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The problem of a rectilinear crack propagating at
constant speed in an elastically supported thin plate
and acted upon by an equally moving load is
considered. The full-field solution is obtained and
the spotlight is set on flexural edge wave generation.
Below the critical speed for the appearance of
travelling waves, a threshold speed is met which
marks the transformation of decaying edge waves
into edge waves propagating along the crack and
dying away from it. Yet, besides these, and for any
propagation speed, a pair of localized edge waves,
which rapidly decay behind the crack tip, is also
shown to exist. These waves are characterized by a
novel dispersion relation and fade off from the crack
line in an oscillatory manner, whence they play an
important role in the far field behaviour. Dynamic
stress intensity factors are obtained and, for speed
close to the critical speed, they show a resonant
behaviour which expresses the most efficient way to
channel external work into the crack. Indeed, this
behaviour is justified through energy considerations
regarding the work of the applied load and the
energy release rate. Results might be useful in a
wide array of applications, ranging from fracturing
and machining to acoustic emission and defect
detection.
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1. Introduction
Crack propagation in elastically supported thin structures made of brittle or quasi-brittle material
is a common feature of many natural phenomena, such as ice fracturing and calving, rock fault
planes and layered material failure, road pavement deterioration, surface coating detachment, to
name only a few. In all instances, cracking takes place at the expense of the stored elastic energy,
which is rapidly converted into stress waves travelling in the material and providing the so-called
acoustic emission (AE). AE can be measured in the far-field and it lends a convenient indirect
means to access the internal change in the material status. Besides travelling waves, moving in
the bulk of the material, edge waves are usually excited and occur in a localized region near the
boundaries [1,2]. edge waves tend to appear at smaller speed than travelling waves, owing to
their lower energy content, and consequently are detected first [3,4]. Furthermore, edge waves
are closely related to edge buckling [5].

When an external load moves on a thin structure, its speed might easily approach some
resonant speed and produce dramatic effects [6]. This outcome is further enhanced by the
presence of cracks in the structure. An intriguing example of this is the discovery that a ground
effect machine may be successfully employed as ice breaker when operated at the system’s critical
speed [7]. The analysis of the effect of loads moving on elastic structures has been a long-standing
subject of investigation, in the light of its many practical implications. Historically, much of this
analysis has been directed by the desire to safely design bridges, rail tracks and road pavements
under the ever-increasing demand of high-speed high-capacity transportation [8,9]. Recently,
renewed interest has been drawn to model and design floating ice sheets as supporting structures
for oil rigs, pipes, roads, runways and platforms [7]. Climate change and extensive investigation
of the interaction between ice-shelf cracking and impinging sea-waves, in a process somewhat
similar to that leading to edge waves excited by deep water surface waves [10], are also motivating
further research in the field [11–13].

Remarkably, despite the broad interest and the wide range of application, only a handful
of contributions may be found in the literature concerning fracture dynamics in elastically
supported thin plates. The static solution to this problem was first considered in [14] and it
was later extended in [15,16] to a weakly non-local foundation. In the classic references [17–
19], several static problems for finite cracks in unsupported plates or shells are considered.
The mathematical problem is related to that appearing in the study of crack propagation in
couple-stress materials [20,21], although different boundary conditions (BCs) apply. In all cases,
the combined effect of a moving load acting on a moving crack has never been investigated.

In this paper, the steady-state propagation of a rectilinear crack in a thin plate resting on
a Winkler foundation and subject to a moving harmonic load applied at the crack flanks is
considered. The spotlight is set on flexural edge waves generation as a result of this combination.
In particular, it is observed that, compared with the classic subject of edge wave propagation
at the boundary of a semi-infinite plate [22,23], a new edge wave arises out of the fact that
propagation is restricted to the crack flanks. Besides, thorough investigation of the stress intensity
factors reveals that the loading frequency may be tuned so as to either promote or hinder crack
propagation in practical applications (consider, for instance, ice breaking as opposed to road
pavement preservation). Finally, this solution may be used as a building block to tackle, through
superposition, the problem of a general distributed load in steady-state motion on a cracked
plate, where the load application is no longer restricted to the crack flanks, although it still moves
with the crack tip.

The paper is organized as follows: §2 formulates the problem, which is then recast in the
frequency domain in §3. The full-field solution is given in §4 and §5 discusses stress intensity
factors (SIFs). Energy considerations supporting the non-monotonic behaviour of the SIFs are
given in §6 along with the energy release rate (ERR) at the crack tip. Flexural edge wave solutions
are considered in §7 and conclusions are drawn in §8. Finally, the electronic supplementary
material presents the derivation of a conservative line integral, which extends to elastically
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supported thin plates the analogous result obtained in [24] for steady-state crack propagation
in rate-dependent plastic solids.

2. Problem formulation

(a) Field equations
We consider a semi-infinite rectilinear crack propagating along its length in an infinite Kirchhoff–
Love (K-L) thin elastic plate (figure 1). The plate, of thickness h, is elastically supported by a
Winkler foundation with stiffness k. A moving Cartesian reference frame, (ξ̂1, ξ̂2, ξ̂3), is attached
to the crack tip such that the linear crack corresponds to the negative part of the ξ̂1-axis, while the
ξ̂2-axis measures the distance from the crack line of a point on the plate. The crack is propagating
at constant speed c (steady-state propagation) with respect to a fixed reference frame (x1, x2, x3).
In this fixed frame, the governing equation for the transverse displacement of the plate, w, reads
[7, §4.3]

D��w + kw = −ρh∂ttw + q, (2.1)

being � = ∂x1x1 + ∂x2x2 the Laplace operator in two dimensions, q the transverse distributed load
per unit area, D the plate bending stiffness and ρ the mass density per unit volume. The double
Laplace operator is usually named biharmonic operator and it is denoted by ∇4.

As is customary in a steady-state analysis, we set ourselves in the constant speed moving frame
(ξ̂1, ξ̂2, ξ̂3), with ξ̂1 = x1 − ct, and assume w = w(ξ̂1, ξ̂2), which bears no explicit time dependence.
Then, equation (2.1) may be rewritten as

∇̂4w + κ−2∂
ξ̂1 ξ̂1

w + λ−4w = q
D

, (2.2)

having let the characteristic lengths

λ = 4

√
D
k

and κ = c−1

√
D
ρh

,

together with the positive dimensionless ratio

η = λ

κ
= c

√
ρh

4
√

kD
.

It is worth observing that equation (2.2) corresponds to the governing equation for a supported
thin elastic plate subject to an axial compression of magnitude Dκ−2 [5] or for an unsupported
cylindrical shell [14,25]. We introduce the dimensionless coordinates (ξ1, ξ2) = λ−1(ξ̂1, ξ̂2) and take
q ≡ 0, with no loss of generality. Then, equation (2.2) becomes

∇4w + η2∂ξ1ξ1 w + w = 0, (2.3)

where ∇4 = (∂ξ1ξ1 + ∂ξ2ξ2 )2 is the biharmonic operator in dimensionless coordinates. The special
case η = 0 corresponds to the static problem, whose solution is given in [14]. Furthermore, we
recall that, in a supported thin elastic plate, travelling wave solutions are admitted beyond
a critical speed [7, §4.2]

ccr =
√

2
4
√

kD√
ρh

⇔ η = ηcr =
√

2, (2.4)

corresponding to the group speed and occurring at the dimensionless wavenumber

μ = μcr = 1.
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Figure 1. Rectilinear crack propagating at constant speed c in an elastic thin plate resting on a Winkler elastic foundation.

(b) Boundary conditions
Within the K-L theory, the bending moment, twisting moment and the equivalent shearing force
are given by, respectively, [3]

m22 = −(∂ξ2ξ2 + ν∂ξ1ξ1 )w, (2.5a)

m12 = ν0∂ξ1ξ2 w, (2.5b)

and v2 = −λ−1∂ξ2 [∂ξ2ξ2 + (2 − ν)∂ξ1ξ1 ]w, (2.5c)

all of them having being deprived of the common factor Dλ−2 and having let the shorthand
notation ν0 = 1 − ν. Besides, we let the slope

φ = −λ−1∂ξ2 w.

The BCs across the crack line ξ2 = 0 and ahead of the crack tip, i.e. for ξ1 > 0, are

— of kinematic nature, expressing continuity of displacement and slope,

�w0(ξ1)� = �φ0(ξ1)� = 0, ξ1 > 0, (2.6)

— of static nature, demanding continuity for the bending moment and the equivalent
shearing force,

�m0(ξ1)� = �v0(ξ1)� = 0, ξ1 > 0, (2.7)

where m0 and v0 are shorthands for m220 and v20, respectively.

Here, �f (0)� denotes the jump of the function f (ξ2) across the crack line, namely f (0+) − f (0−),
while a zero subscript means evaluation at the crack line, i.e. w0(ξ1) = w(ξ1, 0).

As is well known, the solution of any linear fracture mechanics problem under general loading
conditions may be obtained from the superposition of two simpler set-ups: the first set-up is
obtained disregarding the crack and considering the given loading condition, the second set-up
takes into account the presence of the crack, which is loaded by the force distribution found at
the previous set-up. The latter problem may be further decomposed through harmonic expansion
of the crack loading. In this paper, we are interested in investigating the effect of the crack and,
consequently, only the second set-up will be considered. Indeed, it is assumed that the crack flanks
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are loaded in a continuous fashion by a general harmonic term. Then, the BCs at the crack line
ξ2 = 0 are of static nature, namely

m22(ξ1, 0±) = M0 exp(ıaξ1) and v2(ξ1, 0±) = λ−1V0 exp(ıaξ1), ξ1 < 0, (2.8)

where M0 = M0(a), V0 = V0(a) are complex-valued and the dimensionless forcing frequency (in
space) satisfies

�(a) < 0 (2.9)

to ensure decay as ξ1 → −∞. Hereinafter, ı is the imaginary unit, 
(s) and �(s) denote the real and
the imaginary part of s ∈ C, respectively, and a superscript asterisk denotes complex conjugation,
i.e. s∗ = 
(s) − ı�(s). We observe that equations (2.8), just like (2.6) and (2.7), entail four conditions
in total, for they apply at both flanks of the crack (denoted by ξ2 = 0±). As a consequence of
loading continuity, equations (2.7) hold on the entire crack line.

3. Analysis in the frequency domain
Let us define the bilateral (or full) Fourier transform of w(ξ1, ξ2) along ξ1 in the usual way [26]

w̄(s, ξ2) =
∫+∞

−∞
w(ξ1, ξ2) exp(ısξ1) dξ1.

In a similar fashion, the unilateral (or generalized, or half-range) transforms are introduced.
The plus transform is defined as

w̄+(s, ξ2) =
∫+∞

0
w(ξ1, ξ2) exp(ısξ1) dξ1

and it is analytic in the complex half-plane �(s) > α1, provided that α1 ∈ R exists such that
w(ξ1, ξ2) exp(−α1ξ1) is absolutely integrable with respect to ξ1 in the interval (0, +∞). Likewise,
the minus transform of w

w̄−(s, ξ2) =
∫ 0

−∞
w(ξ1, ξ2) exp(ısξ1) dξ1

is analytic in the complex half-plane �(s) < α2 provided that α2 can be found such that
w(ξ1, ξ2) exp(α2ξ1) is absolutely integrable with respect to ξ1 in the interval (−∞, 0). Consequently,
assuming α1 < 0 < α2, the bilateral Fourier integral is related to the unilateral transforms through
the connection

w̄(s, ξ2) = w̄+(s, ξ2) + w̄−(s, ξ2), (3.1)

valid in the strip of analyticity S = {s ∈ C : α1 < �(s) < α2} containing the real axis. In this strip,
the inverse of the bilateral Fourier transform may be defined as:

w(ξ1, ξ2) = 1
2π

∫+∞

−∞
w̄(s, ξ2) exp(−ısξ1) ds (3.2)

and similarly for the inverse of the half-transforms.
Taking the Fourier transform of equation (2.3) in the ξ1 variable, a linear constant coefficient

ODE is obtained whose general solution is

w̄(s, y) = A1 exp
(
−
√

Λ1|ξ2|
)

+ B1 exp
(√

Λ1|ξ2|
)

+ A2 exp
(
−
√

Λ2|ξ2|
)

+ B2 exp
(√

Λ2|ξ2|
)

,
(3.3)

wherein

Λ1,2 = s2 ∓ R(s) and R(s) =
√

η2s2 − 1. (3.4)

We observe that the factorization holds

Λ1Λ2 = s4 − η2s2 + 1 = (s2 − β2)(s2 − β∗2), β =

√√√√η2

2
+ ı

√
1 − η4

4
,
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in which the roots ±β, ±β∗ are the branch points of the double square roots in (3.3). It is further
observed that β is a complex number with unit modulus located in the first quadrant of the
complex plane inasmuch as 0 ≤ η < ηcr, while it sits on the real axis for η ≥ ηcr. For a strip of
analyticity about the real axis to be accessible and the inverse Fourier transform (3.2) meaningful,
we need to have

η < ηcr. (3.5)

This constraint amounts to requiring c < ccr, where ccr is the critical speed (2.4).
Let w(ξ1, ξ+

2 ) and w(ξ1, ξ−
2 ) be the restrictions of the displacement w(ξ1, ξ2) in the upper and

in the lower half of the (ξ1, ξ2)-plane, respectively, where it is understood that ξ+
2 ∈ (0, +∞) and

ξ−
2 ∈ (−∞, 0). The general solution of the ODE (2.3), bounded at infinity, retains only the A-terms,

w̄(s, ξ±
2 ) = A±

1 exp
(
−
√

Λ1|ξ±
2 |
)

+ A±
2 exp

(
−
√

Λ2|ξ±
2 |
)

, (3.6)

where A±
1 and A±

2 are four complex-valued functions of s to be determined. The square root in (3.6)
is made defined by choosing the Riemann sheet such that 
 (√Λ1,2

)
> 0. To this aim, we locate

the cuts according to the requirements


(Λ1) < 0 and �(Λ1) = 0, (3.7)

where the equality sets the cuts position, while the inequality warrants the proper orientation,
see [3, §6.2.2] for more details. It is observed that adopting Λ2 in (3.7) would lead to the same cut
location in the light of the two-valued nature of the square root R(s). Interestingly, the cut location
is independent of ν. We assume that A±

1 and A±
2 split into a symmetric and skew-symmetric

part [15]:

A±
i = 1

2 (Āi ± �Ai), i = 1, 2, (3.8)

whence we have, for the restriction of (3.6) onto the ξ1-axis,

w̄0± (s) = A±
1 + A±

2 . (3.9)

Equation (2.6) may be written in terms of plus Fourier transforms

�w̄+
0 � = �φ̄+

0 � = 0,

whence, using the general solution (3.6) and in view of equations (3.1), (3.8), (3.9), it is

�A1 + �A2 = �w̄−
0 � (3.10a)

and
√

Λ1Ā1 +
√

Λ2Ā2 = λ�φ̄−
0 �. (3.10b)

Likewise, the unilateral Fourier transform of equation (2.8) gives

m̄−
0 = −ı

M0

s + a
and v̄−

0 = −ı
λ−1V0

s + a
, (3.11)

valid in the semi-infinite region S1 = {s : �(s) < −�(a)}, which, by the inequality (2.9), contains the
real axis. It is observed that M0 and V0 have dimension of length. Taking the full Fourier transform
of the bending moment (2.5a) and of the shearing force (2.5c), we get

m̄ = −(∂ξ2ξ2 − νs2)w̄ and v̄ = −λ−1∂ξ2 [∂ξ2ξ2 − (2 − ν)s2] w̄,

which, employing the solution (3.6) and using equations (3.1), (3.8), (3.11), gives

− [(Λ1 − νs2)A±
1 + (Λ2 − νs2)A±

2 ] = m̄+
0 − ı

M0

s + a
(3.12a)

and ±λ−1
{√

Λ1[Λ1 − (2 − ν)s2]A±
1 +

√
Λ2[Λ2 − (2 − ν)s2]A±

2

}
= v̄+

0 − ı
λ−1V0

s + a
(3.12b)
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in the strip S0 = S ∩ S1. Finally, Fourier transformation of equations (2.7), which really hold on the
entire crack line, gives

(Λ1 − νs2)�A1 + (Λ2 − νs2)�A2 = 0 (3.13a)

and
√

Λ1[Λ1 − (2 − ν)s2]Ā1 +
√

Λ2[Λ2 − (2 − ν)s2]Ā2 = 0, (3.13b)

according to which equations (3.12) reduce to

−1
2

[(Λ1 − νs2)Ā1 + (Λ2 − νs2)Ā2] = m̄+
0 − ı

M0

s + a
(3.14a)

and
1
2

{√
Λ1[Λ1 − (2 − ν)s2]�A1 +

√
Λ2[Λ2 − (2 − ν)s2]�A2

}
= λv̄+

0 − ı
V0

s + a
. (3.14b)

Conditions (3.13) are immediately fulfilled through letting

�A1 = −(Λ2 − νs2)�A, (3.15a)

�A2 = (Λ1 − νs2)�A, (3.15b)

Ā1 = −
√

Λ2[Λ2 − (2 − ν)s2] Ā, (3.15c)

and Ā2 =
√

Λ1[Λ1 − (2 − ν)s2] Ā, (3.15d)

whence equations (3.10) become

(Λ1 − Λ2)�A = �w̄−
0 �, (3.16a)

and
√

Λ1Λ2(Λ1 − Λ2)Ā = λ�φ̄−
0 �. (3.16b)

Similarly, equations (3.14) give

(Λ2 − Λ1)K(s)Ā = m̄+
0 − ı

M0

s + a
, (3.17a)

and (Λ2 − Λ1)K(s)�A = λv̄+
0 − ı

V0

s + a
, (3.17b)

where the kernel function K(s) is let as follows:

2(Λ2 − Λ1)K(s) = −
√

Λ1[Λ1 − (2 − ν)s2](Λ2 − νs2) +
√

Λ2[Λ2 − (2 − ν)s2](Λ1 − νs2). (3.18)

In particular, in the limit as η → 0, the function 4ıK(s) in equation (3.18) reduces to the kernel
(24) of [14]. Solving the system (3.16), which is linear in the unknown functions Ā, �A and
plugging the result in equations (3.17) provides the following pair of uncoupled inhomogeneous
Wiener–Hopf (W-H) equations

K(s)�w̄−
0 � + λv̄+

0 = ı
V0

s + a
, (3.19a)

and (Λ1Λ2)−1/2K(s)λ�φ̄−
0 � + m̄+

0 = ı
M0

s + a
. (3.19b)

4. Full-field solution
The kernel K(s) is an even function of s and it possesses six roots all of which are, in the general
case, of order unity (figure 2)

K(s) = 0 ⇔ s = ±s1, ±s∗
1, ±ır1. (4.1)
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Figure 2. Branch cuts (dashed-dotted curves), branch points (solid dots) and zeros (circles) in the complex plane for the kernel
function K(s) in the regime η < ηe. Branch points and zeros are located on a circle (dotted) of radius 1 and γ −1

e , respectively.
The strip of analyticityS is also shown, together with the loading frequency a (cross).

Here, s1 is taken to sit in the first quadrant of the complex plane,

s1 = γ −1
e

√(
η

ηe

)2
+ ı

√
1 −

(
η
ηe

)4
, ηe =

√
2γe,

having let γe = 4

√
(1 − ν)

(
3ν − 1 + 2

√
2ν2 − 2ν + 1

)
, which is a well-known bending edge wave

constant [22,23]. We observe that γe ∈
[√

2(
√

5 − 2)1/4, 1
]

and its maximum γe = 1 is attained at
ν = 0. It is easy to see that s1 is complex-valued for η < ηe and it sits in the first quadrant of the
complex plane on the circle of radius γ −1

e . It can be proved that �(s1) > �(β) for η < 1, almost
irrespectively of ν. According to the conditions (3.7), the double roots in the kernel K(s) bring in
two non-straight branch cuts which extend from s = β, β∗ to −β, −β∗ through ı∞, respectively.
It is remarked that, for ν = 0, it is γe = 1 and the roots ±s1, ±s∗

1 coincide with the branch points
for the double roots ±β, ±β∗, whence their order goes down to 1/2. Besides, in this case, ηe = ηcr.

In a similar fashion, we find the location of the purely imaginary roots s = ±ır1, being

r1 = γ −1
m

√√√√( η

ηm

)2
+
√(

η

ηm

)4
+ 1, ηm =

√
2γm

and we have defined the new constant

γm = 4

√
(1 − ν)

(
−3ν + 1 + 2

√
2ν2 − 2ν + 1

)
.

We note that γm ∈
[(

2
√

2 − 1
)1/4

/
√

2,
√

2
(√

5 + 2
)1/4

]
is a monotonic decreasing function of

ν (figure 3). Conversely, r1 is a real-valued monotonic increasing function of η, whose minimum
r1 = γ −1

m is attained in the static case η = 0, i.e. unlike s1, this root never reaches the real axis.
Indeed, in the special case η = 0 (stationary crack), we have

r1 = γ −1
m and s1 = γ −1

e

√
2

2
(1 + ı).
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Figure 3. γm (solid, black) and γe (dashed, blue) as a function of Poisson ratio ν . (Online version in colour.)
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Figure 4. Branch cuts (dash-dot curves), branch points (solid dots) and zeros (circles) in the complex plane for the kernel
function K(s) in the regime ηe ≤ η < ηcr. The strip of analyticity S is also shown as well as the loading frequency
a (cross).

This situation is considered in [14], where the roots ±ır1 seem to have gone amiss. By contrast,
for ηe ≤ η < ηcr, s1 turns real-valued and the root landscape (4.1) switches to (figure 4)

Q1

±s−, ±s+, ±ır1,

where now 0 < s− < γ −1
e < s+ and

s∓ = γ −1
e

√√√√( η

ηe

)2
∓
√(

η

ηe

)4
− 1.

In this case, the strip of analyticity S is taken to warrant the radiation (or Sommerfeld)
condition of energy flowing from the load application zone to ξ1 → −∞.

Let us define, for d = ν0(3 + ν)/4 and for any chosen value b > α1,2 = min{�(s1), �(β), r1},

F(s) =
√

s2 + b2
√

s2 − β2
√

s2 − β∗2

d(s2 − s2
1)(s2 − s∗

1
2)(s2 + r2

1)
K(s). (4.2)

The function F(s) is even, deprived of zeros in a semi-infinite strip of analyticity S, and it is
such that lim|s|→∞ F(s) = 1 in this strip. For such F(s), the W-H logarithmic factorization [26, §3.2]
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is applicable and it gives a plus and a minus function, respectively, denoted by F+(s) and F−(s),
with the properties (see [27] for more details)

F(s) = F+(s)F−(s) and F−(s) = F+(−s).

Accordingly, system (3.19) reads

K−(s)�w̄−
0 � + λv̄+

0
K+(s)

= ıV0
1

(s + a)K+(s)
, (4.3a)

and
K−(s)√

s − β
√

s + β∗ λ�φ̄−
0 � +

√
s + β

√
s − β∗

K+(s)
m̄+

0 = ıM0

√
s + β

√
s − β∗

(s + a)K+(s)
, (4.3b)

where

K±(s) =
√

d
(s ± s1)(s ∓ s∗

1)(s ± ır1)√
s ± ıb

√
s ± β

√
s ∓ β∗ F±(s)

√±ı ,

with the properties K(s) = K+(s)K−(s) and K−(s) = K+(−s). Here, it is understood that
√±ı =

exp(±ıπ/4). For large values of |s|, we observe the asymptotic behaviour K±(s) ∼ s3/2. Finally,
the r.h.s. in equation (4.3) are split in terms of the sum of a plus and a minus function

λv̄+
0

K+(s)
− ı

V0

s + a

(
1

K+(s)
− 1

K−(a)

)
= ı

V0

(s + a)K−(a)
− K−(s)�w̄−

0 �, (4.4a)

and
√

s + β
√

s − β∗
K+(s)

m̄+
0 − ı

M0

s + a

(√
s + β

√
s − β∗

K+(s)
−

√
a − β

√
a + β∗

K−(a)

)

= ı
M0

s + a

√
a − β

√
a + β∗

K−(a)
− K−(s)√

s − β
√

s + β∗ λ�φ̄−
0 �. (4.4b)

As, in system (4.4), the left (right) hand is represented by a function which is analytic in the
upper (lower) complex half-plane with a common strip of regularity S0, it can be analytically
continued into the whole complex plane. Indeed, continuation brings in two entire functions,
E1(s) and E2(s), which are holomorphic over the whole complex plane. Appealing to Liouville’s
theorem, it is E1(s) ≡ E2(s) ≡ 0, in the light of the fact that the behaviour for large |s| of either hands
in equation (4.4) decays at least as fast as s−1. Thus,

�w̄−
0 � = ı

V0

K−(a)
1

(s + a)K−(s)
(4.5)

and λ�φ̄−
0 � = ıM0

√
a − β

√
a + β∗

K−(a)

√
s − β

√
s + β∗

(s + a)K−(s)
. (4.6)

Expressions for the unilateral Fourier transform of the bending moment and of the shearing
force on the crack line follow immediately:

m̄+
0 = ı

M0

s + a

(
1 −

√
a − β

√
a + β∗

√
s + β

√
s − β∗

K+(s)
K−(a)

)
(4.7a)

and λv̄+
0 = ı

V0

s + a

(
1 − K+(s)

K−(a)

)
. (4.7b)

It is observed that, according to Jordan’s lemma [26], equations (4.5) and (4.6) satisfy both BCs
(2.6) and, by the same argument, equations (4.7a) and (4.7b) imply the conditions (2.7).

Equations (3.6), (3.8), (3.15), (3.16) allow writing the full Fourier transform of the plate
deflection

w̄(s, ξ±
2 ) = 1

2

(
− Λ2 − (2 − ν)s2

√
Λ1(Λ1 − Λ2)

λ�φ̄−
0 � ∓ Λ2 − νs2

Λ1 − Λ2
�w̄−

0 �

)
e1(s, ξ±

2 )

− 1
2

(
− Λ1 − (2 − ν)s2

√
Λ2(Λ1 − Λ2)

λ�φ̄−
0 � ∓ Λ1 − νs2

Λ1 − Λ2
�w̄−

0 �

)
e2(s, ξ±

2 ),
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having let the shorthand notation e1,2(s, ξ2) = exp
(−√Λ1,2|ξ2|

)
. In particular, on the crack line, it is

e1,2(s, 0) = 1, whence

w̄0± (s) = −
(

ν0s2 − R(s)√
s2 − R(s)

− ν0s2 + R(s)√
s2 + R(s)

)
λ�φ̄−

0 �

4R(s)
± 1

2
�w̄−

0 �.

5. Stress-intensity factors
Stress-intensity factors (SIFs) can be determined from the behaviour of the relevant Fourier
transform for large |s|. Indeed, equation (4.7a) gives

m̄+
0 ∼ −ıM0

√
a − β

√
a + β∗

K−(a)

√
ıds−1/2,

whence, making use of the connection between the asymptotic expansion of a function and
the expansion of its Fourier half-transform [26, §2.14.B], we get

m0 ∼ −ıM0

√
a − β

√
a + β∗

Γ (1/2)K−(a)

√
ıd√
ξ1

, as ξ1 → 0+.

By the definition of the stress intensity factor [17] and recalling that σ22 = 6 h−2m22 times
the omitted term Dλ−2, we find

k̂1 = lim
ξ1→0+

√
2ξ1σξ2 = −6ı

DM0

λ2h2

√
a − β

√
a + β∗

K−(a)

√
2ıd
π

. (5.1)

The modulus of the dimensionless stress intensity factor k1 = (λh)2k̂1/(M0D) is plotted in
figure 5 at fixed ν = 0.25 as a function of the loading frequency. As expected, |k1| asymptotes
to zero as a−1/2 yet, remarkably, its decay is monotonic only for small speed η. Indeed, for η close
to the critical speed, it displays an absolute maximum for 
(a) near 1, which becomes greater as
η → ηcr. The same resonant behaviour appears in figure 6, which shows the dependence of |k1|
from the crack speed η. The role of ν is illustrated in figure 7 according to which resonance is
stronger near the ends of the admissible range ν ∈ [−1, 1

2 ].
Along the same line, it is easy to observe that, for large |s|, equation (4.7b) gives

λv̄+
0 ∼ −ıV0

√
ıd

K−(a)
s1/2,

whence we get

λv0 ∼ −ıV0

√
ıd

Γ (−1/2)K−(a)
ξ

−3/2
1 ,

and, therefore, in the light of the connection σ23 = 3
2 h−1v2,

k̂3 = lim
ξ1→0+

ξ
3/2
1 σ23 = 3

4 ı
DV0

λ3h

√
ıd√

πK−(a)
. (5.2)

As shown in figures 5 and 6, the behaviour of k3 = λ3h/DV0 is similar to that of k1, although
it asymptotes to zero faster, as |a|−3/2. Figure 8 brings along the role of ν at η = 1 and η = ηcr.
In general, compared with |k1|, |k3| appears much smaller.

Determination of k2 requires dealing with the asymptotics of a full Fourier transform. Indeed,
Fourier transformation of the twisting moment (2.5b) gives

m̄12 = ıν0s∂ξ2 w̄ = ∓ıν0s
[√

Λ1A±
1 e1(s, ξ2) +

√
Λ2A±

2 e2(s, ξ2)
]

= ±ı
ν0s

2(Λ1 − Λ2)
{[(Λ2 − (2 − ν)s2)λ�φ̄−

0 � ±
√

Λ1(Λ2 − νs2)�w̄−
0 �]e1(s, ξ2)

− [(Λ1 − (2 − ν)s2)λ�φ̄−
0 � ±

√
Λ2(Λ1 − νs2)�w̄−

0 �]e2(s, ξ2)},
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Figure 5. Modulus of the dimensionless stress intensity factors |k1| (a) and |k3| (b) versus
(a) for�(a)= −0.1ı , ν = 0.25
and η = 0.5 (solid, black), 1 (dashed, blue) and ηcr (dotted, red). (Online version in colour.)Q1
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Figure 6. |k1| (a) and |k3| (b) versus speedη for�(a)= −0.1ı , ν = 0.25 and
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and 1 (dotted, red). (Online version in colour.)Q1
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Figure 7. |k1| versus
(a) for�(a)= −0.1ı , ν = −1 (solid, black), 0 (dashed, blue), 0.5 (dotted, red) and η = 1 (a), η =
ηcr (b). (Online version in colour.)Q1

which, on the crack line, reduces to

m̄12 0 = ı ν0
2 s

(
∓λ�φ̄−

0 � −
√

Λ1(Λ2 − νs2) − √
Λ2(Λ1 − νs2)

Λ2 − Λ1
�w̄−

0 �

)
.

It is observed that the first term in parenthesis in this equation is a minus function, which
brings no contribution for ξ1 > 0. Conversely, the second term is analytic in a semi-infinite strip
around the real axis and it is neither plus nor minus. Some straightforward asymptotic analysis
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Figure 8. |k3| versus 
(a) for �(a)= −0.1ı , ν = −1 (solid, black), 0 (dashed, blue), 0.5 (dotted, red) and η = 1 (a),
η = ηcr (b). (Online version in colour.) Q1

of equation (4.5) gives, for large |s|,

�w̄−
0 � ∼ ıV0

1√−ıdK−(a)
s−5/2,

whence

m̄12 0 ∼ 1
4

V0
1 − ν2

√−ıdK−(a)
s−1/2, as |s| → +∞.

As the asymptotics of the full Fourier transform is available, we employ Abel’s theorem [28]
to get

m120 = 1
4

V0

√
2π(1 − ν2)√−ıdK−(a)

ξ
−1/2
1 , as ξ1 → 0+,

whence

k̂2 = lim
ξ1→0+

√
2ξ1σ12 = 3

DV0

λ2h2

√
π(1 − ν2)√−ıdK−(a)

, (5.3)

which is proportional to k3. It is remarked that SIFs have been determined within the framework
of the K-L theory, which neglects shear deformation.

6. Stored energy and energy release rate
The resonant behaviour of the SIFs can be most easily explained evaluating the energy fed into
the system by the applied load, which, according to Betti’s theorem, is given by

W = 1
2

Dλ−2
∫ 0

−∞
(m0�φ0� + v0�w0�)λ dξ1

= 1
2

Dλ−2
∫ 0

−∞
(M0λ�φ0� + V0�w0�) exp(ıaξ1) dξ1

= 1
4

ıDλ−2(M2
0W1 + V2

0W2),

where

W1 = (a − β)(a + β∗)
aK−(a)2 and W2 = 1

aK−(a)2 .

The dimensionless energies introduced by the bending moment and by the shearing force,
respectively, W1 and W2, are plotted in figure 9 as a function of the applied load frequency a.
It appears that a local maximum in the energy input occurs for a ≈ 1, which is responsible for the
non-monotonic behaviour of the SIFs. Similarly, figure 10 presents W1 and W2 as a function of
the crack propagation speed η.
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Figure 10. Bending moment dimensionless energy input |W1| (a) and shearing force dimensionless energy input |W2| (b)
versus η for�(a)= −0.1ı , ν = 0.25 and
(a)= 0.25 (solid, black), 0.5 (dashed, blue) and 1 (dotted, red). (Online versionQ1

in colour.)

A more rigorous argument pertains to the ERR at the crack tip, Gtip, which may be determined
through the conservative integral I. A derivation of this integral in the case of elastically
supported thin plates is presented in the electronic supplementary material (see also [29]).
To relate I to the near-tip fields, we consider a suitable contour Γ constituted by a vanishingly
thin rectangular box, centred at the crack tip, with sides 2δ1 � 2δ2 parallel to the ξ1 and ξ2 axes,
respectively, by the crack flanks Γ + and Γ − and finally closed by the far-field circle ΓR, with
radius R (figure 11). As we shrink the rectangular box down to the crack tip, i.e. δ1,2 → 0+, and
simultaneously let R → +∞, we get

I = lim
δ1,2→0+

∫
Γ +

(m22∂ξ1�φ2� + q2∂ξ1�w� + m12∂ξ1�φ1�)λ dξ1 + Gtip = 0,

in the light of the fact that limR→+∞
∫

ΓR
= 0 and Gtip is the contribution of the small box centred

at the crack tip. Taking the limit of the integral term and part integrating twice leads to

Gtip = −
∫ 0

−∞
(m22∂ξ1�φ2� + v2∂ξ1�w�)λ dξ1

= − D
λ2

∫ 0

−∞
∂ξ1 (M0λ�φ0� + V0�w0�) exp(ıaξ1) dξ1

= ıDλ−2a
∫ 0

−∞
(M0λ�φ0� + V0�w0�) exp(ıaξ1) dξ1 = 2ıaW,
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Figure 11. Integration path for evaluation of Gtip.

for boundary terms vanish and recalling the definition of the Kirchhoff equivalent shearing force
v2 = q2 + ∂ξ1 m12. It is concluded that, for steady-state crack propagation, the ERR, which is readily
seen to be proportional to the SIFs squared, may be related to the work of the applied loads.
Therefore, the resonant behaviour displayed by the SIFs represents the most efficient way to
channel energy from the applied load to the crack tip and thus promote fracturing.

7. Edge waves at the crack flanks
In this section, we provide some physical insight into the afore-obtained results. Looking for
solutions of equation (2.3) in the form of a edge wave [23] for, say, the top half-plate,

w(ξ1, ξ+
2 ) = exp[−μ(ıξ1 + ζ ξ+

2 )] (7.1)

and, plugging this expression in the governing equation (2.3), we obtain, for the attenuation index,

ζ1,2 =
√

1 ±
√

η2μ2 − 1
μ2 .

The sign for ζ is chosen so as to warrant decay as ξ2 → +∞, i.e. it is such that 
(μζ ) > 0. Indeed,
μ is generally a complex number such that

�(μ) > 0. (7.2)

Consideration of homogeneous BCs gives the dispersion relation

(1 − ν2)μ4 +
(

2ν0

√
1 − η2μ2 + μ4 − η2

)
μ2 + 1 = 0,

which, upon rationalizing, gives the solution curve

η2 = γ 4
e μ2 + μ−2. (7.3)

This quadratic equation in μ2 is plotted in figure 12 and it possesses two positive real
roots provided that the moving frame speed η exceeds the threshold speed ηe ≤ ηcr. This
threshold corresponds to the minimum speed of the phase velocity (see [23]) and it occurs at
the dimensionless wavenumber μ = γ −1

e ≥ 1. For η < ηe, μ is complex-valued and we find a pair
of decaying edge waves whose wavenumber corresponds to the single complex solution of (7.3)
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Figure 12. Edge wave dispersion curves (a) and decaying edge wave dispersion curves (b) for ν = 0.5 (solid, black), ν = 0
(dashed, red), ν = −0.5 (dashed-dotted, blue). A minimum threshold speed ηe =

√
2γe exists for propagating edge wavesQ1

to appear (here plotted as a dotted curve only for ν = 0). (Online version in colour.)

complying with (7.2) and whose attenuation indexes are given by the pair of positive real values

ζ1,2 =
√

1 ± γ 2
e , (7.4)

irrespectively of the wavenumber. This solution exists only along the crack flanks, i.e. behind the
propagating crack tip, and for it the sign of 
(μ) is irrelevant.

For η ≥ ηe, edge waves become propagating along the crack flanks with a pair of real
wavenumbers s−, s+ and the same pair of attenuation indices (7.4), for a total of four edge wave
solutions. These occur at smaller speed yet lower (higher) wavenumber s− (respectively, s+) than
travelling wave solutions. In the special case ν = 0, they occur simultaneously, for η = ηe = ηcr and
equation (7.3) admits the double root μ = 1 (figure 12) and the attenuation index ζ is either

√
2 or

zero, whence only one proper edge wave solution really exists, the other solution corresponding
to a travelling wave.

In the frequency domain analysis, edge wave solutions are closely related to the complex root
s1, which expresses the wavenumber μ (as already remarked, for this class of solutions, the sign
of 
(μ) is immaterial, which amounts to considering either s1 or −s∗

1). Indeed, this root is a pole
for the minus transforms (4.5), (4.6) and, when considered in the inversion integral (3.2), it gives
a solution of the form (7.1). Such solution represents decaying (along ξ1) edge vibrations, which
turn into proper edge waves, propagating at ξ1 → −∞, provided that η ≥ ηe. Indeed, beyond the
minimum speed ηe, s1 moves onto the real axis and it separates in the pair of poles s+ and s−. In
this context, when ν = 0, the roots s1 and −s∗

1 become of fractional order and no longer correspond
to exponential solutions.

Alongside the edge wave solution (7.1), we look for solutions in the form of exponentially
decaying localized waves

w(ξ1, ξ+
2 ) = exp[μ(ξ1 − ζ ξ+

2 t)], ξ1 ≤ 0, (7.5)

assuming μ > 0 in consideration of the fact that the crack flank extends along the negative ξ1-axis.
Plugging this solution into the plate equation (2.3) gives, for the attenuation index, the complex-
conjugated pair

ζ1,2 =
√

−1 ± ı

√
η2μ2 + 1

μ2 ,

where the square root is chosen as to have 
(ζ1,2) > 0 and, accordingly, decay as ξ2 → +∞.
Consideration of load-free BCs yields a novel dispersion relation

(1 − ν2)μ4 +
(

η2 − 2ν0

√
μ4 + η2μ2 + 1

)
μ2 + 1 = 0,
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Figure 13. Attenuation rate 
(μζ ) for edge wave solutions of the form (7.1) and ζ =
√
1 ± γ 2

2 (respectively, dashed-

dotted, blue and dashed, red) compared with localized solutions (7.5) with ζ =√−1 + ıγ 2
m (solid, black), at ν = 0.5. In

the speed range η < ηe (a), only decaying edge waves are present, whereas in the range ηe ≤ η < ηcr (b), propagating Q1

edge waves appear and the corresponding curves bifurcate. (Online version in colour.)

whose single positive solution is plotted in figure 12. This dispersion curve corresponds to the
solution curve

η2 = γ 4
mμ2 − μ−2, μ > γ −1

m .

which, just like (7.3), describes a parabola in μ2. Clearly, for any given speed η, this equation
defines two real wavenumbers, although only one of these complies with the inequality, namely

μ = r1 > γ −1
m .

For this wavenumber, we see that the attenuation index ζ is given by the complex-conjugated
pair

ζ1,2 =
√

−1 ± ıγ 2
m. (7.6)

This class of edge disturbances are related to the root ır1 through Fourier inversion. Figure 13
compares the attenuation rates 
(μζ ) of all solutions. It appears that, in the regime η < ηe, any
far-field condition (i.e. at large ξ2) is satisfied by a linear combination of one decaying wave with

ζ =
√

1 − γ 2
e and one localized wave. Conversely, in the speed range ηe ≤ η < ηcr, any far-field

condition is realized by a linear combination of two propagating edge waves.
To recapitulate, three edge wave solutions exist, which correspond to the zeros of the kernel

function (3.18) in the complex plane, namely

— s1 (or −s1) corresponds to the wavenumber of a pair of decaying (along the crack flank)
edge waves with real attenuation indexes, provided that the crack moving speed η rests
below the threshold speed ηe;

— conversely, for ηe ≤ η < ηcr, s1 separates into a pair of real numbers, s− ≤ 1 ≤ s+, that
describe the wavenumbers of two pairs of propagating edge waves, with the same pair
of real attenuation indexes occurring at the previous regime;

— for any speed, ır1 corresponds to a pair of exponentially decaying solutions, localized
at the back of the crack tip, associated with the positive wavenumber r1 > γ −1

m and with
a complex-conjugated pair of attenuation indexes.

8. Conclusion
In this paper, the full-field solution for the steady-state propagation of a rectilinear crack in an
elastically supported thin plate is given through the W-H method. A harmonic moving load is
applied at the moving crack flanks. Focus is set on the analysis of flexural edge waves propagating
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as a result of the combined effect of crack extension and load motion. It is found that this
combination brings in two regimes and three types of waves. Indeed, the solution identifies
two threshold speeds, namely the critical speed ηcr, for travelling waves to appear in the bulk
of the plate, and the edge wave speed ηe ≤ ηcr, which corresponds to the speed of edge waves
at the boundary of a semi-infinite thin plate. These two threshold speeds coincide when ν = 0,
for it is shown that edge waves collapse into travelling waves. When the propagation speed
η is smaller than ηe, a pair of edge waves exist that decay in an oscillatory manner along the
crack-flanks and rapidly fade off away from the crack line with real attenuation index. Rapid
attenuation away from the crack line remains for η ≥ ηe, yet edge waves become four and they
propagate indefinitely along the crack flanks. For any propagation speed, a new type of edge
wave is met which is highly localized behind the crack tip. Indeed, two such waves exist which
decay with the real exponent along the crack, yet they are associated with a complex-conjugated
pair of attenuation indexes, which amounts to oscillatory decay away from the crack line. For
this localized edge wave, a novel dispersion relation is given and it is shown that its attenuation
stands between the attenuation of decaying and propagating waves in the speed regime η < ηe.
Consequently, this wave may be put to advantage for defect detection. This localized solution
seems somewhat connected with the dynamic edge effect in cylindrical shells [30], for which
curvature plays the role that is here taken by the elastic support.

Dynamic stress intensity factors are also obtained and they show a remarkable resonant
behaviour, which is explained in the light of the ERR at the crack tip. Resonance may be
successfully exploited in many practical applications, for instance to speed up ice breaking
or sawing, or carefully avoided in many others, for example, to prevent rapid deterioration
in pavements or layered materials. Finally, the work of the applied loading is shown to be
proportional to the ERR at the crack tip through developing a conservative integral for elastically
supported thin plates.
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