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Streaming Tables: Native Support
to Streaming Data in DBMSs

Luca Carafoli, Federica Mandreoli, Riccardo Martoglia, and Wilma Penzo

Abstract—Data Stream Management Systems (DSMSs) are
conceived for running continuous queries (CQs) on the most
recently streamed data. This model does not completely fit the
needs of several modern data-intensive applications that require
to manage recent/historical/static data and execute both CQs and
OTQs joining such data. In order to cope with these new needs,
some DSMSs have moved towards the integration of DBMS
functionalities to augment their capabilities.

In this paper we adopt the opposite perspective and we lay the
groundwork for extending DBMSs to natively support streaming
facilities. To this end, we introduce a new kind of table, the
streaming table, as a persistent structure where streaming data
enters and remains stored for a long period, ideally forever.
Streaming tables feature a novel access paradigm: continuous
writes and one-time as well as continuous reads. We present a
streaming table implementation and two novel types of indices
that efficiently support both update and scan high rates. A
detailed experimental evaluation shows the effectiveness of the
proposed technology.

Index Terms—Database design, modeling and management,
Spatial/Temporal databases, Data streams, DBMS, Continuous
queries.

I. INTRODUCTION

In order to cope with large volumes of continuously stream-
ing data, Data Stream Management Systems (DSMSs) have
been introduced [1], [2]. Unlike traditional Data Base Man-
agement Systems (DBMSs) that run one-time queries (OTQs)
over static data, these systems natively support continuous
queries (CQs) over data streams according to windows where
only the most recent data is retained. Examples of applications
that adhere to these principles include publish-subscribe [3],
sensor-data analysis, and financial trading systems, online
gaming and geospatial services [4].

This model does not completely fit the information needs
of several modern data-intensive applications that involve not
only live data but also relatively past as well as historical
(i.e. past streamed) information and static data [5], [6], [7],
[8], [9], [10]. This is the case, for instance, of monitoring
applications [5], [10] (e.g., air quality monitoring, Intelligent
Transportation Systems - ITSs), military applications (e.g., pla-
toon tracking), network applications (e.g., intrusion detection),
and modern data analysis applications [8], [9].

These kinds of applications definitely need a system that is
able to manage recent/historical/static data and execute both
CQs and OTQs joining such data in an efficient way. For
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instance, in the ITS scenario we experienced in the PEGASUS
project [11], vehicle reports are used both for real time traffic
analysis and for long-term purposes, where they contribute to
the historical information needed for data analysis. In order
to fulfil the application requirements, different kinds of CQs
run joining the continuous flow of vehicle reports with static
tables, for instance for a continuous monitoring of critical road
segments. At the same time, OTQs run over relatively recent
vehicle reports, for instance to reconstruct the dynamics of an
accident or to compute different insurance policy costs.

a) Current Approaches: In order to fulfill these new
needs, some DSMSs have moved towards integrating DBMS
functionalities within their own architectures [12], [13], [6],
[7], [14]. These approaches have the main drawback of re-
quiring to redesign from scratch a core of well-established
DBMS techniques that can not be reused as such in a DSMS
architecture. Further, in these solutions, historical and static
data necessarily have to be converted into streams before being
queried, thus producing a heavy overhead for the system.

Other works [5], [9], [10] adopt two-layered solutions where
DSMS and DBMS are maintained as independent systems,
each one devoted to the management of data they have been
conceived for (live and historical/static data, respectively). The
pure combination of these systems, each designed for specific
and opposite goals, does not solve the DBMS inefficiencies in
storing/retrieving data at the rate a DSMS requires. To partially
reduce this problem, [15] limits the cardinality of streaming
data to be stored.

Another direction deals with extending DBMSs with
streaming data management capabilities [16], [17], [8], [18],
[19] or with proposing new database architectures to guarantee
good performance for hybrid workloads (e.g., [20], [21], [22]).
As our proposal relates to this direction, a comparison with
these works can be found in Section VIII.

b) Our Proposal: This paper advocates that a native
support of DSMS functionalities into the DBMS is key to
meeting the design and performance needs of several hybrid
data-intensive applications. The DBMS is a consolidated and
universally adopted technology to manage static data in tables
and to run OTQs. For their execution, the DBMS has full-
fledged procedures at its disposal that ensure high level of
performance. However, we are aware that extending the DBMS
with streaming data support is a really ambitious and long-
term objective. On the other hand, a wide variety of data types
such as spatial data, temporal data and XML data have been
successfully integrated in the past. These positive examples
suggest the path to follow to reach this goal. The outcome
would be an empowered DBMS that is inherently familiar to
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experienced database developers while providing an “intuitive”
yet efficient way to manage applications accessing streaming
data too.

The main contribution of this paper towards this objective is
to promote streaming data to “first-class citizens” of DBMSs
by means of the introduction of a new kind of table, the
streaming table, as a persistent structure where streaming data
enters and remains stored for a long period, ideally forever.
This straightforward solution features two main benefits.

First, streaming tables nicely fit into the relational model.
The underlying principle is that historical data and streaming
data are not intrinsically different, because historical data is
past streamed data, whereas they differ in their management.
Unlike [8] where these kinds of data are managed separately
and only historical data are persistent, both historical and
streaming data are in charge of streaming tables and their
management is completely transparent to users. In this way,
any streaming table can be straightforwardly involved in
OTQs, where it participates as (historical) temporal table [23],
as well as in CQs, where only its most recent tuples are
considered through sliding window specifications. In both
cases, streaming tables can be used in queries together with
“standard” relational tables.1 In order to speed up both kinds
of queries, users are allowed to create indices on streaming
table attributes, while a temporal index is always maintained
on tuple timestamps. In this way, we support the whole range
of queries featuring hybrid applications without requiring
database users to overhaul their thinking.

Second, streaming tables nicely fit into the DBMS archi-
tecture. To implement streaming tables means to apply the
DBMS loosely-coupled design principle to streaming data,
as also advocated in [6]. Traditional DBMS architectures
indeed found on a clear separation between the Transactional
Storage Manager (TSM) and the Query Processor (QP). This
design principle has the advantage that modifications on one
component are transparent to the others and represents the
basis for many performance optimizations. Therefore, we aim
at a seamless implementation of streaming tables into the
DBMS core that exploits the considerable amount of already
available query processing and data management techniques
for efficient purposes.

The main issue we must address to this end is that DBMSs
traditionally adopt a store-first-query-later approach that does
not compel with the two complementary workload character-
istics of streaming tables: massive data rates and low query
answering latency. As a solution to this problem, we propose
a streaming table implementation at the TSM level which
offers very good performance for a novel access paradigm:
continuous writes and one-time as well as continuous reads.
Specifically, unlike standard relational tables, streaming ta-
bles promptly answer to continuous reads over data that is
continuously written and then discarded when they possibly
expire. Unlike streams, streaming tables support one-time
reads on current and historical data. Also, the unconventional
workload supported by streaming tables sharply differs from

1Hereinafter, we will use the term “standard” table to denote any table that
is not a streaming table.

other focused workloads recently considered for instance by
NoSQL databases [24], which are built to support efficient
update- and lookup-intensive online transaction processing
(OLTP). As far as we know, this is the first approach that
considers continuous and SQL query-intensive workloads on
write-intensive OLTP.

c) Paper Contributions: In summary, this paper moves
the first fundamental step towards a native support to streaming
data in DBMSs by making the following contributions:

• it extends the relational model with the notion of stream-
ing table (Sect. III);

• it illustrates the main potentialities of designing and
managing hybrid data-intensive applications in a DBMS
extended with streaming tables and continuous query
support through the reference scenario (Sects. II and IV);

• it presents the streaming table access interface bridging
between QP and TSM and it sketches its use in query
plans at the QP level (Sect. V);

• it introduces at the TSM level an efficient storage method
for streaming tables and two novel types of indices
that accelerate the execution of both OTQs and CQs on
streaming tables (Sect. VI);

• it presents a comprehensive experimental evaluation
showing the effectiveness of the proposed methods, also
in comparison with DSMSs and standard and NoSQL
DBMSs (Sect. VII).

Finally, in Section VIII we discuss literature, we conclude,
and we outline future research.

II. THE REFERENCE SCENARIO

Our reference scenario is in the field of ITSs and stems from
the experience we gained in the management of ITS data for
the PEGASUS project [11], that aimed at a sustainable and
safe management of people and vehicle flows in urban and
peri-urban areas. In PEGASUS the main source of information
comes from On Board Units that transmit vehicle reports to a
Central Unit and can be integrated with urban information to
answer information needs motivated by objectives of safety,
urban mobility and planning, and smart navigation. Most of
these requests went beyond the classical CQ-over-data-streams
querying model of DSMSs and required the execution of CQs
as well as OTQs over recent and historical vehicle reports
and static data. Samples of requests of these kinds are the
following:

OTQ-1Reconstruct the dynamics of an accident from the
trajectories of a selected list of vehicles, the ones
involved in the accident, in the accident period;

OTQ-2Retrieve detailed information of the vehicles that
have passed near a given segment in a given time
period, for instance to search for possible witnesses
for an accident;

CQ-3 Real-time monitoring of the statistics of only those
segments that use to be the most congested, accord-
ing to a relatively static list of “critical” segments.
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To evaluate the impact of the introduction of streaming
tables in our reference scenario we extended the Linear Road
benchmark [25] that has been endorsed by major DSMSs
like [13] and [12] to test efficiency in ITS scenarios. The
benchmark simulates an adaptive real-time toll system where
a multitude of cars move on a virtual highway and the vehicle
tolls are computed in real-time in order to regulate vehicular
traffic. In particular, the highway has multiple expressways,
each made up of lanes and divided into segments; vehicles
pay a toll if and only if they drive in a congested segment, i.e.
a segment where the average speed of all vehicles has been
below a given threshold in the last 5 minutes.

Traffic is simulated through an input stream of car position
reports. The server elaborates the information received from
the vehicles to compute tolls and transmits them back to
vehicles.

The benchmark includes four types of requests that must be
satisfied in a strict response time deadline of 5 seconds: ac-
cident notification, toll notification, account balance and daily
expenditure. In order to respond to the first three requests the
server must continuously compute the answer to multiple CQs
over the data stream, including accident detection, segment
crossing detection and segment statistics. The last request,
instead, is satisfied through an OTQ involving a static table.

Linear Road is a benchmark for standard DSMSs where
vehicle reports enter, are used to solve the continuous requests
and then discarded after 5 minutes. We extended the Linear
Road querying model in two directions. First, we maintain
the history of vehicle reports; second we consider information
needs that translate into CQs as well as OTQs over recent
and historical vehicle reports and static data. In this way, we
can configure evaluation benchmarks that include queries like
those above.

III. ADDING STREAMING TABLES TO THE RELATIONAL
MODEL

In this Section we extend the relational model to include
the notion of streaming table and the semantics of OTQs and
CQs when streaming tables are involved.

A. Streaming table definition

A streaming table is a relational table where streaming data
enters and turns historical by remaining stored for a long
period, ideally forever.

Hereafter, we adopt the definition of continuous data stream
(or simply stream) provided in [13], i.e. a potentially infinite
stream of timestamped relational tuples having a fixed schema.
For timestamps we assume a discrete, ordered time domain
T = {0, 1, 2, 3 . . . , now} of time instants or granules where
0 stands for the earliest time instant while now is the current
timestamp. For time-interval (duration of time), instead, we do
not specify restrictions on its domain I but we assume it is
made up of computable periods of execution time, including
the unbound value 1. As far as the relational model is
concerned, we adopt the standard notation: if R is a relation
with schema R(A1, . . . , An) and t is a tuple from R then

t(Ai) denotes the value of Ai in t. Moreover, given any time
instant ⌧ 2 T , we denote with R

⌧ the content of R at time ⌧ .
Any streaming table inherits the temporal nature of the data

it stores. Specifically, it is an event table [23], i.e. a special
kind of temporal table that stores events and their occurrence
time for a limited time period, named historical period, and
features the access paradigm detailed below.

Definition 1 (Streaming table): A streaming table S with
schema S(A1, . . . , An) and historical period hp 2 I is an
event table, denoted as Shp, with schema S(A1, . . . , An|T ),
where T is the implicit timestamp attribute. The content of Shp

at the time instant ⌧ , i.e. S

⌧
hp, is the set of tuples such that the

timestamp of each tuple t satisfies t(T ) � max(⌧ � hp, 0).
For ease of notation, in the following, whenever possible, we
will use S in place of Shp.

Definition 2 (Streaming table access paradigm): Any
streaming table S

• is subject to continuous writes in timestamp order, i.e.
for t1 and t2 in S

⌧ , t1(T ) < t2(T ) iff t1 arrived before
t2;

• supports one-time reads at any time ⌧ as a standard event
table S

⌧ ;
• supports continuous reads on the most recent tuples. S

boundaries are specified by means of one of the following
classes of sliding-window operators:

– time-based window, denoted as INTERVAL i, with
i 2 I;

– tuple-based window, denoted as ROWS k, with k 2
N;

– partitioned window, denoted as Ap1 , . . . , Apm ROWS
k, with Apj 2 S(A1, . . . , An), for each j 2 [1,m].

Any sliding-window operator w over a streaming table S is
denoted as S[w] and outputs a standard table whose content
depends on the read instant ⌧ :

• S[INTERVAL i]

⌧ is the ordered set of tuples
t(A1, . . . , An) such that t 2 S and t(T ) � max(⌧ � i, 0)

projected on A1, . . . , An in decreasing T values order;
• S[ROWS k]

⌧ is the ordered set of the top-k S tuples
projected on A1, . . . , An in decreasing T values order;

• S[Ap1 , . . . , Apm ROWS k]

⌧ is the union of subsets of
S tuples projected on A1, . . . , An in decreasing T values
order. These subsets are obtained by horizontally parti-
tioning the streaming table based on equality of attributes
Ap1 ,. . . ,Apm and then by applying the tuple-based sliding
window ROWS k on each group.

This definition refers to append-only streaming context only.
Indeed, the only type of continuous update allowed on stream-
ing tables is insertion. This is very common in data stream
management works [13], [12], [18]. We plan to relax this
constraint in our future work. On the other hand, a streaming
table is a special kind of relational table and as such it supports
one-time replacements and deletions.

Moreover, based on this definition, tuples are continuously
inserted in timestamp order. In practice, to implement such a
semantics, systems cope with out-of-order and skewed inputs.
Interested readers can refer to [26] for an in-depth discussion
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VID SPD XWAY LANE DIR SEG POS T
1 0 0 0 0 10 53320 0
2 32 0 0 1 10 53320 1
2 0 0 0 0 11 53320 3
4 0 0 0 0 11 53320 4
4 32 0 0 0 11 53320 6

(a) A streaming table

POSREPORTS[INTERVAL 3]7

VID SPD XWAY LANE DIR SEG POS
4 32 0 0 0 11 53320
4 0 0 0 0 11 53320
POSREPORTS[ROWS 3]7

VID SPD XWAY LANE DIR SEG POS
4 32 0 0 0 11 53320
4 0 0 0 0 11 53320
2 0 0 0 0 11 53320
POSREPORTS[VID ROWS 1]7

VID SPD XWAY LANE DIR SEG POS
4 32 0 0 0 11 53320
2 0 0 0 0 11 53320
1 32 0 0 0 10 53320

(b) Sliding windows

Q(POSREPORTS7)
1 0 0 0 0 10 53320 0
2 0 0 0 0 11 53320 3
4 0 0 0 0 11 53320 4
Qc(POSREPORTS[INTERVAL 4])52
4 0 0 0 0 11 53320 4
2 0 0 0 0 11 53320 4
1 0 0 0 0 10 53320 4
Qc(POSREPORTS[INTERVAL 4])72
4 0 0 0 0 11 53320 6
2 0 0 0 0 11 53320 6

(c) Query semantics

Fig. 1. A sample about streaming tables and query semantics

of this aspect. In this paper we assume an input manager that
guarantees in-order tuple arrival.

Example 1: The stream of car position reports of the refer-
ence example can be stored in a streaming table with schema
POSREPORTS(VID, SPD, XWAY, LANE, DIR, SEG,
POS), where VID is the vehicle ID, SPD represents the
reported speed, while the other attributes are related to the
actual position of the vehicle in the reference road map. A
sample of POSREPORTS storing a stream of car position
reports generated by Linear Road up to time 6 is shown in
Fig. 1(a). It concerns 3 vehicles identified by the VIDs 1,2,
and 4 occupying lane 0 of the expressway 0.

The sliding window operators POSREPORTS[INTERVAL
3], POSREPORTS[ROWS 3], and POSREPORTS[VID
ROWS 1] over the streaming table POSREPORTS denote a
time-based window of 3 time instants, a tuple-based window
requiring the last three position reports, and a partitioned
window requiring the latest tuple for each VID, respectively.
Their output at time 7 over the streaming table in Fig. 1(a) is
shown in Fig. 1(b). It is worth noting that, according to the
sliding windows semantics, tuples are projected on the explicit
schema and presented in decreasing T values order.

B. Query semantics

Streaming tables can be involved both in OTQs and CQs. As
to the former, we assume readers are familiar with the syntax
and semantics of relational queries2 and we only provide a
concise yet informal semantics of OTQs.

Definition 3 (Semantics of one-time queries over streaming
and standard tables): The result of a OTQ Q over n streaming
tables R1, . . . , Rn, with n � 1, and m � n standard tables,
with n  m, Rn+1, . . . , Rm, issued at time ⌧ , is an event table
Q(R

⌧
1 , . . . , R

⌧
n, R

⌧
n+1, . . . , R

⌧
m) of fixed arity with values from

R

⌧
1 , . . . , R

⌧
n, R

⌧
n+1, . . . , R

⌧
m.

It is worth noting that when a OTQ Q is evaluated at time ⌧ ,
all the streaming tables referenced in Q undergo a one-time
read at time ⌧ . In other words they are dealt with as standard
(event) tables and the content of any involved streaming table
Ri at Q disposal is the set of tuples in R

⌧
i .

As far as CQs are involved, a continuous query Q

c is a
query that is issued once, and then logically runs continuously
until Q

c is terminated. In line with many CQ specification
syntaxes (e.g. [13]), we assume Q

c is always equipped with
a slide parameter sl representing the query evaluation period.
The latter can be either an interval or the special parameter
REALTIME, that means that the query is re-evaluated as new
tuples arrive.

Any streaming table R referenced in a continuous query
must be equipped with a sliding-window w that specifies
the boundaries of the most recent R tuples to be used for
query evaluation. According the generally accepted definition
of continuous query semantics [28], we define the semantics of
a continuous query Q

c over streaming and standard tables to
be equal to the semantics of the corresponding OTQ Q whose
inputs are the current states of streaming and standard tables
referenced in Q

c.
Definition 4 (Semantics of continuous queries over stream-

ing and standard tables): The result of a continuous query
Q

c with slide parameter sl over n streaming tables and
sliding-windows R1[w1], . . . , Rn[wn], with n � 1, and m�n

standard tables, with n  m, Rn+1, . . . , Rm, at time ⌧ , is a
streaming table with historical period hp whose content at time
⌧ corresponds to the set of timestamped data returned up until
⌧ by executing the corresponding OTQ Q at sl granularity:

Q

c
(R1[w1], . . . , Rn[wn], Rn+1, . . . , Rm)

⌧
hp =

k:⌧k⌧[

i=0

(Q(R1[w1]
⌧i
, . . . , Rn[wn]

⌧i
, R

⌧i
n+1, . . . , R

⌧i
m)⇥ {⌧i})

where ⌧i = (d ⌧�hp
sl e+ i) · sl. The default historical period hp

value is sl.
It is worth noting that the default result set of a continuous
query Q

c at time ⌧ is the result set of the last Q execution,
in accordance with the sl granularity. Any historical period
extension can be performed through a materialized view spec-
ification in such a way to store the result sets of consecutive
Q executions in a persistent streaming table.

Example 2: Let us assume we are interested in identifying
stopped cars in the streaming table POSREPORTS, i.e. tuples

2Interested readers can refer to [27] for an in-depth study.
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with SPD=0. If an OTQ with such a selection condition is
issued then we will obtain all the cars that stopped in the time
interval of the recorded position reports. The output of such
OTQ Q(POSREPORTS7

) over POSREPORTS issued at time
7 is the event table shown in Fig. 1(c).

If, instead, we are interested in a continuous monitoring of
stopped cars we must issue a continuous query. For instance
the continuous query Q

c
(POSREPORTS[INTERVAL 4])

with slide parameter sl = 2 will deliver every 2 in-
stants (i.e. at time 2, 4, and 6) the stopped cars in the
last 4 instants. The query results at the two time in-
stants 5 and 7, Q

c
(POSREPORTS[INTERVAL 4])52 and

Q

c
(POSREPORTS[INTERVAL 4])72, are shown in Fig. 1(c).

IV. SKETCH OF EXTENSIONS TO SQL

In this Section we aim at illustrating the main benefits and
potentialities of designing and managing hybrid data-intensive
applications in a DBMS extended with streaming tables and
continuous query support. To this end, we need to extend
SQL, the declarative DBMS language database designers use
to define and access data in their applications. Introducing a
complete set of SQL constructs to put at designers disposal is
a demanding issue that will be dealt with in our future work. In
this paper we limit ourselves to outline some possible minimal
extensions that SQL should undergo to effectively support our
reference scenario (see Section II).

Streaming table POSREPORTS, that will store the stream
of position reports, can be declared through the statement
CREATE STREAMING TABLE shown in Table. I(a). It ex-
tends the standard SQL statement CREATE TABLE with the
RANGE construct that states the historical period through
a SQL INTERVAL literal. Moreover the standard CREATE
INDEX construct can be used to build B+-trees as well
as hash indices on explicit streaming table attributes. Fi-
nally, the INSERT INTO command (Table I(b)) connects
POSREPORTS to the Linear Road stream for continuous data
insertion.

The upper part of Table I shows three CQs (c)-(e) that
implement the Linear Road benchmark. They follow a syntax
similar to the one introduced in the CQL continuous query
language [13] and semantics introduced in Subsec. III-B. As
to the syntax, note that SELECT and WHERE clauses are
standard SQL expressions, the WHERE clause includes the
streaming and standard tables referenced in the query, and the
SAMPLE parameter defines the slide parameter. For instance
CQ (c) continuously detects accidents by identifying stopped
vehicles. A vehicle is considered stopped when the last four
consecutive position reports have null speed. To this end,
the query specifies a partitioned window on the vehicle ID
attribute, VID, that outputs the last four reports for each
vehicle and uses the newly added function, PREV, that returns
the tuple preceding the current tuple t in the window. CQ
(d), instead, computes each minute the segment statistics from
the last minute traffic information and stores them in the
materialized streaming view SEGSTAT, maintaining statistics
for the last 5 minutes as required. Finally, CQ (e) continuously
detects segment crossings. It is worth noting that in two out

of the three CQs shown in the table, the slide parameter
is REALTIME that means that both queries are re-evaluated
whenever a new POSREPORTS tuple arrives.

Thanks to the minimal extensions to SQL depicted in the
upper part of Tab. I, Linear Road would be implemented on a
full-function database system in a very compact and intuitive
way: 1 streaming table, 4 standard tables, 2 views, 3 CQs,
and 2 stored procedures3. As a matter of fact, only the CQs
shown in Tab. I are necessary while the rest of the benchmark
can be implemented through standard SQL statements and
stored procedures. Linear Road represents the portion of our
reference scenario standard DSMSs usually support. However,
their implementations are significantly more involved. Indeed,
these systems have query languages that differ sharply in
semantics and capabilities from standard SQL. Specifically,
since they rely on stream-oriented data types and only a limited
number of constructs are supported, a very large number
of data definitions are usually required. For instance, the
STREAM implementation of Linear Road4 defines more than
35 CQL data stores. With reference to Table I, query (c)
is implemented with 14 streams, while the ones in queries
(a) and (b) correspond to more than 12 streams. Please also
note that static data like expenditure data should enter the
system as streaming data, making main memory requirements
burdensome. The solution we advocate in this paper, instead,
straightforwardly responds to this kind of requests since SQL
was specifically conceived for this purpose.

The lower part of Table I implements requests OTQ-1,
OTQ-2, and CQ-3 presented in Section II (denoted as (f)-
(h), respectively). They go beyond the capabilities of standard
DSMS querying models. According to the OTQ semantics
presented in Section III, OTQs (f) and (g) fetch the stream-
ing data in POSREPORTS in one-read and output standard
tables. TRJ() is a custom aggregate function returning the
trajectories of the list of vehicle IDs it receives as input.
Similarly, the stored procedure NEAR() returns the vehicles
that have passed near a given segment. In both cases, temporal
predicates follow the TSQL syntax [23]. Specifically, predicate
VALID extracts tuple timestamps while OVERLAPS checks
whether the tuple timestamps fall in the required time intervals.
Finally, CQ (h) joins a streaming table with the standard table
CRITICALSEGS(SEG) storing “critical” segments.

V. DEALING WITH STREAMING TABLES IN A DBMS
In this paper, we build the bases for streaming table man-

agement in a DBMS. To this end, we propose a streaming
table implementation that includes the algorithms and the data
structures for organizing and accessing streaming data.

According to the DBMS architectures, streaming table im-
plementation affects the TSM and is accessible through an
access interface. The latter would enable the QP to perform
access and manipulation calls on streaming table data in
different ways during query processing by means of basic
operations to be used for query plan generation.

3The full version is available at http://www.isgroup.unimo.it/
files/LRQueries.pdf

4Downloadable together with the Stream server source code from
http://infolab.stanford.edu/stream/code/
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TABLE I
A SET OF QUERY SAMPLES FOR THE LINEAR ROAD APPLICATION

Operator Call parameters
Data manipulation interface

CInsert table, stream
Data access interface

CScan
CIndexScan call_id, table,window,ixid,pred,sample
CSeqScan call_id, table,window,pred,sample

Resume call_id
Kill call_id

TABLE II
THE NEWLY ADDED OPERATORS FOR STREAMING TABLE MANIPULATION

AND ACCESS

The base streaming table access interface includes the
continuous operators listed in Table II and traditional operators
that apply to streaming tables too5.
CInsert implements continuous writes. It is invoked when

the DBMS processes an INSERT INTO query in order to
connect the streaming table table to the source stream
stream.

The CScan interface refers to the way data items in the
window window are accessed by any continuous read. It is
implemented through the CIndexScan and the CSeqScan
operators; the former leverages on the index with OID ixid
while the latter sequentially scans the items in the window.
Finally, pred is a DNF formula of simple selection predicates
of the form column operator constant.

When a continuous query is submitted to the DBMS,
CIndexScan and CSeqScan operator calls specify the
access pattern on the involved streaming tables. Each call
is issued to the TSM only once while updates must be
delivered at the time rate that is specified in the SAMPLE
clause (see Table I). To this end, we support two types of
access models [6]: the pull and the push model. In the first
case, data requests are driven by the QP that communicates
to the TSM the call identifier call_id through the Resume
operator. In the last case, instead, it is the TSM that notifies
the QP about new available results. This model is used for
instance in SAMPLE REALTIME queries. Therefore, sample

5In the absence of a standard TSM interface, we adopt the PostgresSQL
operator names
(http://doxygen.postgresql.org) and we introduce the continuous counterparts
by prefixing C to the operator names, whenever possible.

SEGSTATCRITICALSEGS

SeqScan CIndexScan

NestedJoin

Sort

outer inner

(Table 1.b)
CInsert(POSREPORTS,LINEARROAD.STR)
(Table 1.d)
CSeqScan(ID_d,POSREPORTS,60, ,)
(Table 1.g)
SeqScan(POSREPORTS,pred)
(Table 1.h)
CIndexScan(ID_h,SEGSTAT,120,OID-SEG, ,)

a b

Fig. 2. Continuous operator call samples (a) and a query plan sample (b)

is an optional parameter stating that the push model has been
selected and its value represents the delivery frequency. In both
cases, the Kill operator is invoked to stop the process.

One-time reads on streaming tables are executed through
traditional Scan calls. Therefore when one or more streaming
tables are involved in an OTQ, the execution plan is a
standard one. What changes is the specific implementation for
streaming tables.

Example 3: With reference to the queries shown in Tab. I,
four sample calls, one for each type, are shown in Fig. 2(a)
(windows are expressed in seconds). As to continuous reads,
a sequential scan on the POSREPORTS streaming table is
considered for query (d) whereas the index scan for query (h)
relies on a previously defined index on the SEG attribute of
the SEGSTAT streaming table. Finally, pred is the translation
of the WHERE clause shown in query (g) as it can be executed
at TSM level. Finally, a possible plan for the query in Table
I(h) is shown in Fig. 2(b).

VI. STREAMING TABLE IMPLEMENTATION

In this Section we propose a technology for storing and
indexing streaming tables at the TSM level and we give
execution details of the TSM interface.

Streaming tables are subject to workloads featuring high
write rate together with concurrent continuous queries with
real time requirements and one-time queries often involving
temporal predicates. Unfortunately, standard relational table
implementations do not achieve good performance for this
kind of workloads that is novel for traditional database sys-
tems.

To efficiently cope with this new kind of workload, we
present an implementation for streaming tables that borrows
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the main data management principles from DBMSs and
DSMSs:

• it uses main-memory storage to achieve good continuous
read performance;

• it uses secondary-memory storage to store large volumes
of historical tuples6;

• it relies on indexing to provide a fast access path to tuples
based on predicates;

• it employs efficient scan algorithms.

To this end, various storage methods and indices have been
proposed in the past both in DSMS contexts (e.g. [6], [30])
and in standard DBMS’s [31]. Nevertheless, we cannot merely
juxtapose them because in our case the two memory levels are
strictly interconnected by highly dynamic data transfer. Large
volumes of data, continuously arriving over time, stay for a
period in main memory, then gradually flow to the lower mem-
ory level, and are finally removed when the historical period
slides. On the contrary, in DSMSs expired and consumed data
exit the system, while DBMSs have not been conceived for
frequent updates.

The technology for streaming table we propose relies on
a storage structure that ensures tuple access at both memory
levels while keeping low main memory consumption.

On top, we propose two new kinds of indices, one for the
efficient execution of temporal predicates and the other for
attribute-valued predicates, that efficiently support high update
and scan rates at both memory levels, without the delays of
periodic batch processing.

A. Storage structure for streaming tables and notation

Once a CInsert operator call is issued to the TSM, the
involved streaming table starts populating with data pulled
from the specified stream.

At any time, the current part of a streaming table, i.e. those
items that are neither expired nor yet consumed, is stored into
a circular linked list of blocks, while expired and consumed
items are stored in disk blocks (Fig. 3(a)). Each block stores
a fixed number of tuples; the tail block stores the newest
tuples in the list while the head block the oldest ones, and
the tuples inside are in chronological order (newest tuple
at the tail). Concurrent accesses on lists are dealt with by
means of a locking technique adopting single tuples as lock
granularity and implements read locks (shared) and write lock
(exclusive). Therefore, we exploit a state-of-the-art storage
structure for stream management (see e.g. [6], [30]) with the
main difference that the block size is a multiple of the database
page size.

Fig. 3(a) depicts the notation for circular linked list we
will adopt hereinafter: L denotes a list, b a list block and
t a streaming tuple; L.getF irst() and L.getLast() return the
head and the tail block of the list, respectively. Within each
block b, b.getF irst(), b.getLast(), and b.getNext() return

6Actually, large historical periods could translate into very large streaming
tables. Multi-level storage is a research issue in itself [29]. This issue is out
of the scope of this paper and we limit our discussion to a two-level memory
hierarchy.

the first and the last tuple in block b and the block next to b,
respectively; t.time() returns the t timestamp.

As to data transfer from main to secondary memory, we
adopt a lazy disk-write approach that consists in marking
whole block contents thus limiting the I/O costs of the item
write flow. Outdated blocks can then be reused by replacing
the old items with the new incoming ones.

Specifically, whenever a new item arrives and the current
block, L.getLast(), is full, we have two alternatives. If the
list is in a stable state, i.e. the tuples it contains enable the pro-
cessing of all the continuous operator calls that are currently
active on the table, then the content of the most aged block
L.getF irst() is ready for disk write and the block is re-used
as the new current block, i.e. L.getLast() = L.getF irst().
Otherwise, a new block is added to the list and becomes the
new current one L.getLast().

The approach is correct as we follow the usual stream-based
semantics, i.e. continuous operators “look” at the input only
once. Moreover, it is more performant than the one adopted
for instance in [6] where single items are marked as consumed
and/or expired. We employ this finer-grain solution for one-
time deletions only: Deleted items are marked in the blocks so
that any subsequent request for them will fail. Then marked
items are physically removed lazily, when their blocks are
forced to disk.

B. The interval-based index

Streaming tables store temporal data. Each streaming table
is therefore always equipped with a new kind of temporal
index, the interval-based index, that accelerates temporal pred-
icate evaluation as well as temporal window computation.

Its main memory component is a circular dynamic array
that efficiently supports time-based accesses to the blocks of
the circular linked list L. The array MMIntIdx of dimension
dim covers the list time period [start, now] where start =

L.getF irst().getF irst().time(). Each entry MMIntIdx[i],
for i 2 [0, dim � 1], corresponds to a time interval of
fixed length ti and points to the queue of block identifiers
(BIDs) covering the interval. More precisely, with reference
to Fig. 3(b), the front element MMIntIdx[front] refer-
ences those blocks in L that contain items whose temporal
pertinence is in the range [start, start + ti), the next one,
MMIntIdx[(front+ 1) mod dim], covers the time interval
[start + ti, start + 2 ⇤ ti), while the rear element is about
[start + ((dim + rear � front) mod dim) ⇤ ti, now). In
this context, time-based accesses always amount to random
accesses in a circular dynamic array.

Example 4: Let us assume that the timestamps represented
in Fig. 3(b) are minutes, then the Table I(f) query predicate
is solved by selecting the BIDs pointed by the array elements
between MMIntIdx[(front+(now� 15� start) mod ti)

mod dim] and MM [(front+ (now � 10� start) mod ti)

mod dim] where ti = 1, start = 10, and now = 26.
It is worth noting that the number of returned BIDs is
proportional to the average number of BIDs per queue that
is strictly related to the ti value. Therefore, ti is an important
parameter to be set: the smaller ti, the more selective the
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(c) The value-based index

Fig. 3. Streaming table structures

index; on the other hand, small ti values imply a greater
number of array elements.

At the same time, BID insertions and deletions are per-
formed at the back and at the front of the array, respectively,
because of the temporal order of blocks.

Summing up all operations on MMIntIdx show constant

time cost. This data structure therefore represents an optimal
in-memory solution for the temporal indexing of a streaming
table where high-speed data streams that enter and exit main
memory require fast block insertions and deletions and time-
based searches are very common.

Similarly to its main memory counterpart, the secondary
memory component of an interval-based index must be an
index structure that efficiently adapts to the high insertion rate
the datafile undergoes. To this end, we exploit the temporal
order of the streaming tuples in the datafile to introduce a
block-oriented clustered B+-tree denoted as SMIntIdx and
built on the lower bound of the time interval covered by each
block. More precisely, the i-th index entry of SMIntIdx has
the form (bi.getF irst().time(), BIDi) where bi is the disk
block in the datafile identified by the BID BIDi (see Fig.
3(b)). SMIntIdx is a coarse-grain index that:

• greatly increases overall speed of retrieval.
Indeed, any streaming tuple t lies in the block
bi such that bi.getF irst().time()  t.time() 
bi+1.getF irst().time(). Therefore, temporal conditions
are efficiently solved by accessing first SMIntIdx

and then by accessing data sequentially as tuples with
subsequent timestamps are guaranteed to be physically
adjacent;

• limits index update overhead, because it only undergoes
one insertion for each block write.

The interval-based index is updated in three different block
lifecycle stages:

• when a block in the main memory list is started and
when it is filled up (see algorithms 1 and 2 in Fig. 4,
respectively): in these cases we push its BID into the
queues pointed by the elements at the back of the array
and update rear to the current time interval. Note that
when the system starts and then the block is the first one,
algorithm 1 at Line 2 initializes the start value, i.e. the
lower bound of the time interval that MMIntIdx covers,
to the timestamp of the first streaming tuple;

• when a block is moved to secondary memory (see algo-
rithm 3 in Fig. 4): in this case the block is the ancient
block in L and therefore its BID is the head of the queue
pointed by the front element of MMIntIdx. In this
case BID is popped from MMIntIdx[front], while
MMIntIdx[front] is removed if it becomes empty.
This process is iterated on the subsequent array elements.
Finally, we add the BID with its key to SMIntIdx.

C. Value-based indices

Value-based indices can be explicitly created through the
CREATE INDEX construct.

A value-based index for streaming tables essentially ex-
tends standard secondary memory index types with a main
memory structure for fast access to the most recent tuples of
the streaming table and an efficient approach for secondary
memory index updates.

The secondary memory component of an index created
on a table attribute, SMV alueIdx, is a B+-tree or a hash,
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Fig. 4. Update algorithms for interval-based indices

depending on the indexing method specified in the CREATE
INDEX query.

Similarly to [30], its main memory component is a linked
list of entries MMV alueIdx where every entry contains an
attribute value, some aggregate values, and points to some
tuples in the block list L (see Fig. 3(c)). More precisely, all
tuples with the same attribute value in L are linked through
forward and backward pointers; additionally, the correspond-
ing entry in the index points to the first and to the last tuples,
thus creating a ring for each attribute value. Moreover, all the
tuples in the same block point to the first tuple with the same
attribute value in the backward block. Therefore, each block
entry follows the structure shown in Fig. 3(c). Finally, among
the aggregate values, we usually maintain at least the value
frequency.

Searches in MMV alueIdx should in principle support
the same comparison predicates as its secondary-memory
counterpart. When the latter is a B+-tree, besides equality
comparisons, we must support in-memory range searches too.
To this end, we consider two alternatives both showing a
logarithmic cost: to implement the index as an ordered list or
as a self-balancing search tree. If SMV alueIdx is an hash,
the range search support is not required. On the other hand,
value searches can be sped up by means of the main memory
solutions specified above as well as hash tables with buckets
containing linked lists of entries.

Insertions in MMV alueIdx proceeds as follows. When a
tuple enters a list block, the TSM scans MMV alueIdx and a
pointer is created from the index to the new tuple that becomes
the first tuple of the list, while the youngest tuple in the ring,
i.e. the previous first tuple, is linked to the new tuple. Similarly,
the pointer to the backward block is derived from the previous
first tuple in the following way: if the latter is in the same
block as the new tuple then the new tuple inherits its pointer,
otherwise the new tuple points to the latter’s block. Pointer
settings have a constant cost while index access cost depends
on the implemented structure.

When the oldest block is transferred to secondary memory,
the TSM must: 1) remove expired tuples from MMV alueIdx;
2) update SMV alueIdx accordingly.

As to the first aspect, we start the deletion process from
the youngest tuple in the block and follow the backward tuple

links until the end of the block. This is repeated for each tuple
in the block in order to derive the chains of the tuples that
share the same attribute value. It is worth noting that the tail of
each chain is the last tuple pointed by the corresponding value
entry in MMV alueIdx. Therefore, we can safely remove
each chain:

• by updating the last tuple of MMV alueIdx entry with
the tuple that is forwardly linked to the head chain and
removing both the last tuple’s backward pointers;

• by removing the backward block pointers of all the tuples
that are in the same block as the last tuple and that
share the same attribute value. This is implemented by
following the chain of the forward pointers that link the
last tuple with the other tuple in its block.

Each of these pointer update operations has a constant cost,
therefore the deletion cost is proportional to the average
number of tuples per block with the same attribute value.

As to the second aspect, the main issue is to support
very high insertion rates while maintaining SMV alueIdx

organization that is a guarantee for query performance. In
this context, the primary critical aspect is that the values of
the indexed attribute of the streaming tuples to be inserted
are typically randomly distributed and thus each successive
tuple is likely to end up in a different leaf of the B+-tree.
As a consequence, performing one insertion for each tuple
is very costly, greatly reducing the rate at which data can
be recorded [32]. Instead, we implement a buffering insertion
technique [33] that founds on an in-memory data structure,
e.g. a dictionary or a BST, acting as a buffer where to group
streaming tuples assigned to secondary-memory. At any time,
the current structure is available for read operations too and
concurrent accesses are regulated by standard concurrency
control mechanisms. When the ratio between the number of
distinct indexed (key) values and the total number of tuples in
the current structure goes under a given threshold, TSM starts
a new current structure while it writes out the previous one
to disk. In particular, it searches in the SMV alueIdx for the
key values in sorted order and for each value it inserts the
TID list associated with it. In this way we reduce disk I/Os
and fault in the CPU cache.
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D. Historical period management

Up to now, we have intentionally neglected the impact of
the historical period (hp) on the permanent component of both
the storage structure and the proposed indices. Indeed, while
hp slides, outdated data must be thrown away.

To this end, among the different approaches that have been
proposed in [34], we follow an approach that is similar to the
Wait and Throw Away (WATA) scheme since it shows two
important advantages for bulk deletion: it achieves the best per-
formance and does not need complex deletion code. It consists
in dividing the historical period hp into k compartments plus
the current compartment. Each compartment spans an equal
time interval w, where k = dhp

w e, and is associated with one
datafile and instances of the indices previously introduced.

We maintain a circular array of pointers to compartments.
Insertions are always performed on the current compartment
and when the latter fills up, its pointer is inserted in the circular
array by overwriting the pointer to the oldest compartment that
is discarded.

Note that this approach occasionally maintains data older
than the required window, as at every instant the covered
time interval is between hp and hp + w. In our opinion,
this phenomenon, named soft window in [34], is absolutely
acceptable as only Scan calls are solved at this memory level.

E. CScan and Scan implementation

Whenever a CScan call is submitted, we store the call
parameters for future resumes to be carried out by the TSM
as well as by the QP through Resume calls.

When a CScan request is resumed, the TSM is in charge of
returning the tuples in the queried streaming table that satisfy
the predicates specified in the pred parameter and that are
within the window parameter. In a similar vein, any Scan
request is dealt with by satisfying the pred parameter. The
former is solved at main memory level only, whereas the latter
can also (or only) involve secondary memory.

In both cases, the scan algorithm takes advantage of the
interval-based index when pred contains one or more tem-
poral predicates or when a time-based window is specified.

For instance, as far as the block list in main memory
is considered, the algorithm goes through two steps. First,
it implements a coarse-grain search that randomly accesses
MMIntIdx to select the set of BIDs to be read. In the second
phase, it performs a linear search on the corresponding blocks.
This step retrieves every tuple in the block and tests whether
its attribute values satisfy the remaining predicates in pred.

In case of CIndexScan or IndexScan, the value-based
index specified in the ixid parameter is exploited to effi-
ciently solve predicates.

When both kinds of indices can be exploited, the search
is further speeded up by accessing only those tuples that
both satisfy the specified value-based constraints and are in
the BID list. To this end, for each selected MMV alueIdx

entry, the algorithm starts from the first tuple and, instead
of sequentially scanning the whole list through the backward
pointers, whenever it accesses the first tuple of a block that

is not in list, it directly “jumps” to the previous block by
following the backward block pointer.

Example 5: With reference to the query in Table I(f), the
first block to be accessed according to the MMIntIdx shown
in Fig. 3(b) is b11. Therefore, assuming that MMV alueIdx

in Fig. 3(c) is about the VID attribute, for each of the VIDs
of the INVOLVEDVIDS table, the algorithm reaches b11 by
accessing each block between bn and b11 at most once.

VII. EXPERIMENTAL EVALUATION

This section presents the results of the experimental study
we conducted to assess the performance of our approach. Tests
on our prototype running on a single-node architecture show
that the proposed technology is able to cope very well with a
continuous write-intensive and query-intensive workload.

We are aware that approaches relying on parallel and/or
distributed architectures would help in managing heavier
workloads and data volumes. However, this is not the focus of
this paper, and we plan to explore this issue in future work.

A. Experimental setting
Our test settings derive from the extended Linear Road

scenario described in Section II. The Linear Road input data
is generated7 at varying levels of complexity (i.e., number of
simulated expressways). The data for testing each expressway
consists of over 12 million position reports reaching a rate
of 100000 reports per minute, 60000 account balance query
requests and 12000 daily expenditure requests, all delivered in
3 hours of simulation. We recall that, in Linear Road, a system
is said to achieve a so-called L-rating if it meets the required
response time and accuracy constraints for all queries while
supporting an input level encompassing L expressways of data
(e.g., rating L1 for 1 expressway). This corresponds, for L1,
to output 2 million toll and 28000 accident notifications, as
well as to answer each of the requested account balance and
expenditure queries.

In our case, we will execute all the complex real-time re-
quests while, at the same time, demanding the system to main-
tain the full stream history of position reports and to make such
history always queryable. We will indicate these extended one-
and two-expressway scenarios as L1+ and L2+, respectively.
Moreover, we will consider two additional scenarios, L1++
and L2++, where we handle the whole workload required by
the L1+ and L2+ scenarios, respectively, and add a varying
number of OTQs on the historical position report data acquired
during the simulation. More specifically, in the L++ scenarios
we instantiate additional randomly distributed OTQs over past
data, involving predicates on both time and key values. We
consider three different OTQ workloads (low, med and high
load, with 20/min, 100/min and 200/min queries submitted
to the system, respectively) and three query selectivity levels
(high, med and low with query results composed of a number
of tuples going from 10000 to over 60000).

The streaming tables data store structures and management
code are implemented in Java 1.6. We implement both the

7http://www.cs.brandeis.edu/⇠linearroad/tools.html
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TABLE III
RESPONSE TIME (SEC) FOR L1+ AND L2+

main and secondary memory components and indices by
means of the ad-hoc data structures presented in Section VI;
we also exploit the Oracle BerkeleyDB 11gR28 lightweight
embedded database library for the implementation of the
secondary memory permanent component of the B+-tree
structures in our secondary memory indices. Standard tables
(i.e. static data) are maintained in PostgreSQL 9.0. Linear
Road queries are implemented in Java too and the required
streaming data accesses are performed through continuous as
well as one-time scan calls. Note that, at the current stage,
our implementation is strictly focused on the key aspect of the
paper, i.e. the streaming table data structure and the deep study
of its performances on the kind of described workload. The
actual integration inside a DBMS architecture, which is in line
with our final objective but beyond the scope of this paper, is
mainly a prototyping work that we leave for the near future and
that will not directly impact on the measured performances.

All the experiments are executed on an Intel Core2 Quad
Q9450 2.66Ghz Win7 Pro 64Bit workstation, equipped with
4GB RAM and a 500GB 7200rpm SATA disk. Java heap size
is set at 2GB.

B. Performance analysis
Response Time. Table III shows the minimum, maximum

and average response time the system achieves for all four
types of Linear Road queries, together with the percentage of
query answers that exceed the maximum time threshold of 5
seconds required by the benchmark (last column). In the top
part of the table, we see that in scenario L1+ all answers
are delivered well ahead of the required time (a mean of
nearly 0.6 secs is measured for all 4 query types). Even at
the demanding L2+ scenario, the system is able to cope very
well with the double input frequency: while only 0.3% (at
most) of the queries are delivered slightly above the required
threshold (maximum response time is 6.5 secs), for most of
them average response time is almost unchanged w.r.t. L1+
performance (for all queries 0.8 secs at most).

It is important to note that, in all Linear Road scenarios,
the more time goes by, the more data enter the system.
For instance, at L1+, in the first minute only 1118 position
reports enter the system, whereas in the last minutes of the
3 hours simulation we get up to 100000 tuples per minute.
Therefore, we want to analyze the response time trend over
simulation time, as shown in the graph of Fig. 5 for toll

8http://www.oracle.com/us/products/database/berkeley-db

Fig. 5. Average response time detail (toll queries, L2+)
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TABLE IV

MEMORY AND CPU PROFILING ANALYSIS FOR L1+ AND L2+

(a) CPU profiling

(b) Memory profiling

Fig. 6. Detailed system profiling and scalability analysis for L1+ and L2+

notifications (the other queries showed similar trends). In
particular, the graph shows, for each simulation minute in
L2+, the average response time of the queries for that minute
(dark colored line), together with the average response time
computed up to that minute (light colored line); the growing
input workload is depicted on the background. As we can see,
the system response time is stable even in the final part of
the L2+ simulation (where up to 200000 tuples per minute
are processed), while the average response time also increases
very slowly.

Profiling and scalability. Besides query response time,
we profiled the system as to percentage of CPU usage and
allocated memory: Table IV shows a summary of the results,
with minimum, maximum and average figures, while Figs. 6(a)
and 6(b) show a detailed trend over simulation time for CPU
and memory, respectively. L1+ successfully completes with an
average and maximum memory occupation of 1015 and 1768
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TABLE V
QUERY RESPONSE TIME (SEC) FOR L1++ AND L2++

MB, respectively, while the CPU is occupied by 21.78% on
average. From Figs. 6(a) and 6(b) we can clearly see how
the system reacts over time to the increasingly heavier input
workload. Besides a good regularity and stability, the results
show a very good scalability of both CPU and memory usage
over time: while the input rate varies over time with an overall
rate of 100:1, the required CPU/memory vary at most with a
30:1 and 20:1 rate, respectively.

L++ scenarios. We will now deepen the performance
offered by the system by considering the two additional
scenarios L1++ and L2++. The results are shown in Table
V for the three considered workloads and selectivity levels.
As we can see, the system is able to answer all queries in a
very efficient way, thus proving the good performance of the
proposed time and value indices: for instance, in L1++ with
medium selectivity and high workload, the system is able to
answer in less than 0.2 secs, on average (the maximum time
is 0.28 secs). Average response times for L2++ are nearly
unchanged. In the lower part of the table, we also show a
comparison baseline where no indices are made available for
solving the query predicates: in this case, response times are
one or even two orders or magnitude larger, showing again the
benefits on efficiency given by the indices we implemented
on streaming tables (results are shown for low workload and
L1++ only, since without indices the system does not keep
up with med and high workloads). Furthermore, we also have
to report that the additional OTQs in L++ are handled with a
very limited additional amount of CPU and memory (5% and
30 MB more than a standard L+ execution, respectively).

State-of-the-art performance investigation. As we have
seen, the specific workload we consider in this paper requires
the efficient handling of all the following aspects at once:
(a) complex OTQs over recent, historical and static data; (b)
continuous reads; (c) continuous writes at very high rate, with
guarantee of full data persistency over the full period of time.
The evaluation on the L+ and L++ scenarios clearly showed
the ability of our proposal to seamlessly meet all the above
mentioned requirements. We will now investigate how existing
state of the art systems (i.e. DBMSs and DSMSs) behave when
dealing with this kind of workload, possibly comparing their
performances to the streaming table implementation.

We will start our analysis by considering state-of-the-art
DBMSs. In the first test, we consider the high data load of
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TABLE VI
STATE-OF-THE-ART DBMSS: RESPONSE TIME AND DELAY ANALYSIS FOR

HIGH UPDATE RATES (“LIGHT” L2 SCENARIO)

Fig. 7. State-of-the-art DBMSs: Response time analysis (L1++)

the L2 scenario, where the tuple input rate achieves nearly
200000 tuples per minute, and we are mainly interested in
seeing if the considered systems are able to keep the pace
of indexing the data (requirement (c)), while answering a
small number of simple submitted OTQs. In this “light” L2
scenario, the complete Linear Road calculations and complex
OTQs and CQs as of (a) and (b) are not considered. Table
VI shows the results we obtained on our system (“StrTable”
in table), on a “plain” standard DBMS (PostgreSQL 9.0,
“Std DBMS” in table) and on a NoSQL DBMS (Apache
Cassandra 1.1.19, “NoSQL DBMS” in table). In the case of
our system, the main memory windows are set to a single
tuple; all systems are working only in secondary memory.
The buffering insertion and concurrency control techniques
available in our approach provide very short response time
for queries requesting non-recent data (0.1 secs on average, as
shown in the right part of table). Moreover, we also have null
delays for queries involving recent/just-arrived data, meaning
that all the required results are always instantly available
at all the high input rates at 60, 90 and 120 minutes of
simulation (see central part of table). On the other hand, a
standard DBMS provides comparable response time for non-
recent data, but exponentially growing delays (offline time
periods) for recently inserted data (up to 41 secs at 120 minutes
of simulation), thus failing the test. Indeed, standard relational
DBMSs would certainly prove very powerful in managing
frequent and complex OTQs as in requirement (a), however
the very high insertion rates on their indices as of requirement
(c) are not the kind of workload they are designed for, and
ultimately lead to unacceptable results. Instead, the NoSQL
DBMS, as expected, succeeds, since it is able to keep up with
the high write rates and simple OTQ requests of this “light”
scenario.

In our second test on DBMSs, besides requirement (c), we
will also consider requirements (a) and (b) in a complete L++
scenario and see which systems can withstand the whole work-
load. Fig. 7 shows the average response time of PostgreSQL

9http://cassandra.apache.org
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Fig. 8. State-of-the-art DSMSs: Response time for L1/L2 scenarios (left) and
detailed analysis for L1 (right)

and Apache Cassandra compared to ours in the L1++ scenario.
In particular, we performed all the required insertions and
queries in real time in all systems, transforming each CQ
into sets of OTQs in the case of the two DBMSs. In this
case, all systems are configured to exploit both secondary and
main memory as far as allowed by their way of working:
streaming tables directly offer a gradual flow from main
to secondary memory which is optimized for this kind of
workload, the DBMS stores the data on disk and exploits a
main memory buffer for accessing frequently requested data,
while the NoSQL system exploits in-memory tables that are
periodically transferred to disk. Only the first 45 minutes of
simulation are shown since the performance gaps are already
well evident: standard relational DBMSs, as was already clear
from the previous test, are not able to sustain the write rate, and
response times are higher than two minutes already at 10 min-
utes of simulation, exponentially growing. The performances
of Cassandra are better than standard DBMSs, however they
show that not even NoSQL systems (at least on our single
node setting) are able to keep up with the full (a), (b) and
(c) requirements of the L1++ scenario. This is possibly due
to the fact that, even if they support very frequent reads and
updates, their indices provide efficient support only for simple
key-value requests, thus the fact that complex and continuous
queries are not efficiently or natively supported ultimately
hampers their results.

The previous two tests showed the relationship between our
proposal and DBMSs; they also showed that the work we
performed on the secondary memory structures was indeed
necessary to withstand the requirements of our workload,
constantly producing answers in a few fractions of seconds
while sustaining very high update rates on the underlying
indices. As to DSMSs, they are not designed nor able to meet
requirement (a) for historical data and requirement (c). Still,
there is an open question we want to answer in this evaluation:
does supporting the full range of requirements introduce
significant performance slowdowns in managing recent data
and CQs w.r.t. standard DSMSs? We considered a number of
DSMSs whose full source and Linear Road implementation
were publicly available: Aurora10 [12], STREAM11 [13] and
DataCell12 [18]. Figure 8 shows their average response time to
execute standard Linear Road scenarios (L1 and L2), and the
average response time for our system to execute the extended

10http://www.cs.brown.edu/research/aurora/
11http://infolab.stanford.edu/stream/code/
12http://github.com/snaga/monetdb/tree/master/sql/backends/monet5/datacell

L++ versions, thus also maintaining the full history of position
reports and executing complex additional OTQs over the whole
data. As we can see, the performance of our system is in line
with the other DSMSs, even if performing all the additional
required operations. Please note that STREAM does not cover
the full benchmark specifications, since it does not handle
static expenditure data (thus, we marked its response times
with a “*” in the left part of the figure). Further, from our
tests we also noticed some significant weak points for other
systems: an ever-growing response time trend for Datacell (see
the right part of Figure 8) and, in the case of STREAM, CPU
figures constantly higher than 99%, maybe due to the overhead
of dealing with the much larger number of streams needed to
implement the benchmark in a standard DSMS.

VIII. RELATED WORK AND CONCLUSIONS

With the aim of supporting new kinds of modern applica-
tions that need to access both live and historical/static data,
various research efforts have been devoted to the development
of solutions, where three main approaches that relate DSMS
and DBMS technologies can be identified.

DSMS extended with DBMS functionalities. Some
DSMSs have extended towards mechanisms that store data
permanently. We refer, for instance, to [12], [13], [6], [7],
[14], where any flow of stored tuples is actually a stream and
thus OTQs reduce to CQs. This approach suffers from the
overhead of converting huge amounts of stored data to streams.
As a partial solution to this problem, [14] employs data
reduction techniques to retrieve only sampled data. In most of
these systems, the storage manager and the query processor
are tightly coupled. The decoupling of these components is
instead a fundamental design principle that provides flexibility,
adaptation to specific requirements, and optimizability [6].
Essentially, this approach requires to redesign from scratch
functionalities that are well-established in the DBMS context.

Combination of DSMS and DBMS. Recently, some com-
mercial DBMS vendors offer powerful platforms for the devel-
opment of complex event processing and real-time analytical
applications, where databases are considered as event sources
and/or targets [35], [36], [37], [38]. However, these systems
implement a dichotomic DSMS-DBMS vision as in other
two-layered solutions (e.g. ,[5], [9], [10]) where the DSMS
and the DBMS are combined as independent systems, each
one devoted to the management of data they have been
conceived for (live and historical/static data, respectively).
The main drawback of this approach is the presence of
inherent inefficiencies due to the lack of continuous update
capabilities by traditional DBMSs, as shown in Sect. VII and
also discussed in [8]. To overcome this problem, in [15] a-
priori-known SQL queries continuously run on streams to
reduce the cardinality of the streaming data to be stored, thus
giving up data completeness.

DBMS extended with DSMS functionalities. Some works
acknowledge the power of a core of well-established DBMS
techniques and charge DSMSs with short-sightedness as to
treating stream processing distinct from traditional data pro-
cessing [16], [17], [8], [18], [19]. [8] advocates a stream-
relational system and it is the work most similar to ours for
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the underlying principles of proposing an integrated solution.
However, in [8] live and past stream data are managed
separately, where streams are the results of CQs and are not
archived, while persistence of past streamed data is provided
by means of standard SQL tables. Although a kind of “bridge”
is created in between, the dichotomic vision of live and
past streamed data still remains. In [18] streaming tuples are
stored in temporary main-memory tables and once a tuple has
been seen by all relevant queries/operators it is dropped from
its table. This tuple management policy fits for CQs only.
[19] focuses on handling incremental stream processing at
the query plan and scheduling level. A similar approach is
proposed by [17], that extends a DBMS query engine to deal
with chunks of streaming data, by continuously generating
an unbounded sequence of query results, one for each data
chunk. The inefficiencies due to the lack of continuous update
capabilities at a standard DBMS storage level still remain. In
order to cope with this problem, in [17] continuous database
updates are performed in a chunk-based fashion, whereas [19]
adopt a column-oriented storage engine to guarantee efficient
storage/access to large volumes of streaming data. Finally,
[16] is a NewSQL system extended with stream processing
capabilities that behaves similarly to a DSMS.

All above systems do not offer a fully native representa-
tion of streaming data in the DBMS. Streaming tables are
introduced exactly with this purpose. Streaming tables allow
streaming data to seamlessly flow from main-memory to
secondary memory storage structures according to the specific
workload to be supported, in a completely transparent way.
To the best of authors’ knowledge, no other system features
this property for stream data management, thus offering a
completely integrated solution in a DBMS. As a clear out-
come, querying streaming tables is as familiar as querying
standard tables, and in Sec. III we gave an intuition of how
easy it would be to satisfy the Linear Road benchmark when
streaming tables are available in a DBMS, with respect to
the effort required, for instance, by an extended DSMS like
STREAM [13].

Streaming tables are designed to support unconventional
workloads featuring massive write rate and low query an-
swering latency on a blend of live/historical/static data. The
issue of efficiently managing unconventional workloads has
been addressed by other papers in the literature that redesign
the database architecture to this purpose (e.g., [20], [22]). For
instance, [22] presents a novel relational table implementation
and [20] proposes a new database architectures to dynamically
support different workloads. These proposals refer to in-
memory implementations only. Other proposals (e.g., [29])
exploit database architectures that efficiently support lookup-
intensive and aggregation operations and proves to be ad-
vantageous for data-intensive analytics, where queries check
attributes almost in a partitioned way [24]. However, in a
more general SQL query-intensive scenarios on write-intensive
OLTP involving complex queries on several attributes, perfor-
mances of these solutions degrade significantly, as shown by
experiments in Sect. VII. To overcome this limit, [29] designs
a massively parallel distributed engine. This is an orthogonal
aspect and we are aware that streaming tables would certainly

increase their efficiency by exploiting distributed storage and
parallel and distributed query execution. We plan to explore
this feature in future work by exploiting computation frame-
works like [39], [40].

Streaming tables are equipped with indices that are ex-
ploited for both OTQs and CQs execution. Existing indices
for streaming data are designed for main memory only and
they are not burdened by the problem of transferring data
in secondary memory structures (e.g. [30]). The proposed
interval-based and value-based indices span both main mem-
ory and secondary memory. The value-based index is similar
to [30] but it includes additional pointers whose maintenance
overhead is negligible with respect to the advantages given
on accesses and updates. As the experiments in Sect. VII
proved, streaming tables show very promising performances
on a wide spectrum of query specifications (i.e., on live and
historical/static data); the supported workload goes beyond
what existing state-of-the-art systems (DSMSs and DBMSs)
are usually designed/able to work with.

Summing up, we believe that a DBMS extended with
streaming tables and continuous query support may lead to
many benefits in the design and management of hybrid data-
intensive applications. We experienced the applicability of
streaming tables in various smart city scenarios, where we
focused on scalability issues on data acquisition by means
of data reduction techniques in Vehicle-to-Infrastructure trans-
missions [41], and on adaptability to different traffic data and
query workloads in various Intelligent Transportation Systems
contexts [42]. We are aware of several research issues that need
to be reviewed in order to fully integrate streaming tables in
a DBMS, like query optimization, recovery, and transaction
management, just to mention a few. All of these deserve a
further investigation on their own and are planned in our future
research agenda.
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