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Chapter 1

A Wiener-Hopf system of equations in the
steady-state propagation of a rectilinear crack in
an infinite elastic plate

A. Nobili, E. Radi and L. Lanzoni

1.1 Introduction

Let us consider a Kirchhoff-Love infinite plate with thiclssh, supported by a
Winkler elastic foundation (Fig.1.1). The plate has a Ine@ck and a Cartesian
reference frame is introduced such that the crack correfspmrthe negative part of
thex;-axis. Besides, the crack is linearly propagating at a emspeed (steady-
state propagation) and the origin of the Cartesian referénaene is attached to and
moves along with the crack tip. The governing equation fertthnsverse displace-
ment of the platev reads

DAAW+kw= —phdyw+ q, 1.1)

being A = dy,x, + Ox,x, the Laplace operator in two dimensiomsthe transverse
distributed load per unit are®, the plate bending stiffnesk,the Winkler modulus
andp the mass density per unit volume [6]. We ¥et= w(x; — vt,xp) and Eq.(1.1)

may be rewritten as

AAWAH K20 3 W+ A ~dw = %, (1.2)

having let thecharacteristic lengths
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Fig. 1.1 Cracked Kirchhoff plate resting on a Winkler elastic foundatiThe crack is propagating
in thex direction with speed

_ 4B _ /P
A= K and kK = o’

together with the positive dimensionless ratio
n=A/K.

We rescale the co-ordinate axgsy) = A ~1(xy,%2) and takeg = 0, with no loss of
generality. Then, Eq.(1.2) becomes

AAW+ n?0,wW+w=0, (1.3)

whereA = d,+ dyyis the Laplacian operator in the dimensionless co-ordinaie

The special casg = 0 corresponds to the static problem, whose solution is given
in [1] and extended in [7]. The Fourier transformvafx, y) alongx is defined on the
real axis in the usual way

Fw|(s,y) =w(sy) = +°\jv(x, y) exp(isx)dx

along with the inverse transform

F W (x,y) = W(x,y) = %T [ j\jV(s, y) exp(—isx)ds.

In the same fashion, the unilateral (or generalized) tanss are introduced:
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— +o
FHW(sy) =W (sy) = [ w(xy)exp(isxdx
0

which is analytic in the complex half-plane (8) > —a; provided thada; > 0
such thatw(x,y) < Wi (y)exp(—ai1x) asx — +oo (for a study of the regularity of
this transform see [10]), and

Fi(sy) =W (sy) = [ wixy)explisxi

which is analytic in the complex half-plane (8) < a» provided thaBa, > 0 such
thatw(x,y) >Wa(y) exp(azx) asx — —. Consequently, the bilateral Fourier trans-
form is related to the unilateral transforms through

W(sy) =W'(sy) +W (sy) (1.4)

and it is analytic in the infinite strip” = {se C: —a1 < Im(s) < az} containing
the real axis. Taking the Fourier transform of Eq.(1.3) ia xhvariable, a linear
constant coefficient ODE is obtained whose general soligion

W(s.y) = Arexp(—/Auly]) + Brexp(v/A1ly])
+Azexp(—/Azlyl) + Bzexp(v/Aaly)),
wherein
M2=5F/n?2 -1, (1.5)

such that\1/; = s* — n2s? + 1. Hereinafter, Res) and Im(s) denote the real and
the imaginary part of € C, respectively, and a superscript asterisk denotes complex
conjugation, i.es* = Re(s) —11m(s). Letw(x,y™) (w(x,y~)) be the restriction of the
displacementv(x,y) in the upper (lower) half of théx,y)-plane, respectively. It is
understood thay* € (0,+) andy~ € (—,0). The general solution of the ODE
(1.3), bounded at infinity, is

W(s,y5) = Af exp(—/Aly]) + AL exp(—/Aaly)), (1.6)

whereA7, A; are fourcomplex-valuedunctions ofs to be determined. The square
root in (1.6) is made defined by choosing the Riemann shebtthat R¢ /A1 ») >
0. Besides, we let the shorthand notation for the restriatio(1.6) to thex-axis

Wo= (S) = Af +AS (1.7)
and letA* split into symmetric and skew-symmetric parts

AE=1(A£AAN), =12 (1.8)
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1.2 Boundary conditions

Let the bending moment and equivalent shearing force (degof the factoD)
together with the slope

The boundary conditions (BCs) across the ne 0 ahead of the crack tip are of
the kinematic type as they warrant continuity for displaeatrand slope

[Wo(X)] = [@(x)] =0, x>0, (1.9)

and of the static type, for they demand continuity for begdimoment and equiva-
lent shearing force

[mo(x)] = [vo(x)] =0, x>0. (1.10)

Here,[f(0)] denotes the jump of the functioi(y) acrossy = 0, namelyf(0") —
f(07), while a subscript zero stands for evaluation on the rea. &onversely, it
is assumed that the crack flanks are loaded in a continuoh®iaby a harmonic
loading. Then, the BCs at the crack lipe- 0 are

m(x,0%) = Moexp(1ax), V(x,0%) =\Vpexp(lax), x<O0, (1.12)
whereMp = Mo(a), Vo = Vo(a) and
Im(a) <0 (1.12)

to ensure a decay condition as—+ —. We observe that the system (1.11), just
like the system (1.9,1.10), entails four conditions, fapplies at both flanks of the
crack (denoted by = 0%). As a consequence of loading continuity, Egs.(1.10) hold
on the entire real line. Furthermore, we note that a simitablem arises in the
realm of couple-stress theory, although with a differemto§éooundary conditions
[9, 5, 8].

Eq.(1.9) may be written in terms of the generalized plussfieGim as

(W51 =] =0.

whence, using the general solution (1.6) and in view of Hgé, (1.8), it is

AAL+AA; = Wy ], (1.13a)
—VMAL— VB = @] (1.13b)
Likewise, the Fourier unilateral transform of Eqs.(1.1l/eg
N S, V)
M ="sa =5y
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in the strip.#1 = {s: Im(s) < —Im(a)}. In particular, inequality (1.12) guarantees
the existence of the minus transform up to a little above &a¢ axis in the lower
complex half-plane. Thus

— [(Alf VSZ)AT+(/\27 VSZ)A:ZE] _ rﬁz,)_ . I::l_—ll,
(1.14a)

(VA= 2-vF A+ Ve [he - (2-v)F] A :‘73_'s\-/Toa’
(1.14b)

in the strip.%p = ¥ N.71. Finally, the Fourier transforming Egs.(1.10), which are
holding on the entire real line, gives

(A1 — VS2)AAL + (A — V) AA; =0, (1.15a)
VM AL = (2= V)E] AL+ VA [N — (2 )] Ay =0, (1.15b)
according to which the system (1.14) becomes
LM —Vv)AL+ (N2 — v A =g — Isl\—/ls-ioa’
(1.16a)
VAL M- 2= v)R] a8+ Pz [Ag— (2 )] Ao | =T~ |S\17°a.
(1.16b)
Conditions (1.15) are immediately fulfilled through legfin
AAL = — (N2 — V) AA,
APy = (A1 —VSD)AA,
AL= /N [Aa— (2—V)S] A,
Ao = /A1 [M— (2—v)F] A
Then, Eqgs.(1.13) become
(AL —A2) AA=[W, ], (1.18a)
VA (Ao A= [g5] (1.18b)
Likewise, the system (1.16) gives
(A2 — A1) K(S)A = — |S'\i—zl, (1.19a)
(A2 —A)K(9AA = — 's\-/TOa’ (1.19b)
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where thekernel function Ks) is let as follows:
2(A2—M)K(9) = =ML [A1— (2— V)] (Ao — vSP)
+ VA2 [N = (2— V)] (AL —vs). (1.20)

With the help of Eq.(1.5), Eq.(1.20) may be rewritten as

AVPF T () =[P 1 (v V1)
-V (vos - \/W)Z, (1.21)

having letvg = 1 — v. In particular, in the limit ag) — 0 and with/n2s? — 1 — 1,

the kernel 4K(s) in Eq.(1.21) reduces to Eq.(24) of [1]. Solving the systemi§)
for the unknown function#, AA and plugging the result in Egs.(1.19) provides the
following two uncoupled Wiener-Hopf (W-H) equations, ndyne

Vo
K(s)[wo ] + Vo PSPy
_ — _ M
(M) 2K (S [y ]~ = —1 22

Making use of Eq.(1.5), this system of functional equatiorasy be rewritten as

0 (1.22a)

(1.22b)

having taken the factor decompositidnA, = (s2 — 2)(s2 — B*2), with

B3>/ -1

It is observed thaB is a complex number with unit modulus and it is located in the
first quadrant of the complex plane inasmuch as f < v/2. Alternatively, when
n > /2, we define the positive real numbgs> £,

Bi2= \/énzi V (%02)2— 1

and the following manipulations still hold formally, withé understanding thg
stands for3; and* stands foiB3,. Furthermore, we observe that

BB =PBo=1
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1.3 Wiener-Hopf factorization

The kerneK(s) is an even function and it possesses 6 roots
K(s) =0fors=+s;,+s], ands= =£iry, (1.23)

all of which are of multiplicity 1, in the general case. Hesgjs taken to sit in the
first quadrant of the complex plane,

2 4
(M ny _
Ve J(”R) - (UR) L (1.24)

having letng = v/2ye, with

Vo = </(1—v)(3v—1+2\/2v2—72v+1) (1.25)

andye € [v2(v/5—2)Y/4,1] is a well-known bending edge-wave constant [4, 3, 2].
The double roots in the kern&l(s) bring in four non-straight branch cuts which
extend froms = £{1,+{; to %I,

It is observed that fov = 0, we havey. = 1 and the rootsts;, =] coincide
with the branch points for the double roat$, +£*, whence their multiplicity goes
down to 1/2. Besides, itis easy to see tlsats complex-valued fon < ngr (subsonic
regime) and it sits in the complex plane on the circle of ragitt, i.e.

1-(n/nr)*
(n/nr)?

In a similar fashion, letting)s = v/2ym, we find the location of the purely imaginary

roots=+irq
2 4
= —1 <n) + <n> +1’
! Vm\l ns Ns

where we have defined the monotonic decreasing function of

Ym = C/(l— V)(=3v+1+2y/2v2—-2v+1),

We note tham, € [%(2\/5— 1)Y/4,v/2(v/5+ 2)Y4] andr; is a real-valued mono-

tonic decreasing (increasing) function of(of n), whose minimunr; = y;t is
attained in the static cagp= 0, i.e. unlikes, this root never reaches the real axis.
In the special case af = 0 (stationary crack), we have

_ V2
r1:Vel and Slzﬁ
e

s =y, texp(16/2), tanf =

(1+1),
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whences; sits on the bisector of the first-third quadrants of the caxglane. In
contrast, fom > ng (hypersonic regime3; turns real-valued and the root landscape
(1.23) switches to

+s ,4s;,+lIry, (1.26)

where now O< s_ < s, are real values

2 4
_yul(n ny
STV \l(ﬂR) i ('7R> t (1.27)

Let us define, for any value > a1 = max(Im(sz),r1),
vs—1byvs+1b
c(s—s1)(s+s1)(s—s7)(s+5))
along with the constart= vg(3+ v)/4. In the special case = 0, we need set
B vs—1bys+1b K(s

C\/S—81\/S+81,/S—S1\/S+Sj(S—Ir)(s+1r1)

The functionF (s) is deprived of zeros in an semi-infinite strip of analyticiyout
the real axis?, extending along the imaginary axis updg= a2 = Im(s;), and it
is such that liny_,, F(s) = 1 in this strip. The Cauchy integral theorem gives

F(s) =

K(s), v#£0, (1.28)

v=_0.

1 rInF(2 4z

InF(s) = 2m . c Z—S

2

whereC may be taken as the close path in the analyticity strip ctingi®f two
parallel infinite lines a little above and a little below theal axis whiles sits within
this closed path. The former contribution brings along ausifunction,F~ (s), the
latter a plus functionk"*(s), for we may define

F'(s)=expR(s) and F(s)=F"(-s),

where

©-I¢ InF(z
Zm/m 77s dzz O<c<a;. (1.29)
Then, providedIm(s)| < c, we have

F(s)=F"(sF (s,

and the system (1.22) reads

PN Vg 1
KMo ]+ g = Vs rake(e; (1.30a)
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VS+BVS CMgYSTRVS=B ) 301

LS R ey (R A Ve STV
V/s—B+/s+B* K*(s) (s+a)K*(s)
where,

K= () = fc(Sisls)\/gsi)Fi(s) exp(-£171/4),

with the property thakK~(s) = KT (—s). Clearly, for large values d§|, we get the
asymptotic behavior
K*(s) ~ v/Cexp(x1m/4)|s*/2.

Finally, the RHS’ are split in terms of a plus and a minus fiorgtthus giving

Vg Vo 1 1 Vo B _
Kf)(s) “'sta <K+(S) - K(a)) ~'sraK (a) —K (9w ], (1.31a)
CIN= NG Ve e Ve
K*(s) s+a K+ (s) K (a)

Mo a-Bya+p* K=(s) —
='sta K- (a) +@W[[tpo]], (1.31b)

Since the LHSs (RHSs) represent two analytic functions énupper (lower) half
complex plane with a common strip of regularity, they can ih&litically continued
to the whole complex plane giving two entire functidggs) andEx(s), i.e. they
are holomorphic over the whole complex plane. It is obsethad both hands of
Egs.(1.31) behave like * ass — o, whereuporE; (s) = Ex(s) = 0, by Liouville’s
theorem. Indeed,

W(X) ~ x%/2 SW () ~S 2, ex)~x"2= @ (s)~s 2
mx) ~x Y2 smt(s)~s Y2 vx) ~x2 VT (s) ~ 82,
the latter being meaningful in a distributional sense. Thus
B v 1
wo 1= K@ 5TaK (9 (1.32)
" VAPV ATE 5By
- a—p+/a+p* /s—By/s+B*
(%] =Mo" = STaK (5 (1.33)

Likewise, we obtain a direct expression for the unilatemlrter transform of bend-
ing moment and shearing force along the co-ordinateyd®, namely

_ Mo 1— va—By/a+p* Kt (s) (1.34)
V/s+B\/s—B* K (a) '

and
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— Vo K+(S)
Vg = 'sra (1 K(a)> . (1.35)

It is observed that, according to Jordan’s lemma [10], H32) and (1.33) satisfy
both BCs (1.9) and, by the same argument, Eqs.(1.35) and))(@oBvey the condi-
tions (1.10).
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