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Abstract

Baseline wander removal is an unavoidable step in ECG
signal processing. The in-band nature of this noise makes
its removal difficult without affecting the ECG. Many ap-
proaches have been proposed in the literature. Among
them, cubic spline interpolation is the only one able to re-
cover the isoelectric level in the detrended signal. How-
ever, it exhibits poor detrending performance. In this pa-
per we extend our recent approach based on the notion
of quadratic variation reduction, to address the problem
of recovery of the isoelectric level. This is achieved by
constraining the amplitude of few fiducial points to lie on
isoelectric segments. Conversely to cubic spline interpo-
lation, which requires a fiducial point for each beat, the
proposed approach requires very few points: as few as one
single point is sufficient. Simulation results show that the
proposed approach largely outperforms cubic spline inter-
polation, being very effective in removing baseline wander
and recovering the isoelectric level, while preserving ECG
morphology.

1. Introduction

Baseline wander is a kind of noise that affects all bio-
electrical signals [1, 2]. In ECG recordings it is caused by
patient’s respiration, perspiration, body movements, skin-
electrode interface, and varying impedance between elec-
trodes and skin due to poor electrode contact [1]. It is ubiq-
uitous in all electrocardiographic devices and its removal
is an unavoidable step in ECG signal processing [3,4]. Un-
fortunately, baseline wander and ECG have overlapping
bands in the low-frequency region of the spectrum. Hence,
its removal is difficult without affecting the ECG, in partic-
ular the ST segment [1–3], thus spoiling relevant clinical
information [5].

Given the critical role of baseline wander removal for
ECG signals, several solutions have been proposed to
tackle this problem. The simplest approach is high-pass
filtering [3, 6]. Other common techniques are: adaptive
and median filtering [7,8], polynomial fitting, typically cu-
bic splines [9], wavelet decomposition and detrending by

quadratic variation reduction (QVR), which we have re-
cently proposed [10]. Among them, cubic spline interpo-
lation (CSI) [9] is the only method that is able to recover
the isoelectric level in the detrended signal. However, it
exhibits poor detrending performance [1, 11].

Although the isoelectric level contains negligible infor-
mation per se [1], it is the global point of reference for
the ECG’s amplitude, i.e., the amplitude of any wave or
segment (e.g., ST segment) is measured with reference to
the isoelectric level [1, 2]. Since even small deviations
from the isoelectric level are significant markers of car-
diac abnormality, the correct measurement of the isoelec-
tric line is crucial [2]. However, it is prone to noise and
its estimate may result in significant errors [2]. To tackle
this issue, restoring the isoelectric level during signal pre-
processing, specifically when removing baseline wander,
might be beneficial to subsequent analysis.

In this paper, we extend our recent approach to de-
trending by QVR, which outperforms state-of-the-art algo-
rithms [10, 11]. However, it does not recover the isoelec-
tric level in the detrended signal. To overcome this limi-
tation, we introduce additional constraints in the optimiza-
tion problem and constrain the amplitude of few fiducial
points to lie on isoelectric segments. This additional infor-
mation improves the estimation of baseline wander. Con-
versely to CSI, which needs a fiducial point for each beat,
the proposed algorithm requires very few points and even
a single knot is enough. Results show that the approach
outperforms CSI in estimating baseline wander and recov-
ering the isoelectric level, while preserving ECG morphol-
ogy.

The paper is organized as follows. In Section 2 the no-
tion of quadratic variation is introduced and the rationale
behind the proposed approach is described. Sections 3 and
4 follow with simulation results and conclusions.

2. Baseline wander removal with recov-
ery of the isoelectric level

In this section, we adopt the following notation: z̃ is the
vector collecting n samples of an ECG record, which is
affected by baseline wander, x is the vector of estimated



baseline, and z = z̃ − x is the corresponding ECG vector
after detrending.

Let us start by recalling the CSI method [9]. It fits a
cubic polynomial to a set of representative points of the
ECG, namely knots, with one knot for each beat. Let
ICSI

iso ⊆ {1, . . . , n} be the set of indices (abscissae) of the
knots for CSI: its cardinality |ICSI

iso | equates the number of
beats. For each k ∈ ICSI

iso the corresponding level (ordinate)
of the knot is denoted by gk ∈ R. The collection of pairs
(k, gk), with k ∈ ICSI

iso , is the set of knots and constitutes
the a priori information needed for CSI to work properly.

Conversely, the algorithm proposed in this paper needs
much less information to recover the isoelectric level: any
subset of knots, even with only one element, is enough.
So, denote by Iiso ⊆ ICSI

iso the set of indices of knots used
by the proposed algorithm and let niso = |Iiso| its size.
In general niso � |ICSI

iso |, with niso = 1 being perfectly
ok, as the numerical results of Section 3 show. Let giso be
the niso-sized vector collecting the levels (ordinates) of the
knots indexed by Iiso. Denote by S0 the niso × n matrix
obtained from the n × n identity matrix In by selecting
the rows whose indices belong to Iiso, and by S1 the com-
plementary (n− niso)× n matrix obtained from In by re-
moving the rows whose indices belong to Iiso. With these
positions, for any vector x ∈ Rn, S0x is the subvector
that collects all the entries of x whose indices belong to
Iiso. Constraining the baseline to pass through the knots
amounts to impose S0x = giso.

Baseline wander noise is an additive low1 “variability”
component affecting the measured ECG. Thus, provided
that we introduce a suitable index of “variability”, baseline
can be estimated searching for the low variability compo-
nent closest, in some sense, to the measured ECG. With
this purpose, in [10] we introduce the quadratic variation
as a measure of “variability”.

Given a vector x = [x1 · · ·xn]T ∈ Rn, the quadratic
variation of x, namely [x], is defined as

[x]
.
=

n−1∑
k=1

(xk − xk+1)
2
= ‖Dx‖2 , (1)

where ‖·‖ denotes the Euclidean norm and D is the (n −
1)× n matrix with entries

Dij = δi,j − δi+1,j (2)

where δi,j is the Kronecker delta. It can be proven that the
quadratic variation is a consistent measure of variability
[10].

Baseline wander can be estimated as the component
closest to the observed ECG that has reduced quadratic
variation, and is constrained to pass through the knots in-
dexed by Iiso to recover the isoelectric level. It can be

1Low with respect to ECG “variability”.

estimated by solving the following optimization problem,
which is a generalization of [10]

minimize
x∈Rn

‖x− z̃‖2

subject to [x] ≤ ρ
S0x = giso

(3)

where the first constraint with ρ ≥ 0 controls the quadratic
variation of the estimated baseline x, and the second forces
the estimated baseline to pass through the knots indexed by
Iiso.

Let us consider (3) in more detail. It is a convex opti-
mization problem, since both the objective function and the
constraints are convex. As a consequence, any locally op-
timal point is also globally optimal [12]. Moreover, since
the objective function is strictly convex and the problem is
feasible, the solution exists and is unique. It is possible to
prove that the solution to (3) is given by

x = ST0 giso + ST1

[
In−niso + λS1D

TDST1

]−1
× S1

(
z̃ − λDTDST0 giso

)
(4)

where In−niso denotes the (n − niso) × (n − niso) iden-
tity matrix, and λ is a nonnegative parameter that controls
the quadratic variation of the solution x, i.e., the degree
of variability of the estimated baseline. The parameter λ
is in one-to-one correspondence with ρ. Note that we do
not need to care about ρ, since only λ is used in (4) as the
controlling parameter. The detrended signal z is obtained
by subtracting the estimated baseline

z = z̃ − x. (5)

It is possible to prove that estimating baseline using (4)
is very fast, since its complexity is O(n), i.e., linear in
the size of the vector z̃ to detrend. Moreover, it is worth
remarking that to recover the isoelectric level it is sufficient
to choose one knot only, i.e., niso = 1. In the following
we will refer to baseline wander removal using (5) and (4)
with the acronym QVRi.

3. Simulation results

We considered a portion of the ECG record mitdb/118
from the MIT-BIH Arrhythmia Database [13] from Phy-
sioNet [14]. It is a two-channel recording acquired at a
sampling frequency of 360Hz with 11−bit resolution and
is affected by measurement noise and negligible baseline
wander. Such a reference record, denoted in the follow-
ing by z0, was further corrupted with baseline wander,
namely b, and random level shift, namely s. Baseline wan-
der was either extracted from the record nstdb/bw from
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Figure 1. Top: real ECG (z0, black) corrupted with base-
line wander (z̃, blue). Bottom: ECG detrended using CSI
and QVRi (z, red), and reference ECG (z0, black).

the MIT-BIH Noise Stress Test Database [14, 15], or ren-
dered as Gaussian white noise with zero mean and vari-
ance σ2 = 6.25 low-pass filtered with bandwidth 0.8Hz,
for the statistical analysis. The random level shift was ren-
dered as a constant vector s = U [1 . . . 1]T , where U is a
random variable with uniform distribution in the interval
[−5, 5]. The corrupted signal, denoted by z̃ = z0 + b+ s,
is reported (blue) in the upper panel of Fig. 1 together with
the original record z0 (black). In this case baseline wan-
der was extracted from the record nstdb/bw. In the lower
panel of Fig. 1 we report the reference ECG z0 (black)
and the corresponding records z (red) detrended using CSI
(upper half) and the proposed algorithm (lower half) with
λ roughly set to 3 × 103. Lags relative to PQ isoelectric
segments were roughly identified by visual inspection on
the reference record z0; the corresponding isoelectric lev-
els were determined averaging the record z in a window
of 9 samples centered around each lag [9]. A visual com-
parison highlights the better performance of the proposed
approach, which manages to effectively detrend the ECG
record recovering the isoelectric level.

For a statistical assessment of the performance, we con-
sidered 200 independent realizations of synthetic baseline
wander, rendered as described before, and compared our
algorithm with CSI. The quality of detrending was quanti-
fied through the following error

εi(algk) =
‖zi(algk)− z0‖2

‖z0‖2
i = 1, . . . , 200 (6)

where zi(algk) is the record detrended using algorithm
algk ∈ {QVRi,CSI}. Performance is measured in terms of
the empirical distribution function of the error (6), namely

F̂algk(ε) =
1

N

N∑
i=1

χ(−∞,ε] [εi(algk)] (7)

where χE [·] denotes the indicator function of the set
E, and N is the number of generated trend realizations
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Figure 2. Empirical distribution functions of the error (6)
for QVRi (blue) and CSI (black).

(N = 200). The empirical distribution function (7) pro-
vides a complete statistical description of the performance
of each algorithm, as opposed to the mean, the variance, or
the median, which give only partial information. Indeed,
empirical distribution functions allow us to compare algo-
rithms over the full range of errors taking account of error
relative frequencies. Moreover, they are useful for charac-
terizing algorithms that have uniformly better performance
(in statistical sense) over the whole range of errors. To this
end, denoting by F̂A(ε) and F̂B(ε) the empirical distribu-
tion functions of errors, relative to algorithms A and B
respectively, we introduce the following

Definition 1. Algorithm A is statistically uniformly better
than algorithm B if

F̂A(ε) > F̂B(ε), ∀ε ∈ EAB (8)

with EAB =
{
ε ∈ R | 0 < F̂A(ε) + F̂B(ε) < 2

}
.

Set EAB consists of all real numbers except those for
which F̂A(ε) = F̂B(ε) ∈ {0, 1}, which are not relevant
for the comparison. If an algorithm is statistically uni-
formly better than another, then it exhibits lower errors
with higher probability. Being statistically uniformly bet-
ter is a strong property and, as we will show below, QVRi
is statistically uniformly better than CSI.

Fig. 2 reports the empirical distribution functions of er-
ror (6) for QVRi and CSI. The parameter λwas roughly set
to 3 × 103. The same knots were used for both the algo-
rithms. As Fig. 2 highlights, detrending by QVRi largely
outperform CSI, since it returns lower errors with higher
probability. In particular, QVRi is statistically uniformly
better than CSI. Moreover, it is worth noting that the gap
between the empirical distribution functions of the two al-
gorithms is remarkably high. This is a measure of the per-
formance margin that QVRi has over CSI.

Finally, we analyzed how the performance of QVRi is
affected by the number of knots. In particular, in Fig. 3 we
reported the empirical distribution functions of error (6)



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error

P
ro

b
a

b
ili

ty

 

 

1 knot per beat

1 knot out of 3 beats

1 knot per record (randomly selected)

Figure 3. Empirical distribution functions of error (6) for
QVRi with different numbers of knots.

relative to the the following cases: i) one knot for each
beat (blue) (the same blu curve of Fig. 7); ii) one knot
out of three beats (red) ; iii) only one knot for the whole
record, randomly selected (green). As Fig. 3 highlights,
the curves are nearly superimposed, thus proving that the
performance of QVRi is (practically) not affected by the
number of knots and their location. Conversely, the per-
formance of CSI is critically dependent on the number of
knots and the accuracy of knot determination [1, 2].

4. Conclusions

In this paper we consider the problem of baseline wan-
der removal for ECG signals, with recovery of the isoelec-
tric level. The proposed method, namely QVRi, is an ex-
tension of our recent approach based on quadratic vari-
ation reduction. Additional constraints are introduced in
the optimization problem to constrain the amplitude of few
fiducial points of the estimated baseline to lie on isoelec-
tric segments. Performance is assessed through a statis-
tical analysis based on the empirical distribution function
of the reconstruction error: this allows us to compare al-
gorithms over the full range of errors taking account of
error relative frequencies. Numerical results confirm the
effectiveness of our approach. It outperforms cubic spline
interpolation, which is the only method in the literature
able to recover the isoelectric level. In particular, QVRi
is statistically uniformly better than cubic spline interpo-
lation. Moreover, conversely to cubic spline interpolation,
which requires a fiducial point for each beat, the proposed
method works (very) well with one single point. Finally,
the proposed algorithm compares favorably also in terms
of computational complexity, which is linear in the size of
the signal to detrend.
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