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Abstract

The aim of this work is to present a new and efficient optimization method for the solution of blind deconvolu-

tion problems with data corrupted by Gaussian noise, which can be reformulated as a constrained minimization

problem whose unknowns are the point spread function (PSF) of the acquisition system and the true image. The

objective function we consider is the weighted sum of the least-squares fit-to-data discrepancy and possible reg-

ularization terms accounting for specific features to be preserved in both the image and the PSF. The solution of

the corresponding minimization problem is addressed by means of a proximal alternating linearized minimiza-

tion (PALM) algorithm, in which the updating procedure is made up of one step of a gradient projection method

along the arc and the choice of the parameter identifying the steplength in the descent direction is performed au-

tomatically by exploiting the optimality conditions of the problem. The resulting approach is a particular case

of a general scheme whose convergence to stationary points of the constrained minimization problem has been

recently proved. The effectiveness of the iterative method is validated in several numerical simulations in image

reconstruction problems.
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1. Introduction

Image deconvolution is an extremely prolific field which on one hand finds applications in a large variety of

areas (physics, medicine, engineering,...) and on the other hand rounds up the efforts of a large community of

mathematicians working on inverse problems and optimization methods. Most of the resulting works deal with

the ill-conditioned discrete problem in which the blurring matrix is assumed to be known and the goal is to find a

good approximation of the unknown image by means of some regularization approaches [1]. However, in many

real applications the blurring matrix is not completely known due to a lack of information on the acquisition model

and/or to external agents which corrupt the measured image (atmospheric turbulence, thermal blooming,...). This

situation is known as blind deconvolution and most strategies to approach this problem are based on a simultaneous

recovery of both the image approximation and the point spread function (PSF) of the acquisition system. Blind

deconvolution is a very actual field and a much more challenging problem than the image deconvolution one, due

to the strongly ill-posedness caused by the non-uniqueness of the solution. A review of some recent results can be

found e.g. in two recent papers by Almeida & Figuereido and Oliveira et al. [2, 3], even if many other different

approaches have been developed. If the noise corrupting the measured data is assumed to have a Gaussian nature,

blind deconvolution can be addressed by means of the constrained minimization of the squared Euclidean norm of

the residuals plus some regularization terms suitably chosen according to the object and PSF to be reconstructed.

An alternative formulation involves the unconstrained minimization of the same objective function with the ad-

dition of the indicator functions of the feasible sets, which can be numerically solved with forward–backward
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splitting methods [4, 5].

The starting point of this paper is a proximal alternating method recently proposed by Bolte et al. [6] for a more

general class of nonconvex and nonsmooth minimization problems, in which the parameters defining the method

are fixed by using the Lipschitz constants of the partial gradients of the least-squares plus regularization part

of the objective function. Convergence of the resulting sequence to a stationary point is ensured by the Kurdyka–

Łojasiewicz property [7, 8, 9]. In particular, for the specific case of blind deconvolution, we extend the convergence

results proved in [6] to a wider range of parameters, which allows the corresponding scheme to converge much

faster toward the limit point. Moreover, we introduce a practical adaptive choice of the parameters based on a

measure of the optimality condition violation, and we test the proposed algorithm in some simulated numerical

experiments.

The paper is organized as follows: in Section 2 we introduce the blind deconvolution from Gaussian data and we

recall the specific formulation of the proximal alternating linearized minimization proposed in [6] for this problem.

Our proposed extension of the scheme is described in Section 3, together with the analogous convergence results

and some hints for the choice of the parameters. Section 4 is devoted to some numerical experiments on synthetic

datasets, while our conclusions are given in Section 5.

2. Problem setting

When dealing with Gaussian noise, blind deconvolution can be modeled as the minimization problem

min
x∈X,h∈H

F(x, h) =
1

2
‖h ∗ x − g‖2 + λ1R1(x) + λ2R2(h), (1)

where X ⊆ R
n and H ⊆ R

m are the nonempty, closed and convex feasible sets of the unknown image x and PSF h,

respectively, ∗ denotes the convolution operator, g is the measured image, R1,R2 are differentiable regularization

terms and λ1, λ2 are positive regularization parameters. As usual, the computation of the convolution product is

performed by means of a matrix–vector multiplication h ∗ x = Hx = Xh, where X and H are suitable structured

matrices depending on the choice of the boundary conditions [10]. Examples of regularization terms frequently

used in the applications are the following:

• RT0(z) = ‖z‖2 (Tikhonov regularization of order 0);

• RT1(z) = ‖∇z‖2 (Tikhonov regularization of order 1);

• RHS(z) =
∑

i

√
‖ (∇z)i ‖

2 + β2 (hypersurface regularization), where (∇z)i is the 2-vector representing the dis-

cretization of the gradient of z at pixel i in the horizontal and vertical directions.

As concerns the feasible sets, we consider non-negative images and non-negative and normalized PSFs, therefore

we assume

X = {x ∈ Rn|x ≥ 0},

H = {h ∈ Rm|h ≥ 0,
∑

i

hi = 1}.

If we denote with IX and IH the indicator functions of X and H, respectively, then problem (1) can be rewritten as

min
x∈Rn,h∈Rm

Ψ(x, h) = F(x, h) + IX(x) + IH(h). (2)

Problem (2) can be addressed by means of recently proposed optimization methods, provided that the function F

and its gradient satisfy some properties that we recall in the following definition.

Definition 1 We define the set F of functions F : Rn × Rm −→ R such that:

(i) inf
x∈Rn,h∈Rm

F(x, h) > −∞;
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(ii) for any x ∈ Rn and h ∈ Rm, the partial gradients ∇xF(·, h) and ∇hF(x, ·) are globally Lipschitz continuous,

i.e., there exist Lx(h), Lh(x) > 0 such that

‖∇xF(x1, h) − ∇xF(x2, h)‖ ≤ Lx(h)‖x1 − x2‖ ∀x1, x2 ∈ R
n,

‖∇hF(x, h1) − ∇hF(x, h2)‖ ≤ Lh(x)‖h1 − h2‖ ∀h1, h2 ∈ R
m.

Moreover, for each bounded subset B1 × B2 of Rn × Rm, there exist α(B1), α(B2) > 0 such that

sup{Lh(x) : x ∈ B1} ≤ α(B1),

sup{Lx(h) : h ∈ B2} ≤ α(B2);

(iii) the gradient ∇F is locally Lipschitz continuous, i.e., for each bounded subset B of Rn × R
m, there exists

M(B) > 0 such that

‖∇F(x1, h1) − ∇F(x2, h2)‖ ≤ M(B)‖(x1 − x2, h1 − h2)‖

for all (x1, h1), (x2, h2) ∈ B.

The function F defined in problem (1), when R1,R2 are the Tikhonov or HS regularizations, belongs to the set F .

Indeed, in this case F is readily lower bounded. Moreover, for Tikhonov regularization of order 0 we have

‖∇xF(x1, h) − ∇xF(x2, h)‖ = ‖
(
HT H + 2λ1I

)
(x1 − x2) ‖

≤ ‖HT H + 2λ1I‖‖x1 − x2‖,

thus giving Lx(h) = ‖H‖2 + 2λ1 (and in a similar way Lh(x) = ‖X‖2 + 2λ2). As for Tikhonov regularization of

order 1 and HS, we start by defining the 2d × d matrix (where d = n for the image and d = m for the PSF)

D =
[
DT

1 · · · D
T
d

]T
,

where Di is the 2 × d matrix defined such that Di z is the forward difference approximation of the gradient at the

i-th component of a vector z ∈ Rd. Each row of Di (i = 1, . . . , d) contains two nonzero elements and it results that

‖D‖2 ≤ 8 [11]. The regularization operators and their gradients can be rewritten by means of D:

RT1(x) = ‖Dx‖2 ; ∇xRT1(x) = 2DT Dx,

RHS(x) =
∑

i

√
‖Dix‖2 + β2 ; ∇xRHS(x) =

∑

i

DT
i Dix√

‖Dix‖2 + β2
.

It follows that for Tikhonov regularization of order 1 we have

Lx(h) ≤ ‖H‖2 + 16λ1 ; Lh(x) ≤ ‖X‖2 + 16λ2,

while for HS regularization [12]

Lx(h) = ‖H‖2 + λ1‖D‖
2/β2 ≤ ‖H‖2 + 8λ1/β

2,

Lh(x) = ‖X‖2 + λ2‖D‖
2/β2 ≤ ‖X‖2 + 8λ2/β

2.

Finally, the last part of condition (ii) and condition (iii) straightly follow from the fact that F is a C2 function (see

Remark 3(iv) of [6]). Under these considerations, the proximal version

x(k+1) = arg min
x∈Rn
〈x − x(k),∇xF(x(k), h(k))〉 +

ck

2
‖x − x(k)‖2 + IX(x), (3)

h(k+1) = arg min
h∈Rm
〈h − h(k),∇hF(x(k+1), h(k))〉 +

dk

2
‖h − h(k)‖2 + IH(h),

being ck, dk positive real numbers, of the usual Gauss–Seidel scheme can be exploited for the solution of (2)

[13, 5, 14]. In particular, in a recent paper [6] the authors proposed a proximal alternating linearized minimization

(PALM) algorithm which, starting from a given initial point (x(0), h(0)) ∈ X×H, generates a sequence (x(k+1), h(k+1))

(k = 0, 1, . . .) in the following way:
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(i) take γx > 1 and set ck = γxLx(h(k));

(ii) choose x(k+1) ∈ proxIX

ck

(
x(k) −

1

ck

∇xF(x(k), h(k))

)
;

(iii) take γh > 1 and set dk = γhLh(x(k+1));

(iv) choose h(k+1) ∈ prox
IH

dk

(
h(k) −

1

dk

∇hF(x(k+1), h(k))

)
.

We recall that the proximal operator exploited in (ii) and (iv) is, in general, defined as

proxσθ (z) = arg min
u∈Rd
σ(u) +

θ

2
‖u − z‖2

for a given proper and lower semicontinuous function σ : R
d −→ (−∞,+∞], θ > 0 and z ∈ R

d. Since in our

case X,H are convex, the proximal operators associated to IX and IH reduce to the projections PX and PH on the

sets X and H, respectively. The inverse of the steplength parameters ck, dk must be chosen in order to satisfy the

sufficient decrease properties [6]

F(x(k+1), h(k)) ≤ F(x(k), h(k)) + 〈x(k+1) − x(k),∇xF(x(k), h(k))〉 (4)

+
ck

2
‖x(k+1) − x(k)‖2

F(x(k+1), h(k+1)) ≤ F(x(k+1), h(k)) + 〈h(k+1) − h(k),∇hF(x(k+1), h(k))〉 (5)

+
dk

2
‖h(k+1) − h(k)‖2

which, in particular, can be surely reached by choosing ck ≥ Lx(h(k)), dk ≥ Lh(x(k+1)) [13]. These conditions com-

bined with the requirement that F satisfies the Kurdyka–Łojasiewicz (KL) property [7, 8, 9] allow to demonstrate

that the sequence generated by the PALM method converges to a critical point.

Definition 2 Let f : Rd −→ R ∪ {+∞} be a proper lower semicontinuous function. For −∞ < υ1 < υ2 ≤ +∞, let

us set

[υ1 < f < υ2] = {z ∈ Rd : υ1 < f (z) < υ2}.

Moreover, we denote with ∂ f (z) the subdifferential of f at z ∈ Rd (see [15, Definition 2.1]) and with dist(z,Ω) the

distance between a point z and a set Ω ⊂ R
d. The function f is said to have the KL property at z ∈ dom∂ f :=

{z ∈ R
d : ∂ f (z) , ∅} if there exist υ ∈ (0,+∞], a neighborhood U of z and a continuous concave function

φ : [0, υ) −→ (0,+∞) such that:

• φ(0) = 0;

• φ is C1 on (0, υ);

• for all s ∈ (0, υ), φ′(s) > 0;

• for all z ∈ U ∩ [ f (z) < f < f (z) + υ], the KL inequality holds:

φ′( f (z) − f (z))dist(0, ∂ f (z)) ≥ 1.

If f satisfies the KL property at each point of dom∂ f then f is called a KL function.

The KL condition concerns a large variety of functions which we do not consider in our work [15, 6, 16]. We

only recall that any p-norm is a KL function (see e.g. [6, Section 5] and [16, Section 2.2]), which includes all

the possible objective functions we consider in our blind deconvolution framework. Unfortunately, parameters

ck, dk greater than or equal to the Lipschitz constants often lead to very small steps, with a result of a very slow

convergence of the related sequence toward the critical point itself. In the next sections we extend the convergence

result of the PALM method to parameters ck, dk which satisfy (4) and (5) but are smaller than the Lipschitz constants

of the partial gradients (thus allowing larger steplengths) and we propose a linesearch strategy for their automatic

selection.
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3. The modified PALM approach

3.1. Parameters selection

The rule we choose to update the constants ck, dk is the one used in [17] in the context of non-negative matrix

factorization and is based on the optimality conditions for each subproblem. More in details, if we define the

projected gradient of the function F as

∇PF(x, h) = (∇P
x F(x, h),∇P

hF(x, h)),

where

∇P
x F(x, h) = PX (x − ∇xF(x, h)) − x,

∇P
hF(x, h) = PH (h − ∇hF(x, h)) − h,

then a point (x∗, h∗) is stationary for problem (2) if and only if we have

∇PF(x∗, h∗) = 0. (6)

Thus, the quantities ‖∇P
x F(x, h)‖, ‖∇P

h
F(x, h)‖ can be considered as a measure of the optimality of the point (x, h)

and exploited to estimate the steplength parameters at each iteration. Inspired by [17], we start from ck = Lx(h(k)),

dk = Lh(x(k+1)) and we multiply them for a factor δ < 1 until conditions (4) and (5) are violated or

‖∇P
x F(x(k+1), h(k))‖ ≤ η

(k)
x , ‖∇

P
hF(x(k+1), h(k+1))‖ ≤ η

(k+1)

h
, (7)

where the adaptive tolerances η
(k)
x , η

(k+1)

h
are initialized as

η
(0)
x = η

(0)

h
= 10−3 · ‖∇PF(x(0), h(0))‖

and are updated as

η
(k+1)
x =

{
0.1 · η

(k)
x if η

(k)
x ≥ ‖∇

P
x F(x(k+1), h(k+1))‖

η
(k)
x otherwise

, (8)

η
(k+1)

h
=

{
0.1 · η

(k)

h
if η

(k)

h
≥ ‖∇P

h
F(x(k+1), h(k))‖

η
(k)

h
otherwise

. (9)

The idea of this first step is that the Lipschitz constants often provide parameters which largely satisfy conditions

(4) and (5), and therefore these parameters are reduced by looking at the optimality conditions until a sort of

neighborhood of the “optimal” values is found. If the reduction step leads to a violation of (4) and (5) before

satisfying (7), the parameters ck, dk are slightly increased by a factor µ > 1 until the former inequalities return to

hold true.

Algorithm 1 gives the scheme of the resulting modified PALM method, which reduces to the standard PALM

scheme if one neglects Steps 3, 4, 7 and 8. A graphical scheme of the proposed rule to select the ck, dk parameters

is shown in Figure 1. The iterative procedure is stopped when one of the following conditions has been satisfied:

• objective function: |F(x(k+1), h(k+1)) − F(x(k), h(k))| < ε1|F(x(k+1), h(k+1))|;

• norm of the projected gradient: ‖∇PF(x(k+1), h(k+1))‖ < ε2‖∇
PF(x(0), h(0))‖;

• maximum number of iteration: k + 1 ≥ K.
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Algorithm 1 Modified PALM (mPALM) algorithm

Choose x(0) ∈ X, h(0) ∈ H, 0< δ <1, µ > 1 and set γx=γh=1

for k = 0, 1, 2, ... do

1. Set ck = γxLx(h(k)) and par = 1

2. x(k+1) = PX

(
x(k) − 1

ck
∇xF(x(k), h(k))

)

3. Backtracking loop on ck

if (x(k+1), h(k)) satisfies (4) and par = 1 then

Check for optimality condition on v(k+1) = ∇P
x F(x(k+1), h(k))

if ‖v(k+1)‖ > η
(k)
x then

set γx = δγx and go to step 1

end if

else

set par = 2

end if

Adjustment of ck

if (x(k+1), h(k)) does not satisfy (4) and par = 2 then

set ck = µγxLx(h(k)) and go to step 2

end if

4. Set γx = 1 and define η
(k+1)

h
according to (9).

5. Set dk = γhLh(x(k+1)) and par = 1

6. h(k+1) = PH

(
h(k) − 1

dk
∇hF(x(k+1), h(k))

)

7. Backtracking loop on dk

if (x(k+1), h(k+1)) satisfies (5) and par = 1 then

Check for optimality condition on w(k+1) = ∇P
h

F(x(k+1), h(k+1))

if ‖w(k+1)‖ > η
(k+1)

h
then

set γh = δγh and go to step 5

end if

else

set par = 2

end if

Adjustment of dk

if (x(k+1), h(k+1)) does not satisfy (5) and par = 2 then

set dk = µγhLh(x(k+1)) and go to step 6

end if

8. Set γh = 1 and define η
(k+1)
x according to (8).

end for

δ2L δL Lℓ

values satisfying the sufficient decrease property

µδ2L µ2δ2L

Figure 1: Example of procedure to determine the inverse of the steplength parameters. Here L denotes the initial guess while ℓ represents the

smaller parameter satisfying either (4) or (5).
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3.2. Convergence properties

In this section we show the convergence property of the sequence generated by the modified PALM method

to a critical point. The propositions and lemmas reported retrace the path followed in [6], suitable restricted to

the considered blind deconvolution problem and extended to account for parameters ck ∈ [cmin, Lx(h(k))], dk ∈

[dmin, Lh(x(k+1))], being cmin, dmin predetermined positive constants.

Proposition 1 Assume that the function F in problem (2) belongs to F . Then for all (x, h) ∈ Rn × Rm we have

∂Ψ(x, h) = (∇xF(x, h) + ∂IX(x),∇hF(x, h) + ∂IH(h)) =

= (∂xΨ(x, h), ∂hΨ(x, h)).

Lemma 1 (Descent lemma) Let f : Rd → R be a continuously differentiable function with L f -Lipschitz continu-

ous gradient. Then

f (u) ≤ f (v) + 〈u − v,∇ f (v)〉 +
L f

2
‖u − v‖2 ∀u, v ∈ Rd.

Lemma 2 (Sufficient decrease property) Let f : R
d → R be a continuously differentiable function with L f -

Lipschitz continuous gradient, C ⊆ R
d a closed, convex and nonempty set and u ∈ C. Let t be a positive constant

such that

f (u+) ≤ f (u) + 〈u+ − u,∇ f (u)〉 +
t

2
‖u+ − u‖2, (10)

where u+ is the projection of the vector u −
1

t
∇ f (u) onto C:

u+ = PC

(
u −

1

t
∇ f (u)

)
.

Then there exists t1 > t, A > 0 such that

〈u+ − u,∇ f (u)〉 ≤ −
t1

2
‖u+ − u‖2 < −

t

2
‖u+ − u‖2 (11)

and a sufficient decrease in the value of f (u+) is ensured:

f (u+) < f (u) − A2. (12)

Proof. First, we notice that it’s always possible to find a parameter t as in (10) since the requested inequality for t

is satisfied, at least, by selecting t = L f .

From the definition of the projection onto a closed, convex and nonempty set C, the vector u+ is characterized as

u+ = arg min
v∈C

∥∥∥∥∥u −
1

t
∇ f (u) − v

∥∥∥∥∥
2

and in particular, by taking v = u, we obtain

∥∥∥∥∥u −
1

t
∇ f (u) − u+

∥∥∥∥∥
2

<

∥∥∥∥∥u −
1

t
∇ f (u) − u

∥∥∥∥∥
2

.

By writing the norm as scalar products one obtains the relation

‖u+ − u‖2 +
2

t
〈u+ − u,∇ f (u)〉 < 0

which implies (11) by choosing e.g. t1 = 2〈u+ − u,∇ f (u)〉/ ‖u+ − u‖
2. This condition combined with (10) leads to

(12). �

For sake of simplicity, in the following we will use the notation z(k) = (x(k), h(k)) (k ∈ N).
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Lemma 3 (Convergence properties) Suppose that F ∈ F and let {z(k)}k∈N be a sequence generated by the modi-

fied PALM method. The following assertions hold true:

- the sequence {F(z(k))}k∈N is nonincreasing and

ρ

2
‖z(k+1) − z(k)‖2 ≤ F(z(k)) − F(z(k+1)) ∀k ≥ 0, (13)

where ρ = min{(c1
k
− ck), (d1

k
− dk)} with c1

k
> ck and d1

k
> dk opportunely chosen;

- we have
+∞∑

k=1

‖x(k+1) − x(k)‖2 + ‖h(k+1) − h(k)‖2 =

+∞∑

k=1

‖z(k+1) − z(k)‖2 < +∞

and, hence, lim
k→+∞

‖z(k+1) − z(k)‖ = 0.

Proof. From condition (ii) of Definition 1, the function x→ F(x, h) (for h fixed) is differentiable and has a Lx(h)-

Lipschitz continuous gradient. Suppose that x(k+1) is computed as in Step 2 of Algorithm 1, with the parameter ck

satisfying condition (4). From Lemma 2 with f (·) := F(·, h(k)) there exists c1
k
> ck such that

F(x(k+1), h(k)) ≤ F(x(k), h(k)) + 〈x(k+1) − x(k),∇xF(x(k), h(k))〉 +
ck

2
‖x(k+1) − x(k)‖2

≤ F(x(k), h(k)) −
c1

k

2
‖x(k+1) − x(k)‖2 +

ck

2
‖x(k+1) − x(k)‖2

= F(x(k), h(k)) +
ck − c1

k

2
‖x(k+1) − x(k)‖2.

In a similar way, one can prove that there exists d1
k
> dk such that

F(x(k+1), h(k+1)) ≤ F(x(k+1), h(k)) +
dk − d1

k

2
‖h(k+1) − h(k)‖2.

Adding the above two inequalities, we obtain for all k ≥ 0 that

F(z(k)) − F(z(k+1)) ≥
c1

k
− ck

2
‖x(k+1) − x(k)‖2 +

d1
k
− dk

2
‖h(k+1) − h(k)‖2 ≥ 0.

It follows that {F(z(k))}k∈N is a nonincreasing sequence bounded from below, and therefore it converges to some

real number F̄. Moreover, by choosing ρ = min{(c1
k
− ck), (d1

k
− dk)}, we get

F(z(k)) − F(z(k+1)) ≥
ρ

2
‖x(k+1) − x(k)‖2 +

ρ

2
‖h(k+1) − h(k)‖2

=
ρ

2
‖z(k+1) − z(k)‖2,

and the first assertion is proved.

Let N be a positive integer. Summing (13) from k = 0 to N − 1 we also get

N−1∑

k=0

‖x(k+1) − x(k)‖2 + ‖h(k+1) − h(k)‖2 =

N−1∑

k=0

‖z(k+1) − z(k)‖2

≤
2

ρ

(
F(z(0)) − F(z(N))

)

≤
2

ρ

(
F(z(0)) − F̄

)
.

By taking the limit as N → +∞, the second part of the lemma is established. �
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Lemma 4 Suppose that F ∈ F and let {z(k)}k∈N be a bounded sequence generated by the modified PALM method.

For each positive integer k, define

A
(k)
x = ck−1(x(k−1) − x(k)) + ∇xF(x(k), h(k)) − ∇xF(x(k−1), h(k−1)),

A
(k)

h
= dk−1(h(k−1) − h(k)) + ∇hF(x(k), h(k)) − ∇hF(x(k), h(k−1)).

Then (A
(k)
x , A

(k)

h
) ∈ ∂Ψ(x(k), h(k)) and there exists ζ > 0 such that

‖(A
(k)
x , A

(k)

h
)‖ ≤ ‖A

(k)
x ‖ + ‖A

(k)

h
‖ ≤ ζ‖z(k) − z(k−1)‖

for all k ≥ 1.

Proof. Let k be a positive integer. From Step 2 of Algorithm 1 and recalling that the projection onto the set X can

be seen as the proximal operator of the indicator function IX , we have

x(k) = arg min
x∈Rn

{
〈x − x(k−1),∇xF(x(k−1), h(k−1))〉 +

ck−1

2
‖x − x(k−1)‖2 + IX(x)

}
.

Writing down the optimality condition yields

∇xF(x(k−1), h(k−1)) + ck−1(x(k) − x(k−1)) + u(k) = 0,

where u(k) ∈ ∂IX(x(k)). Hence

∇xF(x(k−1), h(k−1)) + u(k) = ck−1(x(k−1) − x(k)).

In a similar way, Step 6 of Algorithm 1 leads to

h(k) = arg min
h∈Rm

{
〈h − h(k−1),∇hF(x(k), h(k−1))〉 +

dk−1

2
‖h − h(k−1)‖2 + IH(h)

}

which means that

∇hF(x(k), h(k−1)) + v(k) = dk−1(h(k−1) − h(k)),

with v(k) ∈ ∂IH(h(k)). Since from Proposition 1 we have

∇xF(x(k), h(k)) + u(k) ∈ ∂xΨ(x(k), h(k)),

∇hF(x(k), h(k)) + v(k) ∈ ∂yΨ(x(k), h(k)),

it follows that (A
(k)
x , A

(k)

h
) ∈ ∂Ψ(x(k), h(k)).

Let us prove now the second part of the lemma. Since ∇F is locally Lipschitz continuous (see condition (iii) of

Definition 1) and we assumed that {z(k)}k∈N is bounded, there exists M > 0 such that

‖A
(k)
x ‖ ≤ ck−1‖x

(k−1) − x(k)‖ + ‖∇xF(x(k), h(k)) − ∇xF(x(k−1), h(k−1))‖

≤ ck−1‖x
(k−1) − x(k)‖ + M

(
‖x(k) − x(k−1)‖ + ‖h(k) − h(k−1)‖

)

= (M + ck−1)‖x(k) − x(k−1)‖ + M‖h(k) − h(k−1)‖.

By definition, the constant ck−1 is less or equal to Lx(h(k−1)) and, from condition (ii) of Definition 1, the Lipschitz

constants {Lx(h(k−1))}k∈N are bounded from above by a fixed value αx. As a result of this, we have

‖A
(k)
x ‖ ≤ (M + αx)‖x(k) − x(k−1)‖ + M‖h(k) − h(k−1)‖

≤ (2M + αx)‖z(k) − z(k−1)‖.

On the other hand, from the Lipschitz continuity of ∇hF(x, ·) and the values range for dk, we have

‖A
(k)

h
‖ ≤ dk−1‖h

(k−1) − h(k)‖ + ‖∇hF(x(k), h(k)) − ∇hF(x(k), h(k−1))‖

≤ dk−1‖h
(k−1) − h(k)‖ + L

(k)

h
‖h(k) − h(k−1)‖

≤ 2L
(k)

h
‖h(k) − h(k−1)‖.

9



Since {Lh(x(k))}k∈N is bounded from above by a constant αh (condition (ii) of Definition 1), the following inequality

holds

‖A
(k)

h
‖ ≤ 2αh‖h

(k) − h(k−1)‖ ≤ 2αh‖z
(k) − z(k−1)‖.

If we sum up the previous inequalities and define τ = max(αx, αh), we obtain

‖(A
(k)
x , A

(k)

h
)‖ ≤ ‖A

(k)
x ‖ + ‖A

(k)

h
‖ ≤ (2M + 3τ)‖z(k) − z(k−1)‖

which leads to the thesis by choosing ζ = (2M + 3τ). �

Let {z(k)}k∈N be a sequence generated by the modified PALM from a starting point z(0) ∈ X × H, and let Ω(z(0)) be

the set of all its limit points, i.e.,

Ω(z(0)) =

{
z̄ ∈ Rn × Rm : ∃ K ⊆ N such that lim

k∈K,k→∞
z(k) = z̄

}
.

Moreover, we denote with crit( f ) the set of critical points of a function f . The following lemma and the conver-

gence property in Theorem 1 can be demonstrated by following the same proofs in [6] and by exploiting the results

previously shown in this section.

Lemma 5 Suppose that F ∈ F and let {z(k)}k∈N be a bounded sequence generated by the modified PALM method.

Then:

1. ∅ , Ω(z(0)) ⊂ crit(Ψ);

2. lim
k→∞

dist
(
z(k),Ω(z(0))

)
= 0;

3. Ω(z(0)) is a nonempty, compact and connected set;

4. the objective function Ψ is finite and constant on Ω(z(0)).

Theorem 1 Suppose that Ψ is a KL function such that F ∈ F , and let {z(k)}k∈N be a bounded sequence generated

by the modified PALM algorithm. The following assertions hold true.

1. The sequence {z(k)}k∈N has finite length, that is,

∞∑

k=0

‖z(k+1) − z(k)‖ < ∞.

2. The sequence {z(k)}k∈N converges to a critical point z∗ = (x∗, h∗) of Ψ.

4. Numerical experiments

In this section we test the effectiveness of the proposed modified PALM method in some synthetic blind decon-

volution problems. Besides the PALM algorithm, we compare the results with two other methodologies, namely

the gradient projection alternating minimization (GPAM) method and the alternating proximal gradient (APG)

algorithm, which have been recently proposed in a general nonconvex optimization framework and applied to

non-negative matrix factorization problems.

4.1. Gradient projection alternating minimization

In [17] the author proposed an inexact alternating scheme to minimize a smooth function subject to separable

constraints. In particular, at each outer iteration the approximate solution of each subproblem is obtained by

performing few steps of a gradient projection (GP) algorithm [18, 19, 20] exploiting a suitable alternation of the

Barzilai–Borwein steplengths [21, 22]. Applications of this method to the blind deconvolution of astronomical

images can be found in [23, 24]. The GPAM scheme rewritten for the regularized blind deconvolution problem

(1) is detailed in Algorithm 2. For the choice of the inner iterations of the algorithm, we will use again conditions

(7)–(9) on the decrease of the projected gradient norm. Moreover, in order to have a uniform stopping criterion we

will arrest the GPAM method with the same strategy exploited in the mPALM case and described in section 3.1.
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Algorithm 2 Gradient projection alternating minimization (GPAM) method

Choose the starting point (x(0), h(0)) ∈ X × H and the upper bounds Nx,Nh ≥ 1 for the inner iterations num-

bers.

for k = 0, 1, ... do

1. Compute x(k+1) with N
(k)
x ≤ Nx GP iterations applied to subproblem

min
x∈X

F(x, h(k))

starting from the point x(k).

2. Compute h(k) with N
(k)

h
≤ Nh GP iterations applied to subproblem

min
h∈H

F(x(k+1), h)

starting from the point h(k).

end for

4.2. Alternating proximal gradient

As a further comparison, we tested also the APG method proposed in [16], whose scheme retraces the PALM

method provided that the two projections of Steps 2 and 6 of Algorithm 1 are substituted with

x(k+1) = PX

(
x̂

(k)
−

1

ck

∇xF (̂x
(k)
, h(k))

)
,

h(k+1) = PH

(
ĥ

(k)
−

1

dk

∇hF(x(k+1), ĥ
(k)

)

)
,

being

x̂
(k)
= x(k) + ω

(k)
x (x(k) − x(k−1)), ω

(k)
x ≥ 0,

ĥ
(k)
= h(k) + ω

(k)

h
(x(k) − x(k−1)), ω

(k)

h
≥ 0

two suitable extrapolated points. Convergence of the sequence generated by the APG algorithm to a critical point

of Ψ is again ensured by the KL property and the fact that F is a block-multiconvex function. As in the PALM

case, we tried to exploit our backtracking strategy for the choice of ck, dk also to this method but without obtaining

significant improvements. As a result of this, in our numerical tests we will use the Lipschitz constant of the partial

gradients as in the PALM method. As concerns the extrapolation weights, we defined

ω
(k)
x = min


tk − 1

tk+1

, 0.99

√
Lx(h(k−1))

Lx(h(k))

 ,

ω
(k)

h
= min


tk − 1

tk+1

, 0.99

√
Lh(x(k))

Lh(x(k+1))

 ,

where [25, 26]

t0 = 1, tk =
1

2

(
1 +

√
1 + 4t2

k−1

)
, k = 1, 2, . . .

The stopping criterion is again the one used for the other approaches.

4.3. Results

All the described methods have been tested in the following three simulated problems:
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1. the modified Shepp–Logan phantom test image from the Matlab Image Processing toolbox, artificially blurred

with a Gaussian PSF with standard deviation equal to 4. The regularization terms we chose in this case are

RHS for the image and RT0 for the PSF;

2. the satellite image frequently used in several papers on image deconvolution (see e.g. [27, 28, 29]), artificially

blurred with an out-of-focus PSF with radius equal to 4. The regularization term we chose in this case is RHS

for both the image and the PSF;

3. the Hubble Space Telescope (HST) image of the crab nebula NGC 19521, artificially blurred with an

Airy function [30] mimicking the ideal acquisition of one mirror of the Large Binocular Telescope (LBT

- http://www.lbto.org). The regularization term we chose in this case is RT0 for both the image and the PSF.

The three blurred images have been corrupted with 5% Gaussian noise and the resulting data are shown in Figure 2

together with the true images x∗ and PSFs h∗. All the images and the PSFs are sized 256 × 256. The initialization

x(0) for the image has been set equal to the datum g for all the datasets, while for the PSF we used as h(0) a

Gaussian function with standard deviation equal to 5.5 for the phantom dataset, an out-of-focus PSF with radius

equal to 5.5 for the satellite dataset and a Lorentzian function with half-width at half-maximum equal to 6 for

the crab nebula dataset. The parameters for the tuning of ck, dk and the thresholds defining the stopping criteria

have been chosen as follows: δ = 0.1, µ = 1.5, cmin = dmin = 10−10, ε1 = 10−14, ε2 = 10−6, K = 1000. Finally,

for each problem we manually selected the regularization parameters λ1, λ2 which provided in average the best

reconstructions. The numerical experiments have been performed by means of routines implemented by ourselves

in Matlab R2014a and run on a PC equipped with a 1.80 GHz Intel(R) Core(TM) i7-4500U in a Windows 8

environment.

In Table 1 we reported the relative Euclidean reconstruction errors on image and PSF

‖x(k) − x∗‖/‖x∗‖ ; ‖h(k) − h∗‖/‖h∗‖ (14)

obtained by the GPAM, AGP, PALM and modified PALM methods, together with the number of iterations k

performed to satisfy the stopping criterion and the computational time in seconds. For sake of completeness, we

also added the errors (14) between the initial (k = 0) and the true images and PSFs, and the best error achieved

in a standard deconvolution framework by using the true and the initial PSF (the first value should represent the

best error achievable by a blind deconvolution approach, while the second value should be a reference value

that a blind deconvolution method has to improve to justify the heaviest computations of the blind scheme).

The optimization algorithm we used to compute the nonblind reconstructions is the scaled gradient projection

(SGP) method, proposed by Bonettini et al. [18] and applied in several image denoising and deblurring problems

[31, 32, 33]. Moreover, in Figure 3 we plot the errors behavior as a function of the iteration numbers, while in

Figure 4 the deconvolved images for the satellite dataset are shown.

Table 1: Results obtained with the considered algorithms in the three simulated datasets. For each problem, we show the errors on image (errx)

and PSF (errh), the number of iterations required to satisfy the stopping criterion (iter) and the execution time in seconds (sec). Moreover, we

also report the errors between true and initial images (ex(0) ) and PSFs (e
h(0) ), together with the reconstruction errors on the image obtained in a

standard deconvolution framework by using the true (St) or the initial (S0) PSFs.

Phantom Satellite Crab nebula

ex(0) : 0.666, eh(0) : 0.381 ex(0) : 0.566, eh(0) : 0.704 ex(0) : 0.393, eh(0) : 0.977

St: 0.384, S0: 0.455 St: 0.192, S0: 0.275 St: 0.176, S0: 0.225

method iter sec errx errh iter sec errx errh iter sec errx errh

GPAM 21 07.2 0.398 0.106 35 13.6 0.235 0.418 95 32.2 0.186 0.419

AGP 252 12.9 0.399 0.097 457 25.9 0.217 0.387 1000 47.8 0.201 0.588

PALM 1000 45.3 0.453 0.278 1000 51.0 0.410 0.636 1000 38.7 0.264 0.958

mPALM 125 21.2 0.395 0.090 117 21.4 0.218 0.395 183 37.2 0.182 0.372

From the numerical results and the error plots we can do the following considerations:
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Figure 2: True images (top row) and PSFs (central row - zoom on the 64× 64 central panel) used for the numerical tests. The blurred and noisy

images are also shown (bottom row).

• the backtracking procedure in the choice of the steplengths strongly improves the convergence of the PALM

method, with the result that good reconstructions can be achieved in a computational time which is comparable

to those of the GPAM and AGP approaches. Here the GPAM method provides higher errors in a lower time,

but this is mainly due to the stopping criteria we adopted, since for this method the graphs of the errors are

still decreasing (see Figure 3). In further tests with different thresholds ε1, ε2 we verified that both the errors

and the computational times of GPAM become closer to those of mPALM;

• the reconstruction errors achieved by the blind schemes are very close to the optimal ones obtained in a

standard deconvolution framework with the true PSF, and significantly lower than the analogous ones provided

by choosing an approximation of the PSF (in our case, h(0)), thus confirming the potential benefit of the blind

approach;

• the lower number of iterations observed in the mPALM case with respect to the PALM and AGP methods,

for which the convergence to a critical point has been proved, gives hope that a further improvement of

the backtracking procedure which requires fewer steps (i.e., fewer fast Fourier transform computations) can

lead to a significant reduction of the whole computational effort. We tried with a kind of “hot start” of the
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Figure 3: Plots of the reconstruction errors on the image (top row) and the PSF (bottom row) as functions of the iteration number for the

phantom (left column), satellite (central column) and crab nebula (right column) datasets.

parameters γx, γh by using as initializations the values obtained at the previous iteration, as done e.g. in

[34, 35], but we did not found any significant improvement. Further tests with means over a limited number

of previous values and/or different (and possibly adaptive) factors δ, µ will be investigated in a future work.

5. Conclusions

In this paper we address the blind deconvolution problem with images perturbed by Gaussian noise and we

consider a recent approach for a more general class of nonconvex and nonsmooth minimization problems whose

sequence of iterates converges to a critical point. Our work has been to exploit the same arguments which led to

the convergence proof of the method and extend it to the case of wider ranges of parameters, provided that the

regularization terms used in the formulation of the blind deconvolution problems satisfy certain properties. The

possibility to select steplength larger that the inverse of the Lipschitz constants of the partial gradients allows a

faster convergence of the method to the critical point, and we proposed a backtracking procedure to automatically

select these parameters based on the optimality conditions of the problem. Some numerical experiments with

different images, PSFs and combinations of regularization terms showed that the new variation of the method

strongly reduces the number of iterations required by the PALM algorithm, and provides comparable results with

respect to other state-of-the-art methods, leaving also space for further improvements.

A future development of this work will be the application of the proposed approach on real image deconvolution

problems in astronomy, as the reconstruction of X-ray emission from a solar flare [23, 36], in which a more detailed

reconstructed image can strongly help in detecting some crucial features of the phenomenon under investigation

(see e.g. [37, 38]).
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Figure 4: Image reconstructed with the GPAM (top left panel), AGM (top right panel), PALM (bottom left panel) and mPALM (bottom right

panel) in the satellite case.
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