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ABSTRACT: Studies on conjugated polymers seldom report
on their NMR characterization in solution. This paper shows
how NMR experiments, both 1H NMR and routine 2D NMR
spectra, can help in gaining a further insight into the
aggregation behavior of conjugated polymers and could be
used to flank the more employed solid-state NMR and other
spectroscopy and microscopy techniques in the understanding
of the aggregation processes. NMR spectroscopy allows
distinguishing, within the class of poorly solvatochromic
conjugated polymers, those highly prone to form π-stacked aggregates from the ones that have a low tendency toward π-stacking.

■ INTRODUCTION

Thiophene-based conjugated polymers represent a widely
studied class of polymers with broad applications in
optoelectronics.1,2 They are characterized by extended π-
conjugated systems involving the whole polymer backbone
and interacting with substituents, giving them the required
optical and electronic properties. A variety of polythiophenes,
differing in side-chain length and type, has been studied. β-
Substituents make these polymers soluble and processable in
organic solvents, in contrast to the unsubstituted polythiophene
which is insoluble. One of the most employed conjugated
polymers is poly(3-hexylthiophene), P3HT, which has been
intensively studied during the last two decades and is still
actively investigated.3 The concept of conjugated polymers has
extended during time to alternated copolymers, based on a
variety of aromatic or heteroaromatic units with electron-donor
or electron-acceptor characters.4

Both polythiophenes and thiophene-based polymers can be
synthesized by a number of routes spanning from oxidative
coupling with FeCl3

5 to every kind of catalyzed cross-coupling
reaction (e.g., Suzuki, Kumada, and Stille).6−8 A number of
books and papers on electro-optical properties and device
characterization are found in the literature,1,2,9 but only few of
them report the solid-state NMR characterization of
blends1,2,10−14 or the in-depth NMR investigation of con-
jugated polymers in solution.15−23 Indeed, papers dealing with
the synthesis and characterization of conjugated polymers
rarely report even their 1H NMR spectra,14 probably because of
the discouraging broad line widths found, which seem to
prevent a deep investigation.
We have been studying conjugated polymers for the last two

decades, and from the beginning, we devoted our interest also
to the in-depth 1D and 2D NMR characterization of alkyl-
(PAT) and alkylsulfanyl-(PAST) polythiophenes (Chart

1)20,21,24−29 that some of us reviewed in 2002.21 These studies
were mainly aimed at the assessment of the regiochemistry and

at the characterization of the minor configurational triads of
polythiophenes. The polymer regiochemistry can, in fact,
influence the conformation adopted by the backbone, which,
in turn, is one of the factors ruling its aggregation behavior and
electronic properties.30

As for the aggregation behavior in solution, it has been
commonly investigated through ultraviolet−visible (UV−vis)
spectroscopy. Some regioregular conjugated polymers, such as
head-to-tail P3HT (and other PATs) and both head-to-tail and
head-to-head/tail-to-tail PASTs, display marked solvatochrom-
ism and thermochromism.22,27,31−37 They display an unstruc-
tured UV−vis absorption band in good solvents, which moves
to a higher wavelength, assuming a vibrational fine structure
upon the addition of a poor solvent (or upon cooling) or in the
solid state (film). This behavior is attributed to the existence of
an equilibrium process between a disordered, less extensively
conjugated coil-like amorphous form, present in good solvents
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or at high temperatures, and an ordered, more planar
conjugated rodlike form prevailing in marginal solvents or at
low temperatures. This last form is associated with the
formation of small π-stacked aggregates. The nature of these
aggregates still stimulates the interest of the scientific
community32 because the presence of π−π interactions
among PAT chains can induce some interesting behaviors,
such as a secondary doping in conducting PATs,38 a more
extended conjugation length, which is responsible for a more
extended UV−vis absorption spectrum as well as for a higher
electrical conductivity,31 and an increased charge carrier
mobility,39 particularly useful when the polymer is employed
as an electron-donor material in polymeric solar cells. On the
contrary, less regioregular polymers are also less solvatochro-
mic.31,40−42

When we moved to the study of conjugated copoly-
mers,15−20 we observed that they were usually less
solvatochromic than regioregular PATs and PASTs. This
behavior can be explained either by a high tendency to
planarize and aggregate even in good solvents or, on the
contrary, by a low tendency toward aggregation, and this can
strongly influence the properties of polymer-based devices.14,43

We found that solution NMR can be very helpful in
distinguishing between these two cases, and here we report
on the NMR characterization of conjugated polymers in
solution. NMR spectra obtained on polymer solutions can
show characteristic signatures indicating if a poor solvato-
chromism is due to a high proneness to form π-stacked
aggregates or not.

■ RESULTS AND DISCUSSION

NMR of Highly Solvatochromic Polymers. We studied
two classes of these polymers (Chart 1): highly regioregular
P3HT28,29 and regioregular PATs functionalized at the end of
the side chains (PFATs) with hydroxy,44 methoxy,45

methylthio, hexylthio, methylsulfinyl, phenylsulfinyl,46 piper-
idinyl, and hexanoyloxy groups47 and PASTs.22,26,27

As mentioned above, regioregular head-to-tail PATs are
found in a random coil conformation in chloroform solution by
UV−vis spectroscopy. Their NMR spectra, obtained in the
same (but deuterated) solvent, display slightly broader line
widths (few hertz at half-height) with respect to those of small
organic molecules, and the common 1D and 2D NMR
experiments [correlation spectroscopy (COSY), total correla-
tion spectroscopy (TOCSY), heteronuclear multiple-quantum
coherence (HMQC), heteronuclear single-quantum coherence
(HSQC), and heteronuclear multiple-bond correlation
(HMBC)] can be exploited for their characterization. For
instance, in the case of 85% head-to-tail regioregular P3HT,
four sets of narrow aromatic proton48 and carbon chemical
shifts were assigned through HMQC and HMBC experiments
to the four configurational triads and it was shown that their
chemical shifts parallel those of the central units of the four
isomeric trimers of 3-hexylthiophene.28,29 We found a very
similar situation for the solutions of regioregular PASTs, both
for the head-to-tail26 and for the head-to-head/tail-to-tail ones,
one of which, carrying octylsulfanyl side chains (PSOct), is
shown in Figure 1.22,27

Figure 1. (a) 1H NMR spectrum in chloroform-d (asterisk denotes the residual CHCl3 signal) and (b) HSQC and (c) HMBC spectra of a head-to-
head/tail-to-tail regioregular PAST with R = octyl chain (PSOct).
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These polymers are more soluble in organic solvents than
PATs, and their spectral lines are only slightly broader than
those of small organic molecules. There are no problems in
acquiring heterocorrelated spectra, both one bond and long
range, and also in the obtainment of the directly acquired 1D
13C NMR spectra, provided a sufficient concentration is
employed.
NMR of Poorly Solvatochromic Polymers. We came

across two different classes of poorly solvatochromic polymers.
The first class is formed by polythiophenes carrying
alkylsulfanyl chains functionalized with polar groups every
two thiophene rings and by copolymers containing thienothio-
phene and benzobithiophene units, such as those depicted in
Chart 2.
The presence of an alkylsulfanyl chain carrying a polar group

every other thienyl ring not only reduces the solvatochromism
of these polythiophenes but also influences the appearance of
their proton NMR spectra, which display both narrow and
broad features,19,49 as can be seen for the 1H NMR spectrum of
PSCN, shown in Figure 2.
Very broad components, shielded with respect to the more

narrow ones, appear in the aromatic region. These broad signals
are due to the formation of aromatic π-stacks and derive from
the mutual shielding effect of aromatic rings placed above or
below to one another in these aggregates. Similar, even though
less evident, spectral features are detected in the aliphatic

region for the portion of the alkyl chain bound to the
heterocycle, indicating that it is affected by ring current
shielding and deshielding phenomena.
More marked effects, leading to very broad spectral

components, are observed when strongly interacting groups
are present on the side chain, as in the case of a cysteine-
substituted polythiophene (PCys),20,51 the 1H NMR spectrum
of which is shown in Figure 3, and of an ammonium-substituted
polythiophene50 (not shown). For these and other strongly
aggregating polymers, the obtainment of 13C NMR aromatic
signals is very time-consuming (whereas the aliphatic ones are
usually detected), low proton−carbon correlations are detected
in the aromatic region of HMQC or HSQC spectra (that
probably derive from shorter chains or terminals), and HMBC
spectra contain few long-range correlations for some of the
aliphatic protons.
Nevertheless, a further insight into the structure of these

aggregates can be obtained from proton homocorrelated
spectra. Correlations through the space between the aromatic
protons and the methylene protons bound to sulfur are found
in the nuclear Overhauser effect spectroscopy (NOESY)
spectrum (Figure 4) for both the narrow and the broad
spectral components. These are intraresidue NOE detected in a
more random coil or disordered form and in π-stack aggregates,
respectively. The presence of these two forms is supported by
gel permeation chromatography that shows a bimodal weight

Chart 2. Examples of Conjugated Polymers Displaying Aggregation Signatures in Their NMR Spectra

Figure 2. 1H NMR spectrum of PSCN, with broad signals marked by arrows, in chloroform-d (asterisk denotes the residual CHCl3 signal).

Figure 3. 1H NMR spectrum of PCys in chloroform-d.
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distribution.51 Still in this NOESY spectrum, we find a strong
NOE correlation between the methyl ester and the t-butyl
carbamate groups that is due to an interresidue dipolar
interaction due to the formation of hydrogen bonds.51

We observed a similar tendency to form π-stack aggregates in
good solvents in other copolymers, containing thienothiophene
and benzobithiophene units.15−17 Also, these polymers display,
together with a low solvatochromism when studied with UV−
vis spectroscopy, broad components in their 1H NMR spectra.
Moreover, their aromatic carbon signals are difficult to detect,
both in directly acquired 1D 13C NMR spectra and through
HSQC experiments, as in the case of PCys. Figure 5 shows the

1H NMR spectrum of a copolymer formed by alternating
bithiophene and thienothiophene units16 (PSBTTT in Chart
2), where broad and narrow components coexist.
A new and very intriguing feature of this last polymer is the

effect of aggregation on the terminal part of the aliphatic chains.
In fact, NMR revealed the presence of terminal CH2−CH2−
CH3 units shielded and deshielded with respect to the principal
ones.16 In particular, two groups of methyl signals appear in the
HSQC spectrum of PSBTTT (Figure 6a) at about 0.9 (usual
value) and 1.1 ppm (quite unusual). Their difference in proton
chemical shifts is hardly justified by the different substitution at
the opposite side of the long alkyl chains. Indeed, a closer

Figure 4. (a) NOESY spectrum of PCys in chloroform-d; (b) expanded region showing the dipolar interaction between SCH2 and aromatic protons
(further expanded in c) and that between t-butyl and methoxy signals (1.4 and 3.6 ppm, respectively); and (d) intraresidue (solid arrow) and inter-
residue (dashed arrow) dipolar correlations.

Figure 5. 1H NMR spectrum of PSBTTT. The arrows evidence some broad spectral components in chloroform-d.
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inspection of the TOCSY spectrum shows that the deshielding
involves some of the alkoxy chains (dashed path, Figure 6b)

and the methyl groups at 1.1 ppm belong to them. The minor
signals coming from alkylsulfanyl chains are mainly found

Figure 6. Partial (a) HSQC (the arrows point to multiple methyl signals) and (b) TOCSY (evidencing the correlation path that leads to the
deshielded methyl signals) spectra of PSBTTT in chloroform-d.

Figure 7. Sketches of (a) more ordered and (b) less ordered π-stacked arrangements in the polymer aggregates that can justify both shielding and
deshielding of the initial and terminal protons of the substituents. In both cases, aromatic protons should be shielded.

Figure 8. Changes in the 1H NMR spectra of PSOct upon the addition of methanol: (a) chloroform solution, (b) 20% (v/v) methanol, and (c) 30%
(v/v) methanol. (d) NOESY spectrum at 30% (v/v) methanol.
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shielded with respect to the principal ones (right arrow in
Figure 5).
To explain the presence of both shielded and deshielded

signals for the alkyl groups close to the heteroatoms and
deshielded signals for the alkyl terminals, we hypothesize that
two types of aggregates are present (Figure 7). In the type
shown in 7a, the alkyl chains are interdigitated between flanked
highly ordered π-stacked aggregates, and both the initial and
the terminal portions of the alkyl chains are forced to stay close
to the deshielding zone of the aromatic rings of an adjacent
stack. In the type shown in 7b, the polymer backbones are
misaligned and the methylene groups bound to the
heteroatoms are forced to stay either above or below the
adjacent polymer backbone planes of the same less ordered π-
stack and find themselves in a shielding region. In both cases,
aromatic protons should be shielded.
The second class of poorly solvatochromic polymers is

formed by regiorandom polythiophenes24,25,42,52−54 and by
copolymers containing the fluorene moiety.18,55 The 1H NMR
spectra of these polymers are characterized by quite narrow line
widths and the absence of shielded broad signals in the
aromatic region. This behavior can be explained by a low
proneness of these polymers to form π-stacked aggregates and
by a tendency toward a random coil conformation even in
aggregates.

Aggregation Induced in Solvatochromic PSOct. To
understand if some aggregation process due to π-stacking could
be evidenced for a solvatochromic polymer, regioregular
PSOct27 was investigated. When the 1H NMR aromatic signal
of PSOct is closely observed (Figure 8a), two components can
be distinguished: one narrower and deshielded and the other
broader and shielded, appearing as a shoulder. Also, four
narrow and low shielded signals, which probably derive from
terminal chlorinated bithienyl units, are found. This is not
unexpected because it is known that chlorinated terminal units
form when PATs are synthesized through oxidative coupling
with FeCl3.

56

Apart from a shift observed for all resonances (also for a trace
of silicon and thus attributed to an unspecific interaction with
the added solvent), a gradual broadening of the thienyl proton
signals, a decrease of the intensity of the deshielded narrow
component (Figure 8a,b), and an increase of the shielded
shoulder are detected when methanol is added to a chloroform
solution of PSOct. When the amount of methanol induces a
persistent change in color of the solution (Figure 8c), the more
shielded band becomes even broader. The integral of the global
aromatic signals (with respect to that of residual CHCl3, used as
an internal reference) also decreases, indicating the formation
of some big aggregates characterized by transverse relaxation
times T2, too short to be detected by NMR. Integrals obtained
by the deconvolution of the narrow deshielded aromatic proton

Figure 9. Changes of the integrals of narrow (orange, random coil), broad (blue, π-stacks), and total (gray) aromatic signals of PSOct due to the
addition of deuterated methanol to a deuterated chloroform solution.

Figure 10. DOSY spectra of PSOct (a) in chloroform and (b) in 30% (v/v) methanol−chloroform mixture.
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signal and of the broad components (Figure 9) are consistent
with the gradual disappearance of the former and the
enhancement of the latter, which were assigned by us to the
resonances from random coil free chains and π-stacked
aggregates, respectively. Signal deconvolution allows under-
standing that some aggregation (shielded shoulder) is already
present in the chloroform solution at the concentration
employed for NMR measurements (3 mg/mL, much higher
than that used in UV−vis studies). A general broadening of the
alkyl proton signals, more evident for those closer to sulfur, is
also observed after the methanol addition.
An NOESY experiment allowed us to detect the dipolar

(through space) interactions between aromatic and SCH2
shielded and deshielded protons (Figure 8d). Note that the
shape of the enlarged cross-peak in Figure 8d closely resembles
that in Figure 4, although the extent of the broadening is lower
for PSOct than those for PCys and for other strongly
aggregating polymers,15−17,19 such as those reported in Chart
2. As far as the terminal portion of the alkyl chains is
concerned, no clear signs of trapping in aggregates were found
for this polymer.
Eventually, diffusion-ordered spectroscopy (DOSY) experi-

ments57 were run on chloroform and on 30% (v/v) methanol−
chloroform PSOct solutions (Figure 10), obtaining, quite
unexpectedly, a higher self-diffusion coefficient in the latter case
(1.7 × 10−10 vs 1.3 × 10−10 m2 s−1 in chloroform). This is still
more surprising if we consider that the viscosity of methanol−
chloroform mixtures increases with respect to that of the pure
solvents at high chloroform molar fractions.58 Hypothesizing a
similar behavior for the deuterated solvents, we interpolated a
value of 5.7 × 10−4 kg m−1 s−1 for the viscosity of the employed
solvent mixture (taking as a reference the viscosity of
deuterated chloroform reported in ref 59). Employing the
Stokes−Einstein equation for the translational diffusion
coefficient, D = kT/(6πηrH), the diameters of the diffusing
particles can be estimated to be around 6.4 and 4.5 nm in
chloroform and in methanol−chloroform mixture, respectively.
This means that the “aggregates” monitored by NMR for
PSOct probably derive from an intrachain π-stacking process,
similar to that described by Bartelt et al.,43 rather than from a
real interchain aggregation. An intrachain π-stacking process
can explain the shrinking of the diameter of the diffusing
particles observed by NMR.

■ CONCLUSIONS
In this work, we focused on the NMR behavior of thiophene-
based conjugated polymers and copolymers. We studied
solution NMR spectra of three categories of conjugated
polymers, mainly substituted with alkyl, functionalized alkyl,
alkylsulfanyl, and functionalized alkylsulfanyl chains.
The first category is formed by highly solvatochromic and

highly regioregular polythiophenes. They are present in good
solvents as free chains, in a random coil conformation, and give
1D and 2D NMR spectra in chloroform as if they were small
organic molecules, at least up to a number average molecular
weight of 20 kDa, which was the highest we studied. These
polymers planarize and aggregate in the presence of poor
solvents and in films, as demonstrated by studies mainly based
on UV−vis spectroscopy.
The second category is formed by polymers that display low

solvatochromism and present, in the aromatic region of 1H
NMR spectra, broad shielded components that are due to the
shielding induced by the π-stack formation on the aromatic

protons. The proneness to form π-stacked aggregates, even in
good solvents, is at the base of the low solvatochromism of
these polymers. Despite the large line widths, common 2D
NMR experiments (HSQC, TOCSY, and NOESY) can still be
used to gain a further insight into the structure of the
aggregates.
Polymers that display low solvatochromism but do not

present signs of aggregation in their NMR spectra form the
third category. They are regiorandom polythiophenes and
copolymers containing the fluorene units. For these polymers,
the poor solvatochromism observed can be explained with a
low tendency to form π-stacks in solution.
When aggregation is induced by the addition of a poor

solvent to a solvatochromic polymer, PSOct, in chloroform
solution, the signs of the formation of π-stacked structures can
be detected. In fact, some spectral broadening of the aromatic
resonances and the disappearance of the deshielded narrow
component are observed. Furthermore, NMR shows that the
terminal portions of the side chains seem not to be trapped in
PSOct aggregates, at least the NMR-visible ones. Eventually,
DOSY experiments indicate that the hydrodynamic radius of
the NMR-visible aggregates is 30% lower than that of the
random coil polymer chains. This finding suggests the
formation of intrachain π-stacked regions rather than to a real
interchain aggregation process, at least for the NMR-visible
aggregates of PSOct.
In conclusion, in this paper, we showed that NMR spectra

can be a valuable diagnostic tool for monitoring the proneness
of conjugated polymers to form π-stacks. Details on these
aggregates can be derived using 2D NMR experiments, which
can be employed even when broad lines are present in 1H
NMR spectra. These experiments can be used in conjunction
with other more employed techniques (UV−vis spectroscopy,
small-angle X-ray scattering, solid-state NMR, atomic force
microscopy, and scanning and transmission electron micros-
copy) to study the aggregation modes of conjugated polymers.

■ EXPERIMENTAL SECTION
Table 1 summarizes the references to the synthesis and
characterization of the polymers presented here and the data on
their molecular weight distributions.

1H and 13C NMR spectra were recorded with Bruker Avance
400 and Avance III HD 600 spectrometers, operated at 400.13
and 600.13 for proton and at 100.61 and 150.90 MHz for
carbon, respectively, using standard pulse sequences on 3−10
mg/mL solutions. Two-dimensional TOCSY spectra (mle-
vetgp) were acquired using 1 s relaxation delay, 60−100 ms
mixing (spin-lock) time, 10−20 ppm spectral width, 2−4k data
points, 8−32 scans per increment, and 256 increments. Two-
dimensional NOESY spectra (noesygpph) were acquired using
1 s relaxation delay, 50−100 ms mixing time, 10−20 ppm

Table 1. References, Weight Average Molecular Weight, Mw,
Number Average Molecular Weight, Mn, and Polydispersity,
PD, of the Polymers Reported Here

polymer references Mn (kDa) Mw (kDa) PD

PSOct 27 20 70 3.5
PSCN 49 2.2, 17a 2.7, 22a 1.2, 1.3a

PCys 20,51 93, 4.3a 260, 6.0a 2.8, 1.4
PSBTTT 16 8.0 17.0 2.4

aMinor component.
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spectral width, 2−4k data points, 24 scans per increment, and
256 increments. Two-dimensional echo−antiecho phase-
sensitive HSQC edited spectra (hsqcedetgpsp) were acquired
using 0.5 s relaxation delay, 1.6 ms evolution time, 10 ppm
spectral width in f2, 2k data points, 16−96 scans per increment,
160 ppm spectral width in f1, and 160−400 increments. Two-
dimensional HMBC spectra (hmbcgplpndqf) were acquired
using 0.5 s relaxation delay, a 2.9 ms low-pass J filter, 50−100
ms evolution time, 10 ppm spectral width in f2, 4k data points,
32−160 scans per increment, 160−180 ppm spectral width in
f1, and 160−400 increments. DOSY experiments were
performed at 298 K, on 5 mm NMR tubes spinning at 20
Hz, using a stimulated echo sequence incorporating bipolar
gradient pulses and a longitudinal eddy current delay
(ledbpgp2s), 250 ms diffusion time (big delta), 5 ms
longitudinal eddy current delay (Te), 2 × 1 − 1.5 ms δ (little
delta), and 64 linear gradient ramp, with a maximum strength
of 58 G cm−1, followed by a gradient pulse recovery time of 200
μs. After Fourier transformation and baseline correction, the
diffusion dimension of the 2D DOSY spectra was processed by
means of the Bruker TopSpin 3.5 software package.
Deconvolution of 1H NMR spectra was done with Mnova
9.1.0 software (2012 Mestrelab Research S.L., Santiago de
Compostela, Spain).
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McGehee, M. D. Controlling Solution-Phase Polymer Aggregation
with Molecular Weight and Solvent Additives to Optimize Polymer-
Fullerene Bulk Heterojunction Solar Cells. Adv. Energy Mater. 2014, 4,
1301733.
(44) Lanzi, M.; Costa-Bizzarri, P.; Della-Casa, C.; Paganin, L.;
Fraleoni, A. Synthesis, characterization and optical properties of a
regioregular and soluble poly[3-(10-hydroxydecyl)-2,5-thienylene].
Polymer 2003, 44, 535−545.
(45) Lanzi, M.; Paganin, L. Study of the order-disorder transitions in
methoxy-functionalized polyalkylthiophenes. Eur. Polym. J. 2008, 44,
3987−3996.
(46) Lanzi, M.; Paganin, L. New regioregular polythiophenes
functionalized with sulfur-containing substituents for bulk hetero-
junction solar cells. React. Funct. Polym. 2010, 70, 346−360.
(47) Lanzi, M.; Costa-Bizzarri, P.; Paganin, L.; Cesari, G. Synthesis by
post-polymerization functionalization of sensitive polythiophenes for
selective chemo-recognition purposes. React. Funct. Polym. 2007, 67,
329−340.
(48) Barbarella, G.; Bongini, A.; Zambianchi, M. Regiochemistry and
Conformation of Poly(3-hexylthiophene) via the Synthesis and the
Spectroscopic Characterization of the Model Configurational Triads.
Macromolecules 1994, 27, 3039−3045.
(49) Cagnoli, R.; Mucci, A.; Parenti, F.; Schenetti, L.; Borsari, M.;
Lodi, A.; Ponterini, G. A poly(alkylsulfany)thiophene functionalized
with carboxylic groups. Polymer 2006, 47, 775−784.
(50) Cagnoli, R.; Caselli, M.; Libertini, E.; Mucci, A.; Parenti, F.;
Ponterini, G.; Schenetti, L. Aggregation behaviour of a water-soluble
ammonium-functionalized polythiophene: Luminescence enhance-
ment induced by bile-acid anions. Polymer 2012, 53, 403−410.
(51) Mucci, A.; Parenti, F.; Schenetti, L. A Self-Assembling
Polythiophene Functionalised with a Cysteine Moiety. Macromol.
Rapid Commun. 2003, 24, 547−550.
(52) Lanzi, M.; Costa Bizzarri, P.; Paganin, L.; Cesari, G. Highly
Processable ester-functionalized polythiophenes as valuable multifunc-
tional and post-functionalizable conjugated polymers. Eur. Polym. J.
2007, 43, 72−83.
(53) Lanzi, M.; Bertinelli, F.; Costa-Bizzarri, P.; Paganin, L.; Cesari,
G. Tuning of the electronic properties of self-assembling and highly
sensitive chromic polyalkylthiophenes. Eur. Polym. J. 2007, 43, 835−
846.
(54) Lanzi, M.; Costa Bizzarri, P.; Paganin, L.; Cesari, G. A new
polythiophene derivative with highly sensitive and selective
affinitychromism properties. Synth. Met. 2007, 157, 719−725.
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