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Chapter 1
A Wiener-Hopf system of equations in the
steady-state propagation of a rectilinear crack in
an infinite elastic plate

A. Nobili, E. Radi and L. Lanzoni

1.1 Introduction

Let us consider a Kirchhoff-Love infinite plate with thickness h, supported by a
Winkler elastic foundation (Fig.1.1). The plate has a linear crack and a Cartesian
reference frame is introduced such that the crack corresponds to the negative part of
thex1-axis. Besides, the crack is linearly propagating at a constant speedv (steady-
state propagation) and the origin of the Cartesian reference frame is attached to and
moves along with the crack tip. The governing equation for the transverse displace-
ment of the platew reads

D△△w+kw=−ρh∂ttw+q, (1.1)

being△ = ∂x1x1 + ∂x2x2 the Laplace operator in two dimensions,q the transverse
distributed load per unit area,D the plate bending stiffness,k the Winkler modulus
andρ the mass density per unit volume [6]. We letw= w(x1−vt,x2) and Eq.(1.1)
may be rewritten as

△△w+κ−2∂x1x1w+λ−4w=
q
D
, (1.2)

having let thecharacteristic lengths
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Fig. 1.1 Cracked Kirchhoff plate resting on a Winkler elastic foundation. The crack is propagating
in thex direction with speedv

λ =
4

√

D
k
, and κ =

√

D
ρhv2 ,

together with the positive dimensionless ratio

η = λ/κ .

We rescale the co-ordinate axes(x,y) = λ−1(x1,x2) and takeq≡ 0, with no loss of
generality. Then, Eq.(1.2) becomes

△̂△̂w+η2∂xxw+w= 0, (1.3)

where△̂= ∂xx+∂yy is the Laplacian operator in the dimensionless co-ordinatesx,y.
The special caseη = 0 corresponds to the static problem, whose solution is given
in [1] and extended in [7]. The Fourier transform ofw(x,y) alongx is defined on the
real axis in the usual way

F [w](s,y) = w̄(s,y)
.
=
∫ +∞

−∞
w(x,y)exp(isx)dx

along with the inverse transform

F
−1[w̄](x,y) = w(x,y)

.
=

1
2π

∫ +∞

−∞
w̄(s,y)exp(−isx)ds.

In the same fashion, the unilateral (or generalized) transforms are introduced:
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F
+[w](s,y) = w̄+(s,y)

.
=

∫ +∞

0
w(x,y)exp(ısx)dx

which is analytic in the complex half-plane Im(s) > −α1 provided that∃α1 > 0
such thatw(x,y) < W1(y)exp(−α1x) asx → +∞ (for a study of the regularity of
this transform see [10]), and

F
−[w](s,y) = w̄−(s,y)

.
=
∫ 0

−∞
w(x,y)exp(ısx)dx,

which is analytic in the complex half-plane Im(s)< α2 provided that∃α2 > 0 such
thatw(x,y)>W2(y)exp(α2x) asx→−∞. Consequently, the bilateral Fourier trans-
form is related to the unilateral transforms through

w̄(s,y) = w̄+(s,y)+ w̄−(s,y) (1.4)

and it is analytic in the infinite stripS = {s∈ C : −α1 < Im(s) < α2} containing
the real axis. Taking the Fourier transform of Eq.(1.3) in the x variable, a linear
constant coefficient ODE is obtained whose general solutionis

w̄(s,y) = A1exp(−
√

Λ1|y|)+B1exp(
√

Λ1|y|)
+A2exp(−

√

Λ2|y|)+B2exp(
√

Λ2|y|),

wherein
Λ1,2 = s2∓

√

η2s2−1, (1.5)

such thatΛ1Λ2 = s4−η2s2+1. Hereinafter, Re(s) and Im(s) denote the real and
the imaginary part ofs∈C, respectively, and a superscript asterisk denotes complex
conjugation, i.e.s∗ =Re(s)− ı Im(s). Letw(x,y+) (w(x,y−)) be the restriction of the
displacementw(x,y) in the upper (lower) half of the(x,y)-plane, respectively. It is
understood thaty+ ∈ (0,+∞) andy− ∈ (−∞,0). The general solution of the ODE
(1.3), bounded at infinity, is

w̄(s,y±) = A±
1 exp(−

√

Λ1|y|)+A±
2 exp(−

√

Λ2|y|), (1.6)

whereA±
1 ,A

±
2 are fourcomplex-valuedfunctions ofs to be determined. The square

root in (1.6) is made defined by choosing the Riemann sheet such that Re(
√

Λ1,2)>
0. Besides, we let the shorthand notation for the restriction of (1.6) to thex-axis

w̄0±(s) = A±
1 +A±

2 (1.7)

and letA±
i split into symmetric and skew-symmetric parts

A±
i = 1

2

(

Āi ±∆Ai
)

, i = 1,2. (1.8)
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1.2 Boundary conditions

Let the bending moment and equivalent shearing force (deprived of the factorD)

m=−(∂yy+ν∂xx)w, v=−∂y [∂yy+(2−ν)∂xx]w,

together with the slope
φ = ∂yw.

The boundary conditions (BCs) across the liney = 0 ahead of the crack tip are of
the kinematic type as they warrant continuity for displacement and slope

Jw0(x)K = Jφ0(x)K = 0, x> 0, (1.9)

and of the static type, for they demand continuity for bending moment and equiva-
lent shearing force

Jm0(x)K = Jv0(x)K = 0, x> 0. (1.10)

Here,J f (0)K denotes the jump of the functionf (y) acrossy= 0, namely f (0+)−
f (0−), while a subscript zero stands for evaluation on the real axis. Conversely, it
is assumed that the crack flanks are loaded in a continuous fashion by a harmonic
loading. Then, the BCs at the crack liney= 0 are

m(x,0±) = M0exp(ıax), v(x,0±) =V0exp(ıax), x< 0, (1.11)

whereM0 = M0(a), V0 =V0(a) and

Im(a)< 0 (1.12)

to ensure a decay condition asx → −∞. We observe that the system (1.11), just
like the system (1.9,1.10), entails four conditions, for itapplies at both flanks of the
crack (denoted byy= 0±). As a consequence of loading continuity, Eqs.(1.10) hold
on the entire real line. Furthermore, we note that a similar problem arises in the
realm of couple-stress theory, although with a different set of boundary conditions
[9, 5, 8].

Eq.(1.9) may be written in terms of the generalized plus transform as

Jw̄+
0 K = Jφ̄+

0 K = 0,

whence, using the general solution (1.6) and in view of Eqs.(1.4, 1.8), it is

∆A1+∆A2 = Jw̄−
0 K, (1.13a)

−
√

Λ1Ā1−
√

Λ2Ā2 = Jφ̄−
0 K. (1.13b)

Likewise, the Fourier unilateral transform of Eqs.(1.11) gives

m̄−
0 =−ı

M0

s+a
, v̄−0 =−ı

V0

s+a
,



1 Steady-state crack propagation 5

in the stripS1 = {s : Im(s) < − Im(a)}. In particular, inequality (1.12) guarantees
the existence of the minus transform up to a little above the real axis in the lower
complex half-plane. Thus

−
[

(Λ1−νs2)A±
1 +(Λ2−νs2)A±

2

]

= m̄+
0 − ı

M0

s+a
,

(1.14a)

±
{

√

Λ1
[

Λ1− (2−ν)s2]A±
1 +

√

Λ2
[

Λ2− (2−ν)s2]A±
2

}

= v̄+0 − ı
V0

s+a
,

(1.14b)

in the stripS0 = S ∩S1. Finally, the Fourier transforming Eqs.(1.10), which are
holding on the entire real line, gives

(Λ1−νs2)∆A1+(Λ2−νs2)∆A2 = 0, (1.15a)
√

Λ1
[

Λ1− (2−ν)s2] Ā1+
√

Λ2
[

Λ2− (2−ν)s2] Ā2 = 0, (1.15b)

according to which the system (1.14) becomes

−1
2

[

(Λ1−νs2)Ā1+(Λ2−νs2)Ā2
]

= m̄+
0 − ı

M0

s+a
,

(1.16a)

1
2

{

√

Λ1
[

Λ1− (2−ν)s2]∆A1+
√

Λ2
[

Λ2− (2−ν)s2]∆A2

}

= v̄+y0− ı
V0

s+a
.

(1.16b)

Conditions (1.15) are immediately fulfilled through letting

∆A1 =−(Λ2−νs2)∆A,

∆A2 = (Λ1−νs2)∆A,

Ā1 =−
√

Λ2
[

Λ2− (2−ν)s2] Ā,

Ā2 =
√

Λ1
[

Λ1− (2−ν)s2] Ā.

Then, Eqs.(1.13) become

(Λ1−Λ2)∆A= Jw̄−
0 K, (1.18a)

−
√

Λ1Λ2 (Λ1−Λ2) Ā= Jφ̄−
0 K. (1.18b)

Likewise, the system (1.16) gives

(Λ2−Λ1)K(s)Ā= m̄+
0 − ı

M0

s+a
, (1.19a)

(Λ2−Λ1)K(s)∆A= v̄+0 − ı
V0

s+a
, (1.19b)
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where thekernel function K(s) is let as follows:

2(Λ2−Λ1)K(s) =−
√

Λ1
[

Λ1− (2−ν)s2](Λ2−νs2)

+
√

Λ2
[

Λ2− (2−ν)s2](Λ1−νs2). (1.20)

With the help of Eq.(1.5), Eq.(1.20) may be rewritten as

4
√

η2s2−1K(s) =
√

s2−
√

η2s2−1
(

ν0s2+
√

η2s2−1
)2

−
√

s2+
√

η2s2−1
(

ν0s2−
√

η2s2−1
)2

, (1.21)

having letν0 = 1−ν . In particular, in the limit asη → 0 and with
√

η2s2−1→ ı,
the kernel 4ıK(s) in Eq.(1.21) reduces to Eq.(24) of [1]. Solving the system (1.18)
for the unknown functions̄A,∆A and plugging the result in Eqs.(1.19) provides the
following two uncoupled Wiener-Hopf (W-H) equations, namely

K(s)Jw̄−
0 K+ v̄+0 = ı

V0

s+a
,

(Λ1Λ2)
−1/2K(s)Jφ̄−

0 K− m̄+
0 =−ı

M0

s+a
.

Making use of Eq.(1.5), this system of functional equationsmay be rewritten as

K(s)Jw̄−
0 K+ v̄+0 = ı

V0

s+a
, (1.22a)

K(s)
√

s2−β 2
√

s2−β ∗2
Jφ̄−

0 K− m̄+
0 =−ı

M0

s+a
, (1.22b)

having taken the factor decompositionΛ1Λ2 = (s2−β 2)(s2−β ∗2), with

β =

√

1
2η2+

√

(

1
2η2

)2−1.

It is observed thatβ is a complex number with unit modulus and it is located in the
first quadrant of the complex plane inasmuch as 0≤ η <

√
2. Alternatively, when

η ≥
√

2, we define the positive real numbersβ1 ≥ β2,

β1,2 =

√

1
2η2±

√

(

1
2η2

)2−1

and the following manipulations still hold formally, with the understanding thatβ
stands forβ1 andβ ∗ stands forβ2. Furthermore, we observe that

ββ ∗ = β1β2 = 1.
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1.3 Wiener-Hopf factorization

The kernelK(s) is an even function and it possesses 6 roots

K(s) = 0 for s=±s1,±s∗1, ands=±ır1, (1.23)

all of which are of multiplicity 1, in the general case. Here,s1 is taken to sit in the
first quadrant of the complex plane,

s1 = γ−1
e

√

√

√

√

(

η
ηR

)2

+

√

(

η
ηR

)4

−1, (1.24)

having letηR =
√

2γe, with

γe =
4
√

(1−ν)(3ν −1+2
√

2ν2−2ν +1) (1.25)

andγe ∈ [
√

2(
√

5−2)1/4,1] is a well-known bending edge-wave constant [4, 3, 2].
The double roots in the kernelK(s) bring in four non-straight branch cuts which
extend froms=±ζ1,±ζ ∗

1 to±ı∞.
It is observed that forν = 0, we haveγe = 1 and the roots±s1,±s∗1 coincide

with the branch points for the double roots±β ,±β ∗, whence their multiplicity goes
down to 1/2. Besides, it is easy to see thats1 is complex-valued forη <ηR (subsonic
regime) and it sits in the complex plane on the circle of radius γ−1

e , i.e.

s1 = γ−1
e exp(ıθ/2), tanθ =

1− (η/ηR)
4

(η/ηR)2 .

In a similar fashion, lettingηS=
√

2γm, we find the location of the purely imaginary
roots±ır1

r1 = γ−1
m

√

√

√

√

(

η
ηS

)2

+

√

(

η
ηS

)4

+1,

where we have defined the monotonic decreasing function ofν

γm =
4
√

(1−ν)(−3ν +1+2
√

2ν2−2ν +1),

We note thatγm ∈ [ 1√
2
(2
√

2−1)1/4,
√

2(
√

5+2)1/4] andr1 is a real-valued mono-

tonic decreasing (increasing) function ofν (of η), whose minimumr1 = γ−1
m is

attained in the static caseη = 0, i.e. unlikes1, this root never reaches the real axis.
In the special case ofη = 0 (stationary crack), we have

r1 = γ−1
e and s1 =

√
2

2γe
(1+ ı),
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whences1 sits on the bisector of the first-third quadrants of the complex plane. In
contrast, forη > ηR (hypersonic regime)s1 turns real-valued and the root landscape
(1.23) switches to

±s−,±s+,±ır1, (1.26)

where now 0< s− < s+ are real values

s∓ = γ−1
e

√

√

√

√

(

η
ηR

)2

∓

√

(

η
ηR

)4

−1. (1.27)

Let us define, for any valueb> α1 = max(Im(s1), r1),

F(s) =

√
s− ıb

√
s+ ıb

c(s−s1)(s+s1)(s−s∗1)(s+s∗1)
K(s), ν 6= 0, (1.28)

along with the constantc= ν0(3+ν)/4. In the special caseν = 0, we need set

F(s) =

√
s− ıb

√
s+ ıb

c
√

s−s1
√

s+s1
√

s−s∗1
√

s+s∗1(s− ır1)(s+ ır1)
K(s), ν = 0.

The functionF(s) is deprived of zeros in an semi-infinite strip of analyticityabout
the real axisS , extending along the imaginary axis up toα1 = α2 = Im(s1), and it
is such that lim|s|→∞ F(s) = 1 in this strip. The Cauchy integral theorem gives

lnF(s) =
1

2πı

∮

C

lnF(z)
z−s

dz,

whereC may be taken as the close path in the analyticity strip consisting of two
parallel infinite lines a little above and a little below the real axis whilessits within
this closed path. The former contribution brings along a minus function,F−(s), the
latter a plus function,F+(s), for we may define

F+(s) = expR(s) and F−(s) = F+(−s),

where

R(s) =
1

2πı

∫ ∞−ıc

−∞−ıc

lnF(z)
z−s

dz, 0< c< α1. (1.29)

Then, provided| Im(s)|< c, we have

F(s) = F+(s)F−(s),

and the system (1.22) reads

K−(s)Jw̄−
0 K+

v̄+0
K+(s)

= ıV0
1

(s+a)K+(s)
, (1.30a)
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K−(s)
√

s−β
√

s+β ∗ Jφ̄−
0 K−

√

s+β
√

s−β ∗

K+(s)
m̄+

0 =−ıM0

√

s+β
√

s−β ∗

(s+a)K+(s)
, (1.30b)

where,

K±(s) =
√

c
(s±s1)(s∓s∗1)√

s± ıb
F±(s)exp(±ıπ/4),

with the property thatK−(s) = K+(−s). Clearly, for large values of|s|, we get the
asymptotic behavior

K±(s)∼
√

c exp(±ıπ/4)|s|3/2.

Finally, the RHS’ are split in terms of a plus and a minus function, thus giving

v̄+0
K+(s)

− ı
V0

s+a

(

1
K+(s)

− 1
K−(a)

)

= ı
V0

(s+a)K−(a)
−K−(s)Jw̄−

0 K, (1.31a)

√

s+β
√

s−β ∗

K+(s)
m̄+

0 − ı
M0

s+a

(

√

s+β
√

s−β ∗

K+(s)
−
√

a−β
√

a+β ∗

K−(a)

)

= ı
M0

s+a

√

a−β
√

a+β ∗

K−(a)
+

K−(s)
√

s−β
√

s+β ∗ Jφ̄−
0 K, (1.31b)

Since the LHSs (RHSs) represent two analytic functions in the upper (lower) half
complex plane with a common strip of regularity, they can be analitically continued
to the whole complex plane giving two entire functionsE1(s) andE2(s), i.e. they
are holomorphic over the whole complex plane. It is observedthat both hands of
Eqs.(1.31) behave likes−1 ass→ ∞, whereuponE1(s)≡ E2(s)≡ 0, by Liouville’s
theorem. Indeed,

w(x)∼ x3/2 ⇒w̄−(s)∼ s−5/2, φ(x)∼ x1/2 ⇒ φ̄−(s)∼ s−3/2,

m(x)∼ x−1/2 ⇒m̄+(s)∼ s−1/2, v(x)∼ x−3/2 ⇒ v̄+(s)∼ s1/2,

the latter being meaningful in a distributional sense. Thus

Jw̄−
0 K = ı

V0

K−(a)
1

(s+a)K−(s)
, (1.32)

and

Jφ̄−
0 K = ıM0

√

a−β
√

a+β ∗

K−(a)

√

s−β
√

s+β ∗

(s+a)K−(s)
. (1.33)

Likewise, we obtain a direct expression for the unilateral Fourier transform of bend-
ing moment and shearing force along the co-ordinate axisy= 0, namely

m̄+
0 = ı

M0

s+a

(

1−
√

a−β
√

a+β ∗
√

s+β
√

s−β ∗
K+(s)
K−(a)

)

(1.34)

and
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v̄+0 = ı
V0

s+a

(

1− K+(s)
K−(a)

)

. (1.35)

It is observed that, according to Jordan’s lemma [10], Eqs.(1.32) and (1.33) satisfy
both BCs (1.9) and, by the same argument, Eqs.(1.35) and (1.34) convey the condi-
tions (1.10).
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