(−∞,ε] [εi(algk)] (11)

where χE [·] denotes the indicator function of the set E, and
N is the number of generated trend realizations. Note that
the empirical distribution function (11) provides a complete
statistical description of the performance of each algorithm,
as opposed to the mean, the variance, or the median, which
give only partial information: different algorithms may ex-
hibit errors with the same mean, median, and variance, even
though the corresponding empirical distribution functions are
completely different.

The use of the empirical distribution function as a per-
formance metric is motivated by the following reasons.
Firstly, the Glivenko-Cantelli Theorem [12] guarantees that
almost surely as N → ∞, the function in (11) converges
uniformly to the true cumulative distribution function, since
the maximum gap between the two of them goes to zero.
Moreover, the estimation error in approximating the true
cumulative distribution function can be controlled by the
Dvoretzky–Kiefer–Wolfowitz inequality [13]. Note that no
similar result holds for the histogram, which moreover suf-
fers from some problems that make it not the best choice
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Fig. 1. Empirical distribution functions of the error (10) for WQVR, SP
and SGP.

for density estimation [13]. Secondly, an important aspect
of empirical distribution functions is that they allow us to
compare algorithms over the full range of errors taking
account of error relative frequencies. This cannot be achieved
by considering sample mean and variance only. Moreover,
empirical distribution functions are useful for characterizing
algorithms that have uniformly better performance over the
whole range of errors, where better is meant as statistically
better.

To this end, denoting by F̂A(ε) and F̂B(ε) the empirical
distribution functions of errors, relative to algorithms A and
B respectively, we introduce the following

Definition 1: Algorithm A is statistically uniformly better
than algorithm B if

F̂A(ε) > F̂B(ε), ∀ε ∈ EAB (12)

with EAB =
{
ε ∈ R | 0 < F̂A(ε) + F̂B(ε) < 2

}
.

Set EAB consists of all real numbers except those for
which F̂A(ε) = F̂B(ε) ∈ {0, 1}, which are not relevant for
comparison. Note that when (12) holds true, F̂A(ε) ≥ F̂B(ε)
∀ε ∈ R, with the inequality becoming strict for ε ∈ EAB .
In other words, algorithm A is statistically uniformly better
than algorithm B when F̂B(ε) is upper bounded by F̂A(ε)
for all values of ε except those for which F̂A(ε) and F̂B(ε)
are both equal to 0 or 1. In particular, if algorithm A is
statistically uniformly better than algorithm B, then it ex-
hibits lower errors with higher probability. As a consequence,
all the moments of error for algorithm A are lower than
the corresponding moments for algorithm B. Moreover the
median error for algorithm A, which is a more robust index
of centrality [14], is also lower.

III. SIMULATION RESULTS

Figure 1 reports the empirical distribution functions of
errors (10) for the detrending algorithms under analysis. The
parameter λ for WQVR was chosen as the one, namely
λopt(i), that entails the minimum of (10) for each trend
realization ξi. This choice is motivated by the need to
determine the limit performance of the proposed algorithm.
However, it will be shown in the next subsection that the
value of λ is not critical.

Fig. 2. Typical behavior of the error (10) for WQVR as a function of λ
(blue), in comparison with the same error for SP and SGP (black).

As Figure 1 highlights, detrending by WQVR exhibits the
best performance as it returns lower values of error with
higher probability. In particular, it is statistically uniformly
better than competing algorithms. Moreover, it is worth not-
ing that the gap between the empirical distribution function
of WQVR and those of competing algorithms, especially
SGP, is quite high. This is a measure of the performance
margin that WQVR has over the other algorithms. As regards
SP, it should be remarked that it suffers from severe com-
putational burden, which makes impossible its application to
long RR series [10].

For the sake of fairness, it should be noted that being
statistically uniformly better does not exclude the eventuality
that for some realizations of trend SP and/or SGP could
exhibit lower errors than WQVR. Nevertheless, in our sim-
ulations detrending by WQVR returned the lowest error for
any realization of trend.

A. Robustness to variations of λ

We analyzed how sensitive the solution (8) is to variations
of its controlling parameter λ. In particular, we wanted to
ascertain how large the interval of values of λ is for which
WQVR is still the best algorithm. The larger this interval
is the more robust WQVR is to variations of λ. As shown
below, such interval is very large, and this makes the choice
of λ not a critical issue: a wide range of different values of
λ produces similar estimates.

For a generic trend realization, the error (10) returned
by WQVR as a function of λ has the typical behavior
depicted in blue in Figure 2. Thus, with reference to this
figure, for each trend realization ξi we can compute the
interval [λmin(i), λmax(i)] such that WQVR still yields the
minimum error (10) among all algorithms, and the value
λopt(i) ∈ [λmin(i), λmax(i)] for which WQVR returns the
minimum error (10).

Figure 3 reports in logarithmic scale the values λmin(i),
λopt(i), and λmax(i) (dashed lines) obtained for the 300
trend realizations and the corresponding arithmetic means
λmin = 5.02, λopt = 10.35, λmax = 27.22, respectively
(continuous horizontal lines). As Figure 3 shows, the interval
of values of λ for which WQVR returns the best performance
is rather large for any realization. This is particularly evident
when considering the average values λmin and λmax, which
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are approximately equidistant (in logarithmic scale) from
λopt.

In Figure 4 we report the empirical distribution functions
of error (10) for WQVR choosing the same constant value
of λ, respectively λmin, λopt, and λmax, for all realizations of
trend. Note that this is an unfavorable condition for WQVR,
but for this very reason it is also a good method to assess
its robustness. For ease of comparison, in Figure 4 we report
the empirical distribution functions of SP and WQVR from
Figure 1 as reference.

First, we compare the reference empirical distribution
function of WQVR (solid line) and the corresponding func-
tion computed using λ = λopt (dash-dotted line) for all trend
realizations. The two curves are almost indistinguishable,
thus proving that even with constant λ it is possible to
achieve performance nearly identical to the limit perfor-
mance. This result is important and confirms the robustness
of WQVR to variations of λ.

Second, let us consider the curves corresponding to λ =
λmax and SP. The two curves are very close, thus meaning
that, even choosing for λ a value larger than the double of the
average optimal one (since λmax/λopt = 2.6), performance of
WQVR is as good as SP. However, note that WQVR offers a
great advantage in terms of computational complexity [10].

Finally, the curve corresponding to λ = λmin highlights
that, even choosing a very low value of λ, i.e., half of the
average optimal, the maximum error returned by WQVR is
much lower than the maximum error of SP. Additionally, the
median error, a more robust index of centrality, of QWVR
for this choice of λ is lower than the median error of SP.

IV. CONCLUSIONS

In this work we have considered the problem of detrend-
ing for RR series. To tackle this issue, we have recently
proposed a novel approach based on the notion of weighted
quadratic variation reduction. It has been devised for un-
evenly sampled series, and does not rely on interpolation
and resampling steps. In this paper we have extensively
assessed its performance through a statistical analysis based
on the empirical distribution function of the trend estimation
error: the empirical distribution function provides a complete
statistical description of the behavior of an algorithm over
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Fig. 4. Empirical distribution functions of WQVR using constant values
of λ equal to λmin, λopt, and λmax, and curves from Figure 1 as reference.

the whole range of estimation errors, taking account of error
relative frequencies.. Results confirm the effectiveness of
our approach, which outperforms state-of-the-art algorithms.
Further, it is statistically uniformly better than competing
algorithms. We have shown that the algorithm is robust with
respect to variations of its controlling parameter, whose value
is not a critical issue. Finally, our algorithm is advantageous
also in terms of computational complexity: to the best of
our knowledge, it is the fastest algorithm for detrending RR
series.
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