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In the present work, a Finite Element–Boundary Integral Equation (FE–BIE) coupling method is

proposed to investigate the problem of axially loaded thin structures bonded to a homogeneous elastic

half-plane. Making use of a mixed variational formulation including the Green function of the substrate,

the axial displacement of the bar is interpolated using Lagrange polynomials of first or second order,

whereas the interfacial shear stress is approximated by piecewise constant functions. Bars subject to

different load conditions are investigated, including the case of a bar partially detached from the

substrate. The strength of interfacial stress singularities is investigated in detail.

& 2012 Published by Elsevier B.V.
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1. Introduction

The problem of an axially loaded bar attached to a plate has been
widely investigated in mechanical and civil engineering, where it is
relevant to stress distribution in stiffened sheet [1]. Moreover,
interest in the problem has been renewed by composite materials
used in structural strengthening of concrete, steel, wood [2], ceramic
coatings protecting alloy substrate [3] and electronic devices with
metal films bonded to a polymer or silicon substrate [4]. A proper
mechanical model of thin film–substrate structures should be
adopted to evaluate stress concentrations and strain localizations.
Analysis of the stress singularity at the edge is important to evaluate
the initiation of the delamination between the film and substrate.
The assessment of these local effects is needed to properly design a
wide range of electronic devices and micro-components which are
typically subject to high stress levels and, in turn, to damaging
phenomena like fractures, failures and crack formation and growth.
To study stiffener reinforcing thin plates, generalised plane stress
state and bar model are often assumed [5–10]. Conversely, plane
strain state and membrane model are well-suited to thin films
bonded to a substrate [11–15].

The earliest classical study on plates reinforced with stiffeners
appears to have been initiated by Melan who analysed an infinite
93
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rib welded to the boundary of an elastic half-plane and loaded by
an axial force [5]. Melan obtained an analytical solution of the
problem and found a logarithmic growth of interfacial shear
stress in the neighbourhood of the load application point,
whereas the elastic half-plane loaded by a point force tangential
to its boundary is characterised by a square-root singularity, as
predicted by the Cerruti solution [16]. Nevertheless, this type of
singularity was found later by Buell [6] and Koiter [7] near the
stiffener edge of a semi-infinite bar bonded to a semi-infinite
plate and loaded by a point force at the end. The problem of a bar
of finite length bonded to an elastic half-space and subject to
various load conditions was investigated, for example, in [8–10].
In these references, the governing integro-differential equation is
solved by adopting power or Chebyshev polynomials series
expansion to approximate the unknown interfacial stress. In
[11] the stress induced in a semi-infinite elastic substrate by a
bonded thin film is studied solving the integral equation via the
finite difference method. The author adopted a length of the grid
elements varying along the longitudinal direction according to an
exponential law, in order to accurately evaluate the substrate
reaction, particularly near the film edge.

The finite element (FE) method was extensively adopted in
solving problems concerning layered systems because of its poten-
tial in simulating complex geometries and various loading condi-
tions. For instance, numerical computations based on FE method
were performed in [17] to evaluate stress distribution, strain
energy release rates and stress intensities in residual stressed
film–substrate systems. FE analyses were developed in [18] to
97
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Fig. 1. Bar attached on semi-infinite substrate.
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assess the contact stress in single, double-layer and multilayered
coated systems subject to a Hertzian pressure distribution acting
on a portion of the boundary. In [19,20], both normal and
tangential load distributions are taken into account in order to
simulate interfacial friction effects. In [21] the stress distribution in
the substrate underlying the film was investigated by means of the
conventional FE method. In [12,13] FE programs were used to
evaluate interfacial and axial film stress, respectively, comparing
the results with those provided by some analytical models. A
conventional FE package was also used in [14] to predict the
cracking phenomenon in thin film–interlayer–substrate systems
subjected to tensile loading. In this reference, interface elements
characterised by a bilinear constitutive law are adopted in order to
predict the distribution of crack spacing in the film.

However, the application of the FE method to thin film–
substrate systems finds some limitations in simulating layers with
very different thicknesses [22]. Indeed, various kinds of electronic
devices involve film having thickness of the order of some
hundreds of nanometres, whereas the substrate thickness typically
equals some hundreds of micrometres or more. Moreover, it should
be noted that the FE meshes near the film–substrate interface and
in the region close to film edges must be refined to avoid the mesh
size effect on the magnitude of the interfacial stresses.

Boundary element (BE) method and boundary integral
equation (BIE) were also adopted to study layered systems. In
particular, BE technique based on elasticity theory can be used to
evaluate in a very efficient and accurate manner the mechanical
behaviour of coated systems involving thin layers, as long as the
nearly-singular integrals existing in the BE formulations are
handled correctly [22–24]. In [25,26] a BE method with funda-
mental solution for dissimilar materials is used in the thermo-
elastic analysis of interfacial stress and stress singularity between
a thin film and its substrate.

In the present work, the problem of axially loaded thin
structures bonded to a homogeneous isotropic half-plane is
studied by means of a FE–BIE coupling method. Thin bonded
structures are properly treated using bar FEs, without resorting to
2D thin structures, and BIE are restricted to the substrate only.
Hence, the relation between bar displacement and interfacial
stress involves the Green function of the substrate. Plane strain
or generalised plane stress condition for the bar–substrate system
is assumed. Using the theorem of work and energy for exterior
domains, a mixed variational formulation is utilised, with varia-
tional functions represented by bar displacement and interfacial
shear stress. In the proposed model, independent partition of bar
and underlying substrate can be used, and finite element mesh
involves the bar length only. Lagrange polynomials of first or
second order are adopted as interpolating functions of the
displacement field, whereas interfacial shear stress is described
through piecewise constant function. Mixed variational principle,
similar to the one presented in this paper, was used in [27] to
study the frictionless interaction of a Timoshenko beam with the
underlying soil. In this respect, the present work represents the
natural extension of the method to analyse a bar, with zero
bending stiffness, perfectly bonded to a substrate.

The interaction between an elastic bar and the underlying half-
plane is investigated in detail. The case of a bar loaded at the
midpoint by a horizontal force of magnitude P is treated first. The
response of the system is in terms of axial displacement, axial
force and substrate reaction, varying the rigidity parameter of the
bar. In particular, the strength of the interfacial stress singularity
is evaluated and discussed for this and other load conditions.
Comparison of the results furnished by the present model with
some classical solutions is given. Finally, the case of a partially
detached bar subject to a concentrated force or uniform thermal
variation is also considered.
Please cite this article as: N. Tullini, et al., Interfacial shear stress ana
coupled FE–BIE method, Finite Elem. Anal. Des. (2012), doi:10.1016
It is worth noting that, in the proposed method, the weakly
singular BIE is evaluated analytically, avoiding handling of sin-
gular and hyper-singular integrals, that are the major concern of
the classical BE methods. Moreover, the dimension of the resol-
ving matrix is proportional to the number of bar FEs, unlike the
classical FE methods where a refined mesh requires a stiffness
matrix with dimension that is several times the square of the
number of bar FEs. These advantages allow accurate solutions and
the strength of the interfacial stress singularity can be correctly
assessed.
2. Variational formulation

An elastic bar of length L and cross section A bonded to an
elastic half-plane, as shown in Fig. 1, is considered. Reference is
made to a Cartesian coordinate system (O, x, y) centred at the
middle of the bar, with the vertical axis y directed toward the
half-plane and the horizontal axis x placed along the interface.
Both the bar and the semi-infinite substrate are considered
homogeneous and isotropic solids characterised by linearly elastic
behaviour. Small displacements and infinitesimal strains are
assumed in the analysis. In the following, Eb, nb and ab denote
the Young modulus, the Poisson ratio and coefficient of thermal
expansion of the bar, whereas Es and ns represent the Young
modulus and the Poisson ratio of the elastic half-space, respec-
tively. Generalised plane stress or plane strain regime can be
considered in the study; in the latter case, the width h of the half-
plane will be assumed unitary. The thickness of the coating is
assumed thin, making it possible to neglect its bending stiffness.
This assumption leads to the vertical component of stress (peel
stress) being ignored in the bar, consequently, only interfacial
shear stress t (x) occurs along the contact region. Moreover,
perfect adhesion is assumed between the bar and the half-plane
boundary, i.e. the extension of the contact region is known a

priori. The system is subjected to a generically distributed
horizontal load p(x) and thermal variation DT(x).

The solutions of the elastic problem for a homogeneous
isotropic half-plane loaded by a point force normal or tangential
to its boundary are known as Flamant or Cerruti solutions,
respectively [16,28]. In particular, the Green function gðx,x̂Þ can
be expressed in closed form solution

gðx,x̂Þ ¼ �
2

pE
ln

9x�x̂9
d

, ð1Þ

where E¼Es or E¼ Es=ð1�n2
s Þ for a generalised plane stress or

plane strain state, respectively, and d represents an arbitrary
length related to a rigid-body displacement. Then, the horizontal
surface displacement u(x) due to the interfacial tractions acting
along the boundary between the half-plane and the bar can be
found by integrating the Green function gðx,x̂Þ, namely

uðxÞ ¼

Z
L

gðx,x̂Þtðx̂Þdx̂, ð2Þ

By means of the theorem of work and energy for exterior domains
[29], one can demonstrate that the total potential energy Ps for the
lysis of bar and thin film bonded to 2D elastic substrate using a
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half-plane equals one half of the external work of loads [27]

Ps ¼�
h

2

Z
L

tðxÞuðxÞdx, ð3Þ

By introducing Eq. (2) into Eq. (3) one obtains

Ps ¼�
h

2

Z
L

tðxÞdx

Z
L

gðx,x̂Þtðx̂Þdx̂, ð4Þ

The total potential energy for the bar in terms of the mechan-
ical and thermal components of axial strain can be written as
follows [30]:

Pb ¼
1

2

Z
L

E0AðxÞ½u0ðxÞ�a0DT�2dx�h

Z
L
½pðxÞ�tðxÞ�uðxÞdx, ð5Þ

where E0¼Eb, a0¼ab or E0 ¼ Eb=ð1�n2
bÞ, a0¼(1þnb) ab for a

generalised plane stress or plane strain state, respectively, and
prime denotes differentiation with respect to x. It is worth noting
that axial force in the bar is given by N(x)¼E0A(x)[u0(x)�a0DT].

Finally, the total potential energy P¼PbþPs of the system is
found to be

P u,tð Þ ¼
1

2

Z
L

E0A½u0ðxÞ�a0DT�2dx�h

Z
L
½pðxÞ�tðxÞ�uðxÞdx

�
h

2

Z
L

tðxÞdx

Z
L

gðx,x̂Þtðx̂Þdx̂, ð6Þ

Similar variational formulation can be found in [27], where a
Timoshenko beam in frictionless contact with the underlying soil
is studied. In the framework of contact problems, useful mathe-
matical references are [33–35], where well-posedness of the
variational problem and of the corresponding Galerkin solution
is set in proper abstract functional framework. Nonetheless,
Eq. (6) has not been previously suggested to study axially loaded
bar bonded to an elastic half-plane.
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3. Finite element model

Both the elastic bar and the substrate boundary are divided
into finite elements. In particular, the bar is partitioned into finite
elements of length li and a set of linear or quadratic Lagrange
polynomials Ni(x) is adopted as shape functions [36], where x
represents the dimensionless local coordinate, i.e. x¼x/li. As
customary, nodal displacements qi characterize completely the
axial displacement in each finite element by means of the vector
N(x) containing the shape functions:

uðxÞ ¼ ½NðxÞ�Tqi: ð7Þ

The substrate boundary underlying the bar is divided into
finite elements also. It is worth noting that mesh for the surface of
the half-plane can be defined independently from that of the bar.
Similar to expression (7), the interfacial shear stress arising in the
ith substrate element can be approximated as follows:

tðxÞ ¼ ½qðxÞ�Tti, ð8Þ

q being a vector collecting the shape functions and ti represents
the vector of nodal substrate tractions. In the present study, only
piecewise constant functions are used to interpolate the shear
tractions in Eq. (8). As shown later, this assumption will lead to
accurate results.

In the following, each bar element with linear polynomials may
have either one or two equal constant substrate elements of total
length li, denoted by B1S1 or B1S2, respectively (Fig. 2a and b).
Similarly, bar element with quadratic polynomials and either one or
two equal constant substrate elements are denoted by B2S1 or B2S2,
respectively (Fig. 2c and d).

Substituting Eqs. (7) and (8) in variational principle (6) and
assembling over all the elements, the potential energy takes the
Please cite this article as: N. Tullini, et al., Interfacial shear stress ana
coupled FE–BIE method, Finite Elem. Anal. Des. (2012), doi:10.1016
expression:

Pðq,tÞ ¼
1

2
qTKbq�qTFþqTHt�

1

2
tTGt, ð9Þ

where Kb is the bar stiffness matrix and F the external load vector,
whose elements take the usual form

kij ¼ li

Z 1

0
E0AðxÞN0iðxÞN

0
jðxÞdx, ð10Þ

f i ¼ li

Z 1

0
ðNiðxÞpðxÞhþN0iðxÞE0AðxÞabDTÞdx, ð11Þ

The components of matrices H and G are given by the following
expressions:

hij ¼ hli

Z 1

0
NiðxÞrjðxÞdx, ð12Þ

gij ¼ h

Z xiþ 1

xi

dxriðxÞ

Z xjþ 1

xj

gðx,x̂Þrjðx̂Þdx̂, ð13Þ

where xi, xiþ1 are the coordinates of the ith element and element
matrices of Eq. (9) are reported in the Appendix. It should be
noted that, unlike the local pressure–displacement law assumed
in a Winkler-type model [31,32], the present formulation takes
into account the nonlocal response of the system through the
fully populated matrix G. Furthermore, the integral in Eq. (13) is
weakly singular, i.e. always exists in the Cauchy principal value
sense and is finite. The use of piecewise constant functions to
interpolate the shear stress leads to a simpler analytical evalua-
tion of components gij in Eq. (13). Moreover, it can be proved that
the approximated shear stress converges to the shear stress
solution in the proper functional space [37,38]. Higher-order
degree interpolating functions make the analytical integration
more cumbersome and numerical evaluation of a weakly singular
integral needs to be considered, with an increase of computa-
tional burden. Nonetheless, for fixed number of finite elements,
the use of higher-order degree interpolating functions could
increase the convergence rate.

As usual, the problem can be solved by imposing the potential
energy functional (9) to be stationary, leading to the following
equality:

Kb H

HT
�G

� �
q

t

� �
¼

F

0

� �
: ð14Þ

The solution of Eq. (14) provides the nodal displacements and
tractions

t¼G�1HTq, ð15Þ

ðKbþKsÞq¼ F, ð16Þ

Ks being the stiffness matrix for the substrate.

Ks ¼HG�1HT: ð17Þ

In particular, Eq. (16) represents the discrete system of equations
governing the response of the bar–substrate system.
lysis of bar and thin film bonded to 2D elastic substrate using a
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In the case of a bar detached from the substrate between the
nodes d1 and d2, where no shear stress is transmitted, the bar
stiffness matrix Kb is assembled as usual and system (14) can be
partitioned as follows:

HL

Kb 0

HR

HT
L 0 HT

R �G

2
66664

3
77775

qL

qd

qR

t

8>>><
>>>:

9>>>=
>>>;
¼

FL

Fd

FR

0

8>>><
>>>:

9>>>=
>>>;

ð18Þ

where qL¼[q1, y, qd1]T and qR¼[qd2, y, qn]T are the nodal
displacements at the left and right side of the detached region
having nodal displacements qd¼[qd1, y, qd2]T and FL, FR and Fd

are the corresponding external load vectors. Moreover, tractions t
as well as matrices HL, HR are defined in the bar FEs attached to
the substrate only.

3.1. Numerical properties of the FE model

The mapping properties of the BIE (2) are well known [38–39].
In particular, a continuous, positive-definite and symmetric
bilinear form is associated to the logarithmic kernel (1), whereas
stability and convergence of Galerkin scheme related to Eq. (15)
was verified in [38] for increasing number of piecewise functions.
Consequently, G and G�1 being positive definite (i.e. yTGy40 and
yTG�1y40 for all nonzero y), Ks is also positive-definite for all q,
except for the special occurrence HTq¼0, i.e. for q belonging to
the kernel of HT. In fact, by pre- and post-multiplying both sides
of Eq. (17) by vectors qT and q, respectively, one obtains
qTKsq¼qTHG�1HTq40 provided that y¼HTq is a nonzero vector
[40]. Moreover, Ks being positive definite, the sum of KbþKs in
Eq. (16) remains positive-definite even with Kb being positive
semidefinite. In fact, qT(KbþKs)q¼qTKbqþqTKsq40 for all q not
belonging to the kernel of HT.

In the case of equally spaced B1S1 elements, each of which
includes one substrate element, the kernel of HT contains the
vector q¼[1, �1, 1, �1, y]T, which gives rise to zero mean
axial displacement in each element. In this case, the work done
by the axial force and the constant substrate tractions is zero
(see Fig. 3a), yielding spurious zero energy modes. Nonetheless,
if equally spaced B1S2 elements are used (Fig. 3b), the null
space of HT

¼{0} and Ks is found to be positive-definite for all
vectors q.

Usually, stability and convergence of the mixed FE model may
be verified by checking the behaviour of the smallest generalised
singular value of HT, which is related to the inf-sup (or LBB)
condition [41]. In fact, zero singular values of HT characterize the
null space of HT and, in this respect, B1S1 element does not satisfy
the inf-sup condition. Nonetheless, the numerical examples
considered in the next section have solutions not belonging to
the kernel of HT, for this reason FEs not satisfying the inf-sup
condition can be used in some cases.
B1S1

1

-1

1
t

u

Fig. 3. Linear bar elements including one (a) or two (b) equal substrate elements cha

interfacial stress.

Please cite this article as: N. Tullini, et al., Interfacial shear stress ana
coupled FE–BIE method, Finite Elem. Anal. Des. (2012), doi:10.1016
4. Numerical examples

In the present section, several loading cases of a bar bonded to
the underlying half-plane are considered and discussed. Unless
otherwise stated, a number of 512 equal B2S1 FEs are used to
model the elastic bar, where a single substrate element is
included in each bar element, and a proper value is imparted to
the length d associated with a rigid displacement, such as to
involve zero displacement at the bar end.

Similar to [1], the parameter characterising the elastic
response of the bar–substrate system is taken as

bL¼
EhL

E0A
: ð19Þ

Low values of bL characterise short bars stiffer than the substrate,
when the bar performs like an almost inextensible stiffener.
Higher values of bL describe more flexible bars, thus are appro-
priate for long bars bonded to stiff substrate.

4.1. Bar subject to a horizontal point force at the midpoint

The case of a bar bonded to the underlying substrate and
loaded by a horizontal force of magnitude P applied at the
midpoint is discussed first. In Figs. 4–6 dimensionless axial
displacement u/[P/(Esh)], axial force N/P and substrate reaction
t/[P/(hL)] are plotted versus the dimensionless abscissa x/L, for
three values of the rigidity parameter, i.e. bL¼1, 10, 100, respec-
tively, which correspond to decreasing stiffness of the bar with
respect to the substrate. In the same figures, axial force and
substrate reaction corresponding to a number of 16 equal B1S1
finite elements are also reported. In this case, the axial force is
piecewise constant and adequately predicts the actual distribu-
tion for bL¼1 and 10.

Fig. 4 refers to bL¼1, the bar tends to behave like an
inextensible stiffener, resulting in an almost bi-linear trend of
horizontal displacement, as shown by Fig. 4a. Also the axial force
varies linearly and exhibits a jump in correspondence with the
point of load application, whereas substrate shear reaction in the
neighbourhood of the bar ends is well approximated by the
analytical expression arising from the problem of inextensible
stiffener [10,42]:

t1ðxÞ ¼
2P

phL

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4ðx=LÞ2

q ð20Þ

where a singular behaviour at the bar ends is expected. This
behaviour can be observed in Fig. 4c even using only 16 equally-
spaced B1S1 FEs.

Conversely, for high values of bL, the effects of the longitudinal
force are concentrated in the neighbourhood of the point force
application, as depicted by Fig. 6. In particular, the shear tractions
and horizontal displacement assume low values along the entire
bar, except around the application of the point force. In this case,
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Fig. 5. Bar loaded by a concentrated force at the midpoint. Axial displacement (a),

axial force (b) and substrate reaction (c) along the bar for bL¼10.
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16 equal B1S1 FEs are unable to predict adequately the bar
midpoint reaction, as shown in Fig. 6c.

In the neighbourhood of the point load, Melan solution is a
good approximation [1,5]

N2ðxÞ ¼
P

p
si

bx

2

� �
cos

bx

2

� �
�ci

bx

2

� �
sin

bx

2

� �� �
ð21Þ

t2ðxÞ ¼�
P

h

b
2p

ci
bx

2

� �
cos

bx

2

� �
þsi

bx

2

� �
sin

bx

2

� �� �
ð22Þ

where si and ci denote sine and cosine integrals, respectively. The
interfacial shear stress in the neighbourhood of the bar midpoint
and bar end is reported in Fig. 7. In order to compare the results
obtained by the proposed model with analytical solutions, a
suitable mesh refinement is implemented by means of 202
logarithmically spaced B2S1 FEs. In particular, with reference to
the positive axis only and disregarding the B2S1 FE internal
points, a number of 37 logarithmically spaced points are gener-
ated in the interval [10�5, 0.1]/L, 10 logarithmically spaced points
in the interval [0.1, 0.4]/L and 55 logarithmically spaced points in
[0.4, 0.5�10�7]/L.

In Fig. 7a, the shear stress in the neighbourhood of the point
load is plotted in dimensionless form versus bx. As x tends to zero,
Melan solution reported in Eq. (22) reduces to

lim
x-0

t2ðxÞ ¼ �
P

h

b
2p gþ log

bx

2

� �� �
ð23Þ
Please cite this article as: N. Tullini, et al., Interfacial shear stress ana
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where g is the Euler constant, with numerical value approxi-
mately equal to 0.5772. As shown in Fig. 7a, the Melan solution is
retrieved for bLZ5. Moreover, the curves of the interfacial shear
stress for different values of bL are characterised by almost the
same slope. Therefore, logarithmic singularity occurs for all values
of the bar–substrate parameter. For bL¼1, the Euler constant in
Eq. (23) has to be replaced with numerical value approximately
equal to �1.6. Note that the curve related to the shear stress for
bL¼5 is below those concerning the shear stress for bL¼1, since
the dimensionless shear tractions are normalised with respect to
the parameter bL.

Fig. 7b shows (in logarithmic scale) the dimensionless shear stress
versus x/L in the neighbourhood of the bar end. For bL¼1, interfacial
shear stress is well approximated by Eq. (20) related to the inexten-
sible stiffener. Moreover, a square-root singularity also occurs for
bL¼10 and 100, but with different strengths of singularity.

4.2. Shear stress singularity factor KII for some load conditions

The strength of singularity of the interfacial stress in the
neighbouring of the bar end x/L¼0.5 can be investigated by
means of the shear stress singularity factor KII, typically defined
as [43]

K II ¼ lim
x-L=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðL=2�xÞ

p
tðxÞ ð24Þ

From a numerical point of view, the function on the right hand
side of Eq. (24) is evaluated at various locations x/L, the value
lysis of bar and thin film bonded to 2D elastic substrate using a
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located at 10�6/L from the end is the sought value of KII. The
interval [0.5�10�7, 0.5]/L is disregarded since large oscillations
in interfacial stress occur. For a bar loaded by a horizontal point
force at the middle, the values of KII evaluated in the neighbouring
of the bar end x/L¼0.5 may be smaller than those evaluated at the
middle through Eq. (24). Indeed, KII tends to infinity for x¼0
because of the logarithmic singularity occurring at the midpoint.
In this case, Eq. (24) is a nonmonotonic function of x.
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Fig. 8 shows the KII factor, in dimensionless form, versus
1/2�x/L for a bar loaded by a horizontal point force at the middle
and at the bar end, for some values of the parameter bL. As
reported in Fig. 8a, for a bar loaded by a point force at the
midpoint, the KII factor in the neighbourhood of the bar end
decreases as bL increases, confirming the fact that the strength of
the interfacial stress singularity diminishes for complaint bars.
Indeed, the largest value of the strength singularity is reached for
an inextensible bar, for which Eq. (20) yields

K II ¼

ffiffiffiffi
2

p

r
P

h
ffiffiffi
L
p ¼ 0:7979

P

h
ffiffiffi
L
p for bL-0 ð25Þ

Conversely, for a bar loaded at its right end by a tangential
point force, the KII factor increases with the compliance of the bar,
being the smallest value of KII attained for an inextensible bar, as
shown in Fig. 8b. This behaviour is reflected in Fig. 9, which
depicts the values of the KII factor in the neighbourhood of the bar
end, varying the rigidity parameter bL for different load condi-
tions. As expected, for a very stiff bar (bL-0), the strength of
singularity is weakly sensitive to the position in which the load is
applied, as shown by the curve of Fig. 8b for an inextensible bar,
for which the KII factor is almost constant along the bar. None-
theless, even for small values of bL, the KII factor significantly
depends on the stiffness and the load position. This confirms that
the interfacial stress tends to concentrate in correspondence with
the point of load application, particularly for compliant bars.
Moreover, for P in x/L¼1/2, the KII parameter agrees well with
that calculated by Koiter [7] who studied a semi-infinite bar
bonded to a half-plane and loaded by a point force at its end,
which can be evaluated as follows [15]:

K II,Koiter ¼
ffiffiffi
b

p P

h
¼

ffiffiffiffiffiffi
bL

p P

h
ffiffiffi
L
p ð26Þ

In particular, for bL44, Eq. (26) differs from the KII factor by less
than 3%. It should be noted that, for some special values of x/L
(e.g. P in x/L¼0.4), the KII parameter is not monotonic increasing
with bL.

4.3. Axial force for the bar subject to a horizontal point force at the

midpoint or at the end

The dimensionless axial force versus bx for a bar loaded by a
concentrated force at the midpoint is reported in Fig. 10a for some
values of bL. The numerical results agree well with Melan solution
for bL¼100, i.e. for a sufficiently compliant bar with respect to
the underlying substrate. Nonetheless, Melan solution is well
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retrieved for lower values of bL also, i.e. for bL45 provided that
bxo1/2. Moreover, the dimensionless axial force versus bL/2�bx

for a bar loaded by a concentrated force at the end is reported in
Fig. 10b. The curve related to bLZ10 practically coincides with
the Koiter solution, even if a large agreement with respect to this
classical solution can be observed for bLZ5 if b(L/2�x)o1. For
rigid bars (e.g. bL¼1), the axial force along the bar tends to a
linear trend, as shown by Fig. 4b.

4.4. Bar subject to uniform thermal load

The case of an elastic bar loaded by a uniform thermal
variation DT is similar to that of a bar symmetrically loaded by
two opposite forces applied at the ends (see Fig. 11). In particular,
the axial displacement and the interfacial shear stress of a bar
subject to a uniform thermal load DT coincide with those induced
in the bar by two opposite axial forces of magnitude Y¼E0Aa0DT

applied at the ends [15]. As for the discrete problem and
Please cite this article as: N. Tullini, et al., Interfacial shear stress ana
coupled FE–BIE method, Finite Elem. Anal. Des. (2012), doi:10.1016
assuming consecutive bar FEs, the vector of equivalent external
loads reduces to F¼Y [�1, 0, y, 0, 1]T (see Appendix). The axial
force of a bar subject to two opposite forces Y equals that of the
same bar subject to a thermal load DT increased by the quantity
E0Aa0DT. Moreover, the stress intensity factors in the neighbour-
hood of the ends of a bar under thermal load, KII(DT), can be
obtained by properly superposing the KII factors of a bar subject
to two opposite forces of magnitude Y. For example, KII(DT) in
x/L¼0.5 can be evaluated as KII related to an axial force of
magnitude Y acting at x/L¼0.5 plus KII related to an axial force
of magnitude �Y acting at x/L¼�0.5, i.e. KII(DT, x/L¼0.5)¼KII(Y,
x/L¼0.5)þKII(�Y, x/L¼�0.5).
4.5. Detached bar

Some results concerning a bar detached bar between x/L¼0.30
and x/L¼0.40 are reported in Figs. 12–15. For a bar with bL¼10
and loaded by a point force applied at the bar end, dimensionless
axial displacement, axial force and interfacial stress are depicted
in Fig. 12a–c, respectively. As expected, constant axial force and
zero substrate reaction are found inside the detached region.
Apart from the neighbourhood of the detached region, the results
related to the detached bar are almost identical to those of the
fully bonded bar.

A number of 261 logarithmically spaced B2S1 FEs are used. In
particular, disregarding the B2S1 FE internal nodes, a number of
55 logarithmically spaced points are generated in the intervals
[�0.5þ10�7,�0.4]/L, [0.2, 0.3�10�7]/L, [0.4þ10�7, 0.45]/L and
[0.45, 0.5�10�7]/L, where stress singularity is expected. At the
ends of the detached region, the shear stress singularity factors KII

are defined as

K IIð0:3LÞ ¼ lim
x-0:3L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð0:3L�xÞ

p
tðxÞ ð27Þ

K IIð0:4LÞ ¼ lim
x-0:4L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx�0:4LÞ

p
tðxÞ ð28Þ

Similar to Fig. 8, Fig. 13 shows the shear stress singularity
factor KII for the detached bar loaded by a concentrated force P

applied at the bar end for some values of bL. As reported in
Fig. 13a and excluding the case of an inextensible bar, the KII

parameters in the neighbourhood of x/L¼0.4 are smaller than the
same quantities evaluated near the bar end (Fig. 13b). Moreover,
as shown by Figs. 13b and 14, the KII factors in the neighbourhood
lysis of bar and thin film bonded to 2D elastic substrate using a
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of the bar end are slightly greater than the corresponding KII

factors of a perfectly bonded bar.
For a bar with bL¼10, dimensionless axial displacement, axial

force and substrate reaction of a detached bar subject to a
constant thermal variation �DT are reported in Figs. 15a–c,
respectively. As expected, the maximum amplitude of horizontal
displacement occurs at the end of the bar, whereas the axial force
attains the largest magnitude in the middle. Small differences are
found with respect to the solution of the bonded bar, except in the
neighbourhood of the detached region.
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5. Conclusions

A coupled FE–BIE method has been proposed to evaluate the
mechanical behaviour of elastic thin structures bonded to a
homogeneous isotropic half-plane under axial forces or thermal
loads. Plane strain or generalised plane stress regime of the bar–
substrate system has been considered in the present study. Bar
FEs have been used to simulate the bonded structures, whereas
the behaviour of the semi-infinite substrate has been represented
through BIE only. A mixed variational formulation involving the
Green function of the half-plane has been used, providing a
proper relation between the axial displacement and the inter-
facial stress. The proposed method has been utilised to study in
detail the contact problem of an elastic bar bonded to a half-
plane. The evaluation of the strength of the stress singularities
occurring at the ends of the contact region and in the neighbour-
hood of the point of load application has been given in terms of
shear stress singularity factors. Various loading conditions of the
bar have been investigated, including the case of a bar partially
detached from the substrate. The rigidity parameter bL, repre-
senting the stiffness of the bonded bar with respect to the half-
plane, is found to characterize the mechanical response of the
system. In particular, for a bar loaded at the midpoint by an axial
force, a large agreement among the obtained results with the
Melan solution is found for bLZ100, i.e. for a sufficiently
compliant bar with respect to the underlying substrate. In fact,
a substantial agreement with respect to the Melan solution is also
found for lower values of bL in the neighbourhood of load
application. Moreover, for bL¼1 (rigid bar), the substrate reaction
provided by the analytical solution of the contact problem for an
inextensible bar is retrieved. For a bar axially loaded at the end,
the comparison of the obtained results with the Koiter solution is
given, establishing a large agreement for bLZ10. A good
lysis of bar and thin film bonded to 2D elastic substrate using a
/j.finel.2012.02.006
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Fig. 15. Bar subject to a thermal variation �DT and detached between x/L¼0.30

and x/L¼0.40. Axial displacement (a), axial force (b) and substrate reaction

(c) along the bar for bL¼10.
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agreement is also found for bLZ5 in the neighbourhood of the
bar end. In both cases, the shear stress is found to be concentrated
in correspondence with the point of load application, particularly
for compliant bars. The case of bars loaded by a uniform thermal
variation is also discussed, establishing similarity with respect to
the problem of a bar loaded at the ends by two opposite axial
forces. Finally, a detached bar loaded by an axial force at an end or
by a thermal load is considered, establishing almost the same
results of a completely welded bar, except in the region close to
the detached zone. Nonetheless, the shear stress singularity
factors evaluated in the neighbourhood of the bar end are smaller
than those related to a perfectly bonded bar due to the fact that
the interior detachment diminishes the length of the bonded
region, resulting in increasing of the stiffness of the bonded
portions of the bar.
Please cite this article as: N. Tullini, et al., Interfacial shear stress ana
coupled FE–BIE method, Finite Elem. Anal. Des. (2012), doi:10.1016
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Appendix

In the following a prismatic bar element subjected to uniform
loads p and with a constant substrate pressure is considered. In
the case of Lagrange linear functions N1¼1�x and N2¼x, element
matrices appearing in Eq. (9) become

Kbi ¼
E0A

li

1 �1

�1 1

� �
,

Fi ¼ phli=2½1,1�TþE0Aa0DT½�1,1�T,

Hi ¼ hli=2½1,1�T,

for the ith bar element including one substrate element,

Hi ¼
hli
8

3 1

1 3

� �
,

for the ith bar element including two equal substrate elements.
In the case of Lagrange quadratic functions N1¼1�3xþ2x2,

N2¼4x (1�x) and N3¼x (2x�1), element matrices appearing in
Eq. (9) become

Kbi ¼
E0A

3li

7 �8 1

�8 16 �8

1 �8 7

2
64

3
75,

Fi ¼ phli=6½1,4,1�TþE0AabDT½�1,0,1�T,

Hi ¼ hli=6½1,4,1�T,

for the ith bar element including one substrate element,

Hi ¼
hli
24

5 �1

8 8

�1 5

2
64

3
75,

for the ith bar element including two equal substrate elements.
Finally, components of matrix G are as follows:

gii ¼
2h

pE
l2i

3

2
þ ln

d

li

� �
,

gij ¼
2h

pE
lilj

3

2
þ lnd

� �
þGðxjþ1�xiþ1Þ�Gðxjþ1�xiÞ�Gðxj�xiþ1ÞþGðxj�xiÞ

� �

for ia j:

where G(x)¼x2/2 ln9x9.
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[30] B. Szabó, I. Babuška, Finite Element Analysis, John Wiley and Sons, New York,

1991.
[31] M. Hetenyi, Beams on Elastic Foundation, The University of Michigan Press,

1946.
[32] B. Ferracuti, M. Savoia, C. Mazzotti, A numerical model for FRP–concrete

delamination, Compos. Part B—Eng. 37 (4–5) (2006) 356–364.
[33] N. Kikuchi, Beam bending problems on a Pasternak foundation using

reciprocal variational-inequalities, Q. Appl. Math. 38 (1) (1980) 91–108.
[34] J. Bielak, E. Stephan, A modified Galerkin procedure for bending of beams on

elastic foundations, SIAM J. Sci. Stat. Comput. 4 (2) (1983) 340–352.
[35] N. Kikuchi, J. Oden, Contact Problems in Elasticity: A Study of Variational

Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988.
[36] Y.C. Fung, P. Tong, Classical and Computational Solids Mechanics, World

Scientific Pub., Singapore, 2001.
[37] S. Alliney, A. Tralli, C. Alessandri, Boundary variational formulations and

numerical solution techniques for unilateral contact problems, Comput.
Mech. 6 (4) (1990) 247–257.

[38] G.C. Hsiao, W.L. Wendland, A finite element method for some integral
equations of the first kind, J. Math. Anal. Appl. 58 (3) (1977) 449–481.

[39] M. Costabel, Boundary integral operators on Lipschitz domains: elementary
results, SIAM J. Math. Anal. 19 (3) (1988) 613–626.

[40] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press,
New York, 1985.

[41] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer,
New York, 1991.

[42] N.I. Muskhelishvili, Singular Integral Equation, Noordhoff, Groningen, 1953.
[43] D. Broek, The Practical Use of Fracture Mechanics, Kluwer, Dordrecht, 1988.
129
lysis of bar and thin film bonded to 2D elastic substrate using a
/j.finel.2012.02.006

dx.doi.org/10.1016/j.finel.2012.02.006
Original Text:
Italian Ministry for University and Research, 

Original Text:
University

Original Text:
of Ferrara 

Original Text:
ReLUIS

Original Text:
6

Original Text:
=1&minus;&xi;

Original Text:
=&xi;,

Original Text:
=1&minus;3&xi;&plus;2&xi;

Original Text:
=4&xi;

Original Text:
(1&minus;&xi;)

Original Text:
=&xi;

Original Text:
(2&xi;&minus;1),

Original Text:
are:

Original Text:
problems

Original Text:
theory

Original Text:
plates

Original Text:
construction: structural design

Original Text:
materials

Original Text:
Metall

Original Text:
Materials

Original Text:
Devices, Heterogeneous Structures and Thermo-Mechanical Modeling

Original Text:
Halbscheibe, ZAMM &ndash; J. Appl. Math. Mech.macslash

Original Text:
Z. 

Original Text:
Phys

Original Text:
Math

Original Text:
Mech

Original Text:
Mater

Original Text:
Struct

Original Text:
Struct

Original Text:
Metall

Original Text:
1&dash;2

Original Text:
1&dash;2

Original Text:
A

Original Text:
Mech

Original Text:
Formulation

Original Text:
Mech

Original Text:
Commun

Original Text:
2&dash;3

Original Text:
mechanics

Original Text:
Finite Element Analysis

Original Text:
elastic foundation

Original Text:
B&dash;Eng

Original Text:
4&dash;5

Original Text:
Math

Original Text:
foundations, SIAM J

Original Text:
Comp

Original Text:
problems

Original Text:
elasticity

Original Text:
A study of variational inequalities and finite element methods, 

Original Text:
computational solids mechanics

Original Text:
Pub

Original Text:
Appl

Original Text:
Elementary

Original Text:
Anal

Original Text:
Matrix Analysis

Original Text:
Mixed and hybrid finite element methods

Original Text:
N.I. Muskhelishvili, Singular integral equation, Noordhoff, Groningen, 1953.

Original Text:
The practical use of fracture mechanics


	Interfacial shear stress analysis of bar and thin film bonded to 2D elastic substrate using a coupled FE-BIE method
	Introduction
	Variational formulation
	Finite element model
	Numerical properties of the FE model

	Numerical examples
	Bar subject to a horizontal point force at the midpoint
	Shear stress singularity factor KII for some load conditions
	Axial force for the bar subject to a horizontal point force at the midpoint or at the end
	Bar subject to uniform thermal load
	Detached bar

	Conclusions
	Acknowledgements
	Appendix
	References




