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Abstract—The complexity of traffic control systems, as well
as the growing volume of traffic, interconnected missions types
and mission demands on the operators, indicates that critical
attention should still be paid to the problem of operator’s
cognitive workload (WL). On the other hand, the development
of traffic control towards on-line measurement of cooperative
aspects between humans and machines, is part of the more
general need to measure the human agents ''situation awareness''
in industrial environment.

The University of Modena and Reggio Emilia was partner of
the European Artemis project ‘“Designing Dynamic Distributed
Cooperative Human-Machine Systems” (D3CoS 2011-2014) [1] to
define affordable methods, techniques and tools addressing the
specification, development and evaluation of cooperative systems
where human and machine agents are in charge of common tasks,
assigned to the system as a whole. One of the basic keys to reach
an optimal human-machine cooperation is the measure of the
human operator workload.

In order to setup a possible method for the objective evaluation
of cognitive workload we had to investigate aspects of the
functional status of human operators interacting with a simulator
in maritime domains.

We recorded objective psycho-physiological measures: eye
blinks, respiration rate and amplitude, electrodermal activity,
heart rate variability, and blood pressure. They were analyzed
and correlated with subjective self-assessed responses from two
questionnaires: NASA-TLX and Rating Scale Mental Effort
(RSME), with the aim to realize a mathematical model for
classifying the operators’ mental workload.

The purpose of this paper is to present the methods, applied
on a pilot study, that we carried out to discriminate the WL
intensity, based on psycho-physiological signals alone.

Keywords—mental workload, EMD, psycho-physiological sig-
nals, R cran

I. INTRODUCTION

Mental workload (WL) is a multidimensional and complex
construct for which there is no clearly defined and univer-
sally accepted definition in literature: there are inconsisten-
cies related to its sources and its mechanisms that give rise
to a considerable variety of methods of evaluation. [2] In
general, it can be considered as a "quantitative function" of
the relationship between the mental demands required by a
task and the available resources of the human operator. In
order to gather a valid and reliable assessment of WL it
is necessary to employ a set of measures according to: (1)
psycho-physiological measures and (2) self-assessed measures
(rating scales). For (1) we decided to acquire information by
autonomic nervous system measures with:
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Figure 1. Timeline schema of the experiment. At the beginning, we need time
to instrumental setup, to present the experiment to the subject and to pose
probes on him. A resting period was used to record baseline signals before
starting with the four WL phase. At the end of each task-load the subject
filled a NASA-TLX and a RSME questionnaire.

1) Electro Dermal Activity (EDA) which is linearly corre-
lated to arousal and measures stress and frustrations too
[3].

2) Ocular activity: eye activity reflects central nervous
system activity and indicates also mental WL [4] [5] .
In particular the eye blink rate yields information about
task demands, level of fatigue, memory and response
demands.

3) Cardiovascular measures: they have been reported to
be sensitive to WL [6], and emotional activation which
was evaluated by means of self-assessed measures. ECG
signal, Heart Rate (HR), Heart Rate Variability (HRV),
Low Frequency to High Frequency ratio (LFHF) of
HRV spectrum and Photoplethysmography (PPG) were
measured directly. Blood Pressure (BP) was indirectly
calculated from ECG R-peak and PPG peak delay with
single calibration.

4) Respiration: respiration rate, inspiration and expiration
time, complete cycle time, volume and flow rate was
measured. For the (2) we used two different question-
naires: 5. a NASA-TLX (overall WL score) and RSME
(Rating Scale Mental Effort) [7] [8]

II. METHODS

A typical situation found in Human Machine Interaction
(HMI) is testing an operator’s behavior to different tasks.
We developed a set of methods based on the comparison
between objective physiological measurements and subjective
responses from questionnaires to assess the workload status
of a subject during his job in front of a monitor interface
simulating.



We performed an experiment in which we tested our
methodologies and tools on five different Vessel Traffic Ser-
vice (VTS) operators working at the VTS centres in Horten
and Brevik, Norway. In this paper we focus on the methodolo-
gies and, we report just data and results of only one single VTS
operator. The subject was a Canadian male volunteer, aged 34,
right-handed, with normal visual acuity, normal hearing and
good health. He reported experience of 3 years in his job. No
compensation was granted for his participation; after a briefing
and an interview to gather preliminary data, he signed the
consent form to be the experiment’s subject.

According with our partners, we defined four different
workload scale scenarios (underload, medium, high and over-
load task). The workload intensity was varied increasing the
number of the following elements: the vessels in the monitored
area, the vessel reporting, software alerts and communications
between VTS operator and vessels. An experienced instructor
(T.S.), hidden at the sight of the subject, simulated vessel radio
communication.

The duration for each scenario was about 10 minutes
(6min for signal recording, 4min for questionnaires filling).
A complete timeline schema of the experiment is represented
in Figl.

All the psycho-physiological measures were recorded by
BioSemi Mod. Active Two and sampled at 2048Hz, except the
ocular activity that was recorded by Jazz Novo — Ober Consult-
ing and sampled at 1000Hz. The scenario simulation software,
provided by Kongsberg, was C-Scope Operator Client 4.7.
[11] At the end of each scenario a NASA-TLX and RSME
questionnaires were compiled by the operator. Raw signals
were acquired and saved as files in EDF/ASCII format. These
signals were converted to text using EDF Browser software
before analysis in R (version 3.1) [12] with RStudio (v 0.98)
[13].

In addition to conventional digital filtering techniques, Em-
pirical Mode Decomposition (EMD) [9] [14] was applied to
all recorded signals, in order to identify and separate signal
information from noise. EMD is helpful to analyze composite,
nonlinear and non-stationary signals. One of the relevant
advantages of EMD is that the basis functions are derived
from the signal itself; infact, compared to Fourier analysis,
whose basis functions are fixed sine and cosine waves, EMD
is adaptive. The fundamental idea of EMD method is an
iterative sifting process that decomposes the signal into a
sum of Intrinsic Mode Functions (IMF), considered as basic
building blocks of the data time series (e.g., noise is one
of these “building blocks”). An IMF is a signal which must
satisfy two criteria: extremes and zero crossings points are in
equal number or differ at most by one and the mean of upper
and lower envelopes of IMF is zero. EMD can be applied if
the signal has at least two extremes, one maximum and one
minimum, so enabling a successful decomposition into IMFs;
this property is quite common in bio-medical signals. The
software used to perform the EMD analysis was the package
EMD of the R language (R CRAN repository) [9]. Apart the
usual noise cleaning, the main EMD preprocessing purpose
was to identify peaks and extract signal components with
physiological significance. The analysis has been performed
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Figure 2. Raw ECG signal (red) and ECG cleaned signal by EMD technique

for every parameter and separately for each workload phase.
The IMF number for our signals was typically ranging from
12 to 15. For each signal we defined a different procedure to
remove noise and clean data.

Heart Rate: Heart Rate (HR), expressed as beat per
minute, was evaluated from ECG signal, detecting the time
interval between two consecutive R peaks. The large ECG
drift, still present after digital band pass filtering (0.1-10Hz)
and represented by an intrinsic mode function (IMF), was eas-
ily removed so enabling R-R time interval series identification.
Fig 2.

LF/HF ratio: Starting from the R peaks series, the
heart rate variability is analyzed from tachogram estimating
its spectrum behavior in low (LF, 0.04-0.15Hz) and high
frequency (HF, 0.15-0.4Hz) band, focusing into LF/HF ratio.,
All the heart rate variability analysis was carried on by means
of RHRV package [10].

Blood Pressure: Systolic blood pressure was derived
from a linear model [8] that evaluated the systolic blood
pressure as a function of the delay between R peak of ECG and
blood "pulse wave transit time" (PWTT) peak, detected from
photoplethysmogram (PPG) peak, inside every R-R cycle.

Py = —0.4148 x PWTT + c where the calibration
¢ = Pyys, + 0.4148 + PWTT, constant is evaluated by
P,y st, measured directly by sphygmomanometer in mmHg at
the beginning of the experiment; PWT'Tj is obtained as the
average value among six values of the pulse wave transit time:
three before the direct measure and three after. PWTT peaks
were detected from PPG signal in the same way as R peaks:
low pass band filtering (0.1-4Hz) and PPG decomposition by
EMD. The sum of three IMFs (IMF6+ IMF7+ IMF8) proceed
the final PPG signal profile Fig 3. For both R peaks than PPG
peaks we used a custom peak detection function to eliminate
false peaks.

Electrodermal activity: Electrodermal activity (EDA),
recorded by Biosemi equipment, has been divided in tonic
and phasic component. For the tonic component we evaluate
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Figure 3. Processing of raw PPG Signal. Processed PPG (middle graph),
obtained by the sum of the three IMFs, IMF6+ IMF7+ IMFS. ECG and PPG
signals (bottom graph), after EMD processing and in the same time interval,
with the corresponding R and systolic peaks. The PWTT intervals are marked
as PWTTi. Horizontal and vertical scale of the top and middle plots are “s”
and “au (arbitrary units)” respectively.
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Figure 4. Processing of EDA raw signal. Tonic (slow) EDA signal estimated
as sum of IMFs from 12 to 16. Phasic (fast) EDA signal using IMFs from 3
to 11.

the mean value, while for the phasic we reported the mean
rate value as shown in Table 1. The raw data acquired was
decomposed with EMD technique: the IMFs(12-16) were used
to estimated the tonic component, while the IMFs(3-11) were
used for phasic component Fig 4.

Respiration: Respiration signal was recorded by Biosemi
chest belt. It was decomposed with EMD technique in 14
IMFs. We used the slow component of the IMFs (from 9th
to 13th) to detect peaks — the end of the inspiration phase
— and the valley — the end of expiration phase. Starting
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Figure 5. Respiration raw signal. Processed respiration signal as sum of IMFs
from 9 to 13 (middle graph). An example of breathing period and amplitude
(bottom graph).

from these two points the respiration rate was evaluated from
time difference between peaks, and respiration amplitude from
amplitude difference between peaks and valleys.

Eye blinks rate: Eye movements were recorded by Jazz
Novo instrument. It acquires information of eyes movement in
XY plane. The blinking events were identified from character-
istic signal profile assumed in both first and second derivative
of X and Y trajectories.

TLX — RSME: The NASA-TLX produces a numeric
index called Overall UnWeighted Score (OUWS), as result
of a sum of six values corresponding to the following scales
(each within a 0-100 interval): Mental demand (MD), Physical
demand (PD), Temporal demand (TD), Effort (Ef), Perfor-
mance (Pe), Frustration (Fr). Filling RSME the VTS operator
produces a single score in the range of 0-150 [8].

For every WL phase all the eight psycho-physiological
recorded data were split into 30s intervals in order to get many
sets of equivalent measures and associated with those obtained
in NASA-TLX and RSME questionnaires; and analyzed with
MANOVA and Discriminant analysis with R Studio. The
duration of 30s has been chosen because it is the minimum
time value to give a reliable valuation for many parameters
(HRV, EDA, and eye blinks). The four workload phases may
be considered as factors in the experimental design. The
questionnaires data were collected at the end of each of
the four workload phases. As a consequence, we have only
one record of responses from both NASA-TLX and RSME
associated to the number of twelve records collected for every
objective parameter; in this condition, a statistical analysis
to clarify the relationship between objective and subjective
measurements is not possible. To accomplish the statistical
analysis, the TLX and RSME results must be extended over the
workload phases to cope the corresponding number of values
got from objective measurements.

The replication of the same number must be excluded
because a null variance would be associated to the new series.
We applied a method based on “jittering” which, in our case,



Table 1
LIST OF PHYSIOLOGICAL SIGNALS
| Parameter | Definition ‘
’ mHR \ Mean value of heart rate [bpm] ‘
LF_HF Low frequency to high frequency
ratio, from spectral analysis of
heart rate variability (HRV)
[number]
mSyst Mean value of systolic blood
pressure, based on pulse wave
transit time R-PPG peak [mmHg]
mEDAtonic Mean value of tonic component of
EDA [mSiemens]
mEDAphasic Mean rate value of phasic
component of EDA [mSiemens]
mBreathrate Mean respiration rate [Bpm] \
mBreathamp Mean respiration "peak-valley"
amplitude [arbitrary units]
nBlinks Mean value of the eye blinking
per minute rate [EBpm]

means applying a small normal distribution of noise to the nu-
merical indexes. In practice the test index is considered as the
global average value obtained in the workload phase; a series
of twelve random values with mean equal to the test index
and a standard deviation in the range 1% — 5% of the mean is
generated and it is considered as the subjective experimental
result produced every 30s into the current workload phase. In
this way we have produced a reliable table of subjective and
objective measurement data. Of course, if a workload phase
has a longer duration, the series length increases accordingly.
The jittering calculation has been provided by the function
jitter() in R. A sample of the new assessment of results of the
TLX and RSME tests is reported in Fig 6.

A preliminary multivariate analysis was performed with
MANOVA to check if some variability of the eight param-
eters arises as function of workload levels. Its positive result
(significant F value, p < 0.01) indicated that the eight groups
differ on the set of workload measures with a p-value < 0.05.
Linear Discrimination Analysis (LDA) was then applied to
predict workload phase by physiological parameters values.
We used R MASS package applying the linear discrimination
analysis with the 1da() function in two ways, training and cross
validation.

Furthermore a Canonical Correlation Analysis (CCA) was
used to measure the association among workload subjective
estimations (TLX and RSME) and objective psychophysio-
logical measures. (Fig 7).

I1I. RESULTS
Univariate Analysis

The graphs of mean values series are reported in Fig.8. The
data have been fitted using the LOESS method; it performs
a local, non parametric, regression at the point X, by fitting
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Figure 6. a) A sample of the database resulted by averaging signals in periods
of 30 seconds and b) table of subjective scores recorded from questionnaires
at the end of each scenario.
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Figure 7. CCA . On the left the eight objective physiological signals and on
the right the subjective responses from questionnaires.

a regression function to the data points within a chosen
neighborhood of the point x. LOESS method is suitable when
a robust fitting method is necessary to include outliers. In
Fig 8 the fitting is carried out taking the workload phases
as continuous series.

Hearth Rate and LFHF: The heart rate signal, in bpm
units, is reported in Fig 8. It presents a trend increasing from
W1 to W4 phase, much steeper in W1 and W2, less sharp
in W3 and nearly constant in W4. The maximum variance
values are obtained in W2 and W4 phases. The signal is
further processed to analyze the heart rate variability spectral
characteristics, and reported in the same figure.

Electrodermal activity: The signal is decomposed in its
tonic and phasic components. The mEDAtonic trace in Fig
8 corresponds to the mS value of the EDA baseline, called
as the slow activity, got from EMD method for every 30s
interval. The mEDAphasic trace represents the number of
fast responses to endogenous or external events/stimulations
accumulated for each 30s interval. The red lines show the
LOESS interpolation for the two parameters as a function
of workload magnitude. The tonic component, which shows
a rather stable amplitude in the first three workload phases,
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Figure 8. Parameters obtained from all the eight objective signals from the
four different WL. The red line is the LOESS fitting

decreases markedly in the overload phase of workload. The
rate of fast phasic components shows an oscillating behavior;
however the LOESS line presents a slowly increasing curve
from low to high workload.

Eye blinks rate: The Fig 8 presents the rate of eye
blinks along the four workload phases. Despite its oscillating
pattern, the LOESS interpolation shows a growing rate with
a maximum value reached in W3 and a damping trend in
W4. Respiration rate and amplitude The LOESS interpolation
signal of the breathing rate (Fig 8) is rather constant in W2-
W4 phases interval, after a slight increment from 8 breaths/m
to 9 breaths/m during W1 phase. The maximum variance is
reached in W3.

The breathing amplitude: LOESS signal, reported in
arbitrary units in Fig 8 is constant in W1 phase, increases
during W2 and remains constant in W3 and W4 phases at the
maximum value reached in W2. The maximum variance level
is reached in W4.

TLX — RSME: NASA-TLX and RSME evaluated at the
end of each scenario were consistent with the increase in the
WL.

Multivariate Analysis

The last step is based on application of Linear Discriminant
Analysis (LDA) and Canonical Correlation Analysis (CCA).
Our Linear Discriminant Analysis deals with four WL levels
(groups) and eight physiological variables (predictors). This
goal is achieved constructing three discriminant equations
D, (i = 1,2,3) which are linear combinations of the predictor
variables, such that the different workload groups differ as
much as possible on D. We get three discriminant functions
because the number N of possible discriminant functions
arises from the rule: N = min(p,q) — 1 where p and ¢
are the number of groups and of variables respectively. We
have 4 workload groups and 8 physiological variables, so
N = 4 — 1 = 3 discriminant functions called LD1, LD2 and
LD3 in this case. They are found developing a script in R
language using the R package MASS. In Fig 9 is presented
a typical result obtained with the three LDAs; in which the
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Figure 9. The LDA function values are computed without any previous
training reference, including all the original data. Top left - LD2 vs LDI1:
WLI1 and WL4 are well classified; Top right - LD2 vs LD3: distinguishes
between WL2 and WL3; Bottom left - LD3 vs LD1: strong compactness for
WL2 and good separation/classification among others. Every WL point in the
plots is originally marked with a color and a label; a mis-categorized point
(put WL in different group from original one) is plotted with a color changed.

number of misclassifications is very small (error rate 3%),
so reflecting the correct choice of workload scaling in the
experimental design.

Canonical correlation analysis is used to identify and mea-
sure the associations among two sets of variables, in our
case between the subjective (metric independent variables)
and objective physiological variables (multiple dependent mea-
sures). The theoretical aspect in this case is grounded over
the definition of two linear combinations (canonical variates)
of subjective and objective variables respectively and finding
the correlation coefficient between all the possible “variates”
according to the scheme presented in Fig 7.

The CCA may be divided in two parts: the preliminary one
related to the analysis of the usual correlation between all the
variables, subjective and objective independently. This part is
useful to acquire knowledge about basic behavior and possible
relationships in the data frame. The results about this part are
reported in Fig 10 (top right). The CCA method provides a
set of new orthogonal dimensions to “variables of observe” the
relative correlations between variables, which are represented
in Fig 10 (top left). The method’s advantage is the possibility
to correlate variables different in their nature as in our case.
The graph reported in Fig 10 (bottom left) and Fig 10 (bottom
right) shows a good classification of workloads reached by
the physiological variables, “supported” also by the presence
of subjective variables in the canonical variates correlation
calculus.
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Figure 10. Top left - Shows the canonical correlation coefficients for
all variables. The larger circle has radius=1, the smaller radius=0.5. The
smaller the distance from the center, the lesser the correlation expressed
by the variable. Variables positioned in the same direction are correlated
with amplitude proportional to their relative distance. Top right - Represents
the correlation values between variables couples, according to the color bar
code. Bottom left - The first two canonical variates (Dim1 and Dim2) are
the horizontal and vertical plot axes. Every objective variable is represented
in its canonical coordinates and its position in the graph is related also to
its correlation with subjective variables. Bottom right - First two canonical
variates for subjective variables (NASA-TLS and RSME). The plot shows no
miss-classification for the WL levels.

IV. CONCLUSION

We realized a methodology that combine in a new way
various methods: from signal processing by empirical mode
decomposition to advanced statistical analysis, in a single
procedure to classify the WL based on both self-assessed
measures and psycho-physiological parameters. In fact, using
filtering and EMD technique it is possible to evaluate a useful
signal to perform the analysis.

In this pilot study, each single physiological signals is
correlated to workload status and to subjective auto reported
measurements. Furthermore both LDA and CCA can discrim-
inate workload status in a single subject. We may conclude
that it is possible to infer about the workload quantitatively
using a number of eight physiological variables, easy to be
recorded, and the developed method seems to be adequate to
support the goal.

Next steps are moving on two different direction: first of
all we need to test our methodology on more subjects to
confirm our results; secondly we will consider the possibility
to reduce the number of recorded signals to facilitate both
the experiment setup and the calculation in order to perform
real-time evaluations of the WL.
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