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Abstract

We present the GeX (Graph-eXplorer) approach for the approximate match-
ing of complex queries on graph-modeled data. GeX generalizes existing ap-
proaches and provides for a highly expressive graph-based query language that
supports queries ranging from keyword-based to structured ones. The GeX
query answering model gracefully blends label approximation with structural
relaxation, under the primary objective of delivering meaningfully approximated
results only. GeX implements ad-hoc data structures that are exploited by a
top-k retrieval algorithm which enhances the approximate matching of complex
queries. An extensive experimental evaluation on real world datasets demon-
strates the efficiency of the GeX query answering.

Keywords: Graph-modeled data, Complex queries, Approximate graph query
answering, Semantic Relatedness, Graph indexing, Top-k query answering

1. Motivation

The graph-based modeling paradigm has recently regained much popular-
ity thanks to the dramatic increase of information sources that find in graphs
a natural way of modeling data. Among these, we can mention data publicly
available on the Web, social networks, personal health records, biological and
chemical databases, etc., where datasets are usually modeled through complex
semantic data graphs characterized by domain largeness and data heterogene-
ity. The available structured query models (e.g. SPARQL for RDF datasets)
do not comply to these distinctive features, because they require users to be
knowledgable about the queried structure in order to precisely specify both the
locations of the entities they are searching for, and the relationships among
them [36], de facto making exact querying of this kind of data impractical.

IA preliminary version of this work was presented in [25].
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Query 1: The title of the papers authored by someone whose name sounds like

‘Sivastava’ published before 2005.

Query 2: How the ‘Piazza’ paper published in the TKDE journal relates to other

documents.

Figure 1: Reference graph and two query samples

To overcome these limitations, several research efforts are currently being
spent to develop effective retrieval techniques which allow users to easily query
graph-based data and to get useful results by means of flexible query mechanisms
[8, 19, 29, 31, 34].

One way to achieve flexibility in query formulation is to adopt a keyword-
based query model [15, 18, 22, 27]. This solution has the merit of eliminating
structures in the query, thus lightening the user from the burden of knowing
the relationships occurring between the data. Furthermore, it easily applies to
heterogeneous scenarios where multiple schemas coexist. On the other hand,
a keyword-based approach suffers from an inherently limited capability in the
query semantics that it can express. We are all familiar with how difficult it
is to translate a complex request in a set of keywords, and most of all to get
precise answers from this means.

For instance, a sample of graph-modeled data and two possible user informa-
tion needs that can be answered on it (Query 1 and Query 2) are shown in Fig. 1.
The graph represents an excerpt from the RDF version of the DBLP scientific
bibliography database1 showing a citing relationship between two publications.
By following a simple keyword search query model [15, 22] a user could translate

1publicly available at http://sw.deri.org. Because of its extensive and dense network of
relations, DBLP is a good dataset for formulating complex graph-based queries and is one of
the most exploited resources in the literature for graph search testing purposes [15, 30, 23].
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Query 1 into the set of keywords Q1={title, paper, author, Srivastava,

2005}.2 Answers to this query are a subtree [15] or a subgraph [18, 22, 27] of the
data graph connecting all keywords. The main drawback of this kind of query-
ing approach is that answers would actually contain the queried keywords but
they will be related by just topological connections, so completely disregarding
the semantics underlying the relationships between them. This means that, for
instance, also papers that cite papers by Srivastava, as well as papers having
2005 as page number, would appear in the result, although they are clearly not
relevant for the query.

Querying complex semantic data graphs where entities are related through
named relationships motivates the need for supporting querying capabilities that
go beyond keyword-based search when searching for knowledge [14, 19]. In this
case, users usually have focused and often complex information needs, and they
should be enabled to include varying degrees of structure in their queries, so
that they can better specify a mix of vague, precise and implicit requirements
according to the partial knowledge of the schema they may have.

Some proposals in the literature have worked in this direction and present
graph-based approaches [8, 10, 19, 29, 34, 38, 40], among which only NAGA
[19] and the work in [10] allow for the specification of named relationships in
the query graphs. However, these works approximate query edges by obeying
to mere topological conditions, i.e. edges are approximated by paths. This an-
swering model often returns pieces of information that are not actually related
to each other. For instance, neither of them is able to properly answer Query
2 shown in Fig. 1, where the kind of connection between the TKDE ‘Piazza’
paper and other documents is not specified. Results from the approaches above
would be about documents connected to the given paper along any topological
path, thus suffering from the same drawbacks discussed about keyword-based
approaches. This has crucial implications, since in many domains it is of fun-
damental importance to get only meaningful answers, i.e., answers made up of
data related in a significant way.

The issue of retrieving meaningful answers has been initially investigated
in the area of XML data search [6, 36]. However these proposals are limited
to support keyword search [6] and are targeted for XML data [24, 36], thus
they do not fit for the purpose of answering edge-labeled graph queries. The
work in [10] goes a step beyond by constraining graph results on (sub)path
lengths. Essentially it founds on the assumption that entities sufficiently close
together are meaningfully related. However, this work too relies on topological
approximations.

Also, currently there is no query model supporting Query 1, i.e. a query
containing two predicates that specify constraints on the data (document’s au-
thor name is required to sound like ‘Sivastava’ and publication year has to be
prior to 2005). Indeed, up to now most of the efforts have been spent on the

2For the sake of simplicity, for the time being, we assume to disregard the ‘Sivastava’
misspelling.
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problem of approximating the structure of a query [3, 10, 29, 34, 40], often giv-
ing little attention to support vagueness on the used vocabulary. Rather, it has
been proved that label ambiguity is a very frequent issue, because people hardly
choose the same term for a single well-known object [12]. For this purpose, some
works [7, 42] adopt term expansion techniques, and follow a query relaxation
approach. The framework in [44] supports node label substring operations on
RDF graphs. However, neither of these works do explicitly deal with vagueness
on query edge labels.

In this paper we present the GeX (Graph-eXplorer) approach to support the
approximate matching of complex queries on graph-modeled data. The major
contributions of GeX are:

• it offers a framework that generalizes the existing approaches and allows
for querying any datasets which conform to a graph representation (e.g.
relational databases, XML data, RDF repositories);

• it provides for a highly expressive graph-based query language to formulate
queries ranging from keyword-based to complex ones, including (Section
2):

1. the specification of relationships between data;

2. the expression of vague and missing information both on data and
on their relationships;

3. the specification of constraints on the data;

• it introduces the notion of Semantic Relatedness, which identifies pairs
of nodes meaningfully related in a data graph, i.e. nodes related to each
other in a significant way (Section 3.1);

• it supports the approximate matching of vague, precise, and implicit query
requirements by gracefully blending label approximation with structural
relaxation, under the primary objective of delivering meaningfully approx-
imated results only (Section 3.2). To this purpose, GeX relies on the
introduced notion of Semantic Relatedness;

• it introduces a novel indexing scheme that implements the notion of Se-
mantic Relatedness to efficiently support the approximate matching on
graph-modeled data (Section 4);

• it implements an efficient top-k retrieval algorithm which further accel-
erates query answering by taking advantage of two interesting properties
exhibited by the GeX ranking model (Section 5);

• it demonstrates the efficiency of the query answering approach through
a comprehensive experimental evaluation on different real world datasets
(Section 6).

Finally, Section 7 discusses related work, while Section 8 concludes the paper
and outlines future research directions.

This paper extends and improves our previous work [25] in almost every re-
spect. A large part of the improvement effort has been focused on the design of
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the novel indexing scheme and on the analysis of different implementation strate-
gies for the involved data structures (Section 4). In particular, we practically
show that the new scheme accelerates complex query processing tasks (Section
6) and provides crucial advantages both in terms of querying performance (one
order of magnitude faster execution times, on average) and storage requirements
(indexing space reduced to as little as 4% of the original requirements). We also
provide new effectiveness and efficiency comparisons, highlighting the benefits
of the GeX approach w.r.t. the most relevant state of the art proposals, and
evaluating the impact of the different implementation strategies.

2. Preliminaries: the GeX Data and Query Models

In this Section we briefly present the GeX models for representing and
querying graph data. For more detailed descriptions, the interested reader can
refer to [25].

2.1. The Data Model

In order to ensure a uniform access to graphs referring to different data
models, GeX adopts a general model which covers RDF and OWL data as
well as most graph-based data models recently introduced in the literature for
various purposes (e.g. [7, 14, 19, 22]).

The model represents data universally as a connected graph allowing par-
allel edges (also known as multigraphs) and nodes and edges possibly labelled.
It is worth noting that parallel edges are necessary to model RDF and OWL
based data as well as dataspaces [11], although not all general purpose models
support them (e.g. [29]). In the same way, unlabeled edges allow for model-
ing those kinds of data graphs where both labeled and unlabeled edges coexist,
such as XML where parent-child relationships, represented as unlabeled edges,
need to be distinguished from cross-reference links, usually labeled through
IDs/IDREFs.

In the following, we denote as L the set of all possible labels partitioned
in literal values LL (e.g. 2004, "A. Y. Halevy") and concept labels LC (e.g.
Article, author, cite). Besides, the empty label ε is used to denote unlabeled
edges.

Definition 1 (Data Graph). Data is represented as a connected directed la-
beled multi-graph G = (N,E,LN , LE) where

• N is a set of nodes,

• E ⊆ N ×N is a multiset of directed edges,

• LN ⊆ L and LE ⊆ LC ∪ {ε} are sets of node and edge labels, respectively.
Each node n ∈ N is assigned a label λ(n) ∈ LN and each edge e ∈ E is
assigned a label λ(e) ∈ LE.

Nodes having labels in LL are called value nodes whereas nodes with labels in
LC are called entity nodes.
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Example 2.1. Let us consider again Fig. 1 which will be used as reference
example. It contains the RDF classes Article, Journal, InProceedings, and
Document, the RDF schema properties subClassOf and type, three class in-
stances, Halevy04b, Srivastava92c, and TKDE, many RDF properties, such as
author and year, and literals, such as "A. Y. Halevy". For ease of presenta-
tion, property specifications are not provided at schema level.

The above graph as well as any other RDF graph translates into our data
model in the following way: RDF classes, class instances, and any other resource
are modeled as entity nodes, depicted in Fig. 1 as rounded rectangles, whereas
RDF literals are modeled as value nodes, depicted in Fig. 1 as rectangles.

2.2. The Query Model

In order to query the data graph, GeX provides an expressive graph-based
query language which goes beyond the keyword-based approach without neces-
sarily requiring to precisely use the graph vocabulary and structure in query
formulation. As a matter of fact, a single query graph can both express focused
information requests and contain different pieces of missing information as well
as “vague” connections.

To this extent, the GeX query language puts at the user disposal several de-
grees of flexibility. It supports undirected edges and unbound nodes and edges
through variables, thus allowing users to leave nodes and edges (i.e. relation-
ships) between them (partially) unspecified according to the knowledge they
may have about the data schema. Then, both unbound nodes and edges can be
constrained by conditions. In this way, node connection types range from the
fully specified connection, i.e. a labeled and directed edge between two labeled
nodes, to the fully unbound connection, i.e. an unbound and undirected edge
connecting two unbound nodes.

Definition 2 (Query Graph). A query is a tuple q = (Nq, Eq, LqN , L
q
E , V, C)

where Eq = Eqd ∪ Equ and

• (Nq, Eqd) is a directed multi-graph,

• (Nq, Equ) is an undirected multi-graph,

• LqE ⊆ LC and each e ∈ Eq is assigned a label λ(e) ∈ LqE ∪ V ,

• LqN ⊆ LC and each n ∈ Nq is assigned a label λ(n) ∈ LqN ∪ V ,

• (Nq, Eq, LqN , L
q
E) is a connected labeled multi-graph,

• V is a set of variables,

• C is a set of conditions on V . Each condition in C has the form var〈op〉v
where var ∈ V , 〈op〉 is an operator, and v ∈ LL is a value. Possible
operators are the relational ones, i.e., =, <,≤, >,≥, and the two operators
3 and ∼. The semantics of the 3 operator is the usual term containment
in a text, whereas the ∼ operator expresses similarity between literals.

Nodes and edges having labels in LqN are called labeled nodes and labeled edges
while nodes and edges having labels in V are called unbound nodes and unbound
edges, respectively.
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Figure 2: Query 1 (left) and Query 2 (right)

Example 2.2. Fig. 2 shows the GeX queries corresponding to the two infor-
mation needs shown in Fig. 1. Note that Query 2 contains a fully unbound
connection, i.e. edge e3 (for ease of reference, nodes and edges in data or query
graphs are univocally identified by integer numbers i and will be referenced as ni
and ei, respectively).

None of them finds an exact match on the reference graph because they con-
tain imprecise specifications. For instance, node Paper and edge date of Query
1 find no exact correspondence in the data vocabulary while no edge labeled type

with tail labeled Document as depicted in Query 2 exists in the data structure.

In the following we will show how GeX deals with these kinds of requests in
an effective and efficient fashion.

3. The GeX approximate query answering model

The GeX framework founds on an approximate subgraph matching approach
which matches the query constraints by effectively dealing with the possibly con-
tained ambiguities, both in the labels and in the connections between nodes. In
this way, GeX supports not only imprecise query specifications but also het-
erogeneous datasets where exact subgraph matching on the different coexisting
structures would often fail to produce useful results.

Approximate subgraph matching is performed in a two-fold fashion. As we
allow label ambiguities, where the exact label names are unknown, the first
kind of approximation we consider are node/edge label mismatches. To this
end, the degree of mismatch between concept labels is quantified by means of
the function dL : (LC ∪ V )×LC → [0, 1]. It is a scoring function which returns
a value ranging from exact match (0) to total mismatch (1). Obviously, for all
labels l ∈ LC , dL($x, l) = 0, dL(l, l) = 0 and dL(ε, l) = 1. As far as its definition
is concerned, we let the users customize the label matching method that best
suits the application needs. In [25] we proposed an adaptation of the Leacock-
Chodorow [21] distance, which relies on the WordNet thesaurus3 to compare

3http://wordnet.princeton.edu
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the hypernymy hierarchies of two disambiguated labels.
Moreover, as users are not required to know the graph topology, we also

support structural approximations. Regarding this last point, GeX pursues
the objective of delivering meaningfully approximated results only. To this end,
GeX approximatively matches adjacencies only with those paths in the data
graph that meaningfully relate node pairs, i.e. related in a significant way. For
instance, referring to Fig. 1, note that 2004 is not the year of publication of
the paper Srivastava92c and thus none of the paths connecting node n13 with
node n9 should be considered when approximating the date edge of Query 1.
On the other hand, Srivastava92c is an instance of the Document class and the
path connecting n13 to n1 can be used to approximate the type edge of Query
2.

An approximate subgraph matching algorithm often returns a large number
of query results and an effective ranking mechanism is an essential means to
sort the matches based on their similarities to the query. To this end, GeX
delivers the top-k answers to a query by implementing a general definition of
scoring function which relies on both graph structures and content to promote
the most compact semantically related results.

3.1. On the Meaningfulness of Structural Approximations

When querying graph-based datasets, different matching techniques can be
applied. On the one hand, exact graph matching maps each node adjacency
specified in the query graph to exactly one data graph edge. On the other
hand, one viable solution to support structural approximation is the topological
approach which relaxes adjacency constraints by allowing node/edge insertions
in the data graph. Moreover, since in a connected data graph all nodes are
pairwise connected by at least one path, in order to cope with the possibly large
amount of approximations, some syntactic properties on the involved labels
and/or on the missed exact matches should be checked. This is the approach
adopted, for instance, in [10, 19, 29].

However, it should be noted that the fact that nodes are topologically con-
nected does not necessarily imply that they are meaningfully related, and hu-
mans can often determine whether they are or not by looking at the graph.
Essentially, we are concerned with graph-modeled data where nodes represent
entities in the real world and edges relationships among them. Therefore, we
can leverage the graph topology semantics to decide whether any pair of nodes
is meaningfully related and, in case, to annotate such a linkage with a label.

To our knowledge, the requirement that the elements satisfying a query must
be meaningfully related has been first introduced in [6] for labeled keyword
search over XML documents. In that context, meaningfully related nodes are
used for conjunctive query answering. In our context, instead, they represent the
terminal points to be taken into account when approximating node adjacency.

Generally speaking, it is difficult to determine when a set of elements is
meaningfully related. Therefore, we assume that there is a given relationship
that determines when two nodes are related. This leads to the notion of Seman-
tic Relatedness on a data graph G as that relation that only contains pairs of
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nodes in G which are meaningfully related. We also give one natural example of
such a relation for an RDF-like data model (see Appendix A) which was used
in our experiments. However, it is possible to use a different relation, with no
impact on system efficiency.

Before presenting the concept of Semantic Relatedness, we introduce the
notion of path in a data graph G.

Definition 3 (Path). Given a graph G, a path in G is a sequence p =
〈e1, . . . , em〉 of consecutive edges between nodes in G. Given a path p =
〈e1, . . . , em〉 the length of p is the number m of traversed edges in p.

For ease of reference, the singleton 〈e〉 will be simplified as e.

A sample of path of length 3 in the graph depicted in Fig. 1 is 〈e4, e1, e2〉.
Note that the involved edges do not have to share the same direction.

Definition 4 (Semantic Relatedness (SR)). Given a data graph G =
(N,E,LN , LE), the Semantic Relatedness relation SR over G is a bag that is
assumed to contain node pairs (n, n′) ∈ N × N that are meaningfully related.
Each e = (n, n′) ∈ SR is assigned a label λ(e) ∈ LC and a path p(e) in G
connecting n with n′.

SR must satisfy two properties:

• the graph-containment property: E ⊆ SR;

• the path-decomposition property: for each pair e = (n, n′) ∈ SR such that
p(e) = 〈e1, . . . , em〉 and m > 1, there is an edge ej = (nj−1, nj) ∈ p(e)
such that e′ = (n, nj) ∈ SR and e′′ = (nj , n

′) ∈ SR; and p(e) is the
concatenation of p(e′) with p(e′′).

The next definition about SR introduces a function that quantifies the cost
of approximating each instance of SR on a data graph G. Such a quantification
allows the ranking of the paths in SR.

Definition 5 (Approximation cost function). Given a data graph
G = (N,E,LN , LE) and a semantic relatedness relation SR over G, an approx-
imation cost function c for SR is a monotonically increasing function defined
over the paths of G such that c(p(e)) = 0, for each e ∈ SR ∩ E. Given an edge
e ∈ SR, c(p(e)) will be denoted as c(e) for brevity.

In other words, each instance e ∈ SR is a “virtual” edge which p(e) approx-
imates in G, and c(e) represents the cost of approximating e with p(e). λ(e)
is a concept label for the relationship connecting the nodes in e. The graph
containment property straightforwardly follows from above, since no structural
approximation is required for each edge e ∈ E. Instead, the path-decomposition
property follows from the fact that if two nodes are meaningfully related by
means of other nodes of the graph, then, intuitively, they are also meaningfully
related with such nodes.

SR is a bag and thus can contain multiple occurrences that share the same
edge vertices and label and only differ in the path. Essentially they represent
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the same relationship. In order to overcome such a redundancy, we propose to
adopt the distinct-node set semantics. In particular, we introduce a reduced
version of SR where only the “less expensive” node pairs are retained.

Definition 6 (Reduced SR). Let G be a data graph and SR be a semantic
relatedness relation over G. The reduced version of SR, denoted as SR, contains
each node pair e = (n, n′) ∈ SR such that for all e′ = (n, n′) ∈ SR such that
dL(λ(e), λ(e′)) = 0 then c(e) < c(e′).

In Def. 6 the condition expressed through dL means that λ(e) and λ(e′) should
denote the same relationship.

We have several reasons for adopting a distinct-node set semantics. Firstly,
it is an intuitive and clean semantics that preserves the semantics of query
answering since the set of answers built over any semantic relatedness relation
is the same as the one obtained from its reduced version. Secondly, it favors the
less expensive structural approximations which similarly correspond to the most
compact answers [15, 19] since the approximation cost function is monotonic.
On the other hand, all answers sharing the same edge vertices and labels overlap
and each answer carries very little additional information from the rest. Thus, by
adopting a distinct-node set semantics we avoid to overwhelm users with quasi-
redundant results. The last reason is more technical: it reduces the amount of
data required for query answering, thus impacting on query processing efficiency.

3.2. The Query Answering Model

Both label and structural approximation are used to introduce the notion of
query answer. To this end, we define two assignment functions f and g that deal
with node mismatches and adjacency misses in query answers, respectively. In
particular, f allows for node label approximations while g allows for both edge
label approximations and adjacency approximations.

Definition 7 (Query answer). Let G be a data graph, SR be a reduced se-
mantic relatedness relation over G, and q = (Nq, Eq, LqN , L

q
E , V, C) be a query.

An SR-answer to q is an approximate embedding ESR = (f, g) where

• f is an injective node-assignment function f : Nq → N satisfying the
following constraints:

– for every labeled node n, f(n) is an entity node and
dL(λ(n), λ(f(n))) < 1;

– for every condition c = λ(n)〈op〉v in C, f(n) is a value node and
λ(f(n))〈op〉v holds with a certain grade s(c) which is called the score
of c. In particular, relational operators have a Boolean semantics
and thus s(c) must be 1 whereas operators 3 and ∼ return values
s(c) ∈ [0, 1] and it must be s(c) > 0;

• g is an injective edge-assignment function g : Eq → SR where g(e) satis-
fies the following constraints for each e = (n, n′) ∈ Eq:
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– dL(λ(e), λ(g(e))) < 1;

– g(e) = (f(n), f(n′)), if e is a directed edge, i.e. e ∈ Eqd, g(e) =
(f(n), f(n′)) or g(e) = (f(n′), f(n)), otherwise.

Each embedding ESR of a query graph q defines a subgraph of G which
consists of the set of nodes in f(Nq) connected through the paths in p(g(Eq)).
To this end, it is worth noting that any exact embedding is an approximate
embedding.

Example 3.1. The subgraphs depicted in Fig. 3 show one plausible approxi-
mate embedding on the reference data graph of Fig. 1 for each of the two query
samples.

For each embedding, the data nodes in the range of f are depicted in bold
line and the query node image is shown on the left upper corner of each data
node rectangle. For instance, 4 = f(1) means that data node n4 is assigned to
query node n1.

As to edge-assignment, it founds on the set of SR edges that can be derived by
applying the rules shown in Appendix A to the reference example. In particular,
the edge-assignment function of embedding on the left side is defined as

e g(e) λ(g(e)) p(g(e))
e1 (n13, n4) type e6
e2 (n13, n11) author e13
e3 (n13, n12) year e14
e4 (n13, n14) title e15

while for the embedding on the right side

e g(e) λ(g(e)) p(g(e))
e1 (n6, n1) type 〈e4, e1〉
e2 (n13, n1) type 〈e6, e3〉
e3 (n6, n13) cite e10
e4 (n7, n3) type e5
e5 (n6, n7) journal e8
e6 (n6, n10) title e12
e7 (n7, n8) title e9

11



For ease of presentation, the approximate embedding shown for Query 1 only
contains label approximations: Paper is mapped to InProceedings and date

to year. Dually, the embedding shown for Query 2 only deals with structural
approximations: the data path 〈e4, e1〉 approximates the query edge e1 whereas
〈e6, e3〉 is for the query edge e2.

It is worth noting that unbound nodes and edges are “anchored” to data
elements that make the embedding possible. For instance, the embedding on
the right side of Fig. 3 makes explicit the relationship between f(3) and f(4):
Halevy04b cites Srivastava92c.

Finally, since our primary focus is on approximate graph matching, the above
definition does not delve into the scoring function s(·) used to evaluate the IR-
style operators 3 and ∼. Our approach is general and completely application-
independent and those measures that best fit the specific data and application
needs can be easily integrated (e.g., IR-style TF/IDF scores, edit distance [4]).

3.3. The Ranking Model

The GeX ranking model measures answer goodness by applying a scoring
function S to each embedding E .4 In line with the motivations reported in
[15], we provide here a general definition for our scoring function and show the
properties it satisfies. The specific scoring function used in our experiments is
instead presented in Sec. 5.
S combines the approximations occurring at both data nodes and data edges,

including query conditions, and it returns a score in [0, 1] such that the higher
S(E) the higher the overall approximation required for the matching.

Definition 8 (Scoring function). Given a query q = (Nq, Eq, LqN , L
q
E , V, C),

an approximate embedding E for q, and an approximate cost function c, we define
the score of E as follows:

S(E) =
α

| Nq |
∑

n∈Nq

dL(λ(n), λ(f(n))) + (1)

β

2 | Eq |
∑

e∈Eq

(
dL(λ(e), λ(g(e))) +

c(g(e))

MC

)
+ (2)

γ

| C |
∑

c∈C
(1− s(c)) (3)

where α+β+γ=1 and MC is a normalizing constant corresponding to the max-
imum cost in SR.

Each component of S(E) contributes to the final score as follows:

4In the following we assume that SR has been fixed and use E in place of ESR.
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• the first component quantifies the semantic approximation between each
query node and its corresponding data node by means of the distance
function dL applied to node labels;

• the second component quantifies both the semantic and the structural
approximations between each query edge and its mapped instance in SR
by exploiting dL applied to edge labels and the approximation costs in SR
to evaluate adjacency mismatches;

• the third component evaluates the query conditions by applying the inverse
of the function s(·) used for condition evaluation.

It is worth noting that the scoring function S(E) satisfies two interesting
properties:

Cost-based graph-distance semantics. Recall that S is applied on embed-
dings which refer to SR. This means that the computation of the second
factor of the edge approximation component of Eq. 1 can be reduced to the
shortest-path problem, since the approximation cost function is monotonic
and the approximation cost c(g(e)) for a given edge e in SR is the lowest
one among all possible costs associated to alternative approximations for
e.

Match-distributive semantics. The overall score of an embedding E can be
computed in a distributive way. This means that all matching paths con-
tribute independently to the score computation, even if they may share
some common edges. This is different from other approaches which con-
sider the single contribution of each edge only once (e.g., [5]). As already
evidenced in [15], this property has important implications on the com-
plexity of the score computation. As a matter of fact, in our model this
semantics allows for the precomputation of the approximation costs in SR,
and these can be combined as independent parts, thus disregarding the
repeated contribution of possible overlapping paths.

In GeX, given a reduced semantic relatedness relation SR over a data graph
G and a query q, a top-k query returns the k approximate embeddings E with
the lowest scores S(E). GeX takes advantage of the scoring function properties
to efficiently support query answering and ranking, as shown in Section 5.

4. GeX Data Structures

The main objective of the GeX framework implementation is to provide
efficient solutions for:

• minimizing the space required for storing graph data;

• identifying path data that is relevant according to query constraints;

• supporting a top-k retrieval algorithm that builds the best answers as soon
as possible.
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L1 (@i, λtype, λInProceedings)

L2 (@i, λauthor,@v               )

P(n)  [ , offset(n') ]  [ , c(e) ]

⊥

P2, - , - ⊥

L(λ*(n), λ(e), λ*(n'))
...

...

...

IX-SRLV 
(L, λ<value> )

LABELS

Node Labels Edge Labels

IX-L (label)

B+, inverted, metric

IX-SRLS (λ*(n), λ(e), λ*(n'))

@i / λtype / λInProceeding L1

 @v / @i / λauthor L2

λInProceedings / @i / λtype L1
λtype  / λInProceedings / @i L1

@i / λauthor / @v L2

λauthor / @v / @i  L2

...

...

P1, - , -

P3, - , -

SR PATH 
COLLECTION

B+

IX-SRN
(L, n, n')

e6 e3 e7 e13

P1 P2 P3

... ...

L3 (@i, λtype, λDocument) ⊥P4, 1 , -
...

e4 e1

P4

P1, 1 , -

Figure 4: An overview of the GeX data structures

In order to achieve these goals, we implemented auxiliary structures which
offer appropriate access to SR and to the graph labels. In particular, our choice
has been to keep labels in a relational table and design ad-hoc data structures
for SR (see Fig. 4).

4.1. Label Structures

GeX stores graph labels in relational tables according to the following schema:

NODE LABELS (labelID, label, kind, dLabel)

AK: (label)

EDGE LABELS (labelID, label, dLabel)

AK: (label)

NODE LABEL ASSIGN (graphID, nodeID, label)

FK: label ref NODE LABELS (labelID)

In particular, for each node and edge label, tables NODE LABELS and EDGE LABELS

store, beside the actual label string (e.g. Document), a dLabel string contain-
ing the disambiguated label information, including the chosen sense according to
the WordNet thesaurus, which is needed to determine the degree of mismatch
between concept labels for approximate embedding computation (Section 3).
Further, for each node label, the kind column indicates whether the label is a
value (V), an instance identifier (I), or, in any other case, a structural informa-
tion (S), i.e. a label which describes the structure of the data (for instance, an
XML element name, the column name of a relational table, the name of an en-
tity in RDF). Such information is straightforwardly extracted in the data graph
parsing phase. In our running example, 1992 and D. Srivastava are value
labels, Srivastava92c and Halevy04b are instance identifier labels, Document
and InProceedings are structural information labels.
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labelID label kind

λDocument "Document" S
λInProceedings "InProceedings" S
λPaper "Paper" S
λSrivastava92c "Srivastava92c" I

...

NODE_LABELS
labelID label

λauthor "author"
λtitle "title"
λtype "type"
λyear "year"

...

EDGE_LABELS
graphID nodeID label

g1 n1 λDocument 
g1 n4 λInProceedings
g1 n13 λSrivastava92c 

...

NODE_LABEL_ASSIGN

Figure 5: Label Tables

The NODE LABEL ASSIGN table assigns each node n of each stored graph G
to its label. Since the set of edges of each graph belongs to SR, edge label
assignment is not stored at this level. Fig. 5 shows a portion of the content
of the tables for our reference example (see also Fig. 1). Note that in GeX
labels are referenced through unique numeric identifiers; however, for clarity of
presentation, we represent label ids with λ and the label value as subscript and
we omit the dLabel information.

As to the indices supporting the evaluation of conditions on value nodes,
range (=,>,<,≥,≤) and containment (3) searches are supported by B+tree and
inverted indices [4]. Other indices are also available for approximate searches.
For instance, a metric index [16] on the disambiguated label data dLabel allows
for label distance computations. All the different types of label indices are
uniformly accessed through the requested label value label and are denoted
in Fig. 4 as IX−L; they return the identifiers λ of the labels that satisfy the
specified conditions.

4.2. SR Indexing Scheme

One fundamental operation of GeX query processing is to check whether two
data nodes are semantically related or not under the label constraints specified
in the query. To this end, GeX employs the SR relation. Since in a connected
data graph all nodes are pairwise connected by at least one path, the size of SR
can potentially be very large.

An initial solution proposed in [25] was to store in a relational table the tuple
(n,n′,λ(e),p(e),c(e)) for each edge e = (n, n′) ∈ SR, with p(e) the path and c(e)
the cost; then, a B+-tree built on the label fields was used for fast access. The
large dimension of the stored table and indices and the substantial inefficiencies
caused in managing query variables made this solution suboptimal, especially
when matching edges containing unbound query nodes.
The redesigned indexing scheme we introduce in this paper:

• extends ad-hoc indexing solutions which have been proposed in the past
for specific scenarios: keyword-based searches [15] and XML data [2, 3, 13];

• improves variable binding performances by building a concise structural
summary of SR;

• reduces the space requirements by separating the node pairs in SR from
the related paths and by maintaining the longest paths only.
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This is achieved by:

1. clustering SR on the basis of structural information, for facilitating query
processing operations such as variable binding;

2. maintaining SR clusters in a two-level hierarchical organization minimiz-
ing space requirements;

3. building ad-hoc indices for the fast retrieval of the relevant portions of the
clusters under specific label or node identifier constraints.

Clustering SR: structural summary. Following an intuition similar to the
ones behind many structural summaries (such as XML dataguides [13]), where
multiple instances of repetitive portions of the graph are summarized in single
index entries, the elements (n,n′,λ(e),p(e),c(e)) in SR are clustered on the basis
of their label triples (λ(n), λ(e), λ(n′)). In particular, the main aim is to build
clusters which differentiate each other on the basis of the structural information
labels only, i.e. the ones marked as S in the NODE LABELS table. To this end,
labels marked as V and I are virtually substituted with generic special labels @v

and @i, respectively. Each resulting cluster is then identified by a label triple
(λ∗(n), λ(e), λ∗(n′)), where λ∗(n) and λ∗(n′) can be either a label in LC or one of
the special values @v and @i. For instance, the cluster (@i, λtype, λInProceedings)
in Fig. 4 groups all the SR edges that are labeled type and connect any instance
node to any InProceedings node.

Storing SR: path collection and pointer lists. Due to the path-decomposition
property of SR, many of the paths are indeed contained one in the other. We
exploit the containment relationship in order to only maintain the longest paths
in SR. Such paths are stored in the SR path collection file shown in the bot-
tom part of Fig. 4 as a sequence of edges. On top of the SR path collec-
tion, for each cluster (λ∗(n), λ(e), λ∗(n′)), we build the SR path pointer list
L(λ∗(n), λ(e), λ∗(n′)) (central part of Fig. 4) where each entry represents the
virtual edge e = (n, n′) by: a pointer P (p(e)) to the starting edge of its path p(e)
in the SR path collection, the offset offset(p(e)) which is the number of edges to
be traversed starting from P (p(e)) to reach the ending edge of p(e), and the cost
c(e). The entries for each path pointer list are sorted for increasing cost c(e). In
each list entry, only the start pointer is mandatory. Indeed null offsets are omit-
ted. Moreover, in the very frequent case when each edge cost c(e) corresponds
to the length of the path p(e), we omit c(e) as it coincides with offset(p(e)).
For instance, looking at Fig. 4 and Fig. 1 and assuming that virtual edge costs
are computed as the path length, the virtual edge e = (n13, n4) ∈ SR where
λ(e) is type, p(e) = 〈e6〉, and c(e) = 0 is represented in L1 by P1 only, which
points to unary path e6 in the SR path collection. A longer path containing
the above one is pointed by the first element of L3 which represents the virtual
edge e = (n13, n1) ∈ SR where λ(e) is type, p(e) = 〈e6, e3〉, and c(e) = 1.

Rotated lexicon and content indices for fast retrieval. GeX data struc-
tures also include specific indices, namely IX−SRLS , IX−SRLV , and IX−SRN
(Fig. 4), for fast retrieval of the relevant graph data under constraints on
nodes and edges. More precisely, IX−SRLS is an inverted index on the rotated
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lexicon of the SR structural summary, allowing a very fast identification of
the path pointer lists on the basis of query labels. The structure is derived
from the XML “rotated lexicon” presented in [2]. In our case, the lexicon is
given by the set of label tuples (λ∗(n), λ(e), λ∗(n′)) and each entry of the ro-
tated lexicon is expressed as a sequence of the three labels of the tuples, i.e.
λ∗(n)/λ(e)/λ∗(n′). Then, the lexicon is “rotated”, i.e. all the possible rota-
tions of the entries are generated. The three rotated entries originating from
the same tuple (λ∗(n), λ(e), λ∗(n′)) point to the same SR path pointer list
L(λ∗(n), λ(e), λ∗(n′)). For instance, for the sequence @i/λtype/λInProceedings
in Fig. 4:

@i/λtype/λInProceedings
λInProceedings/@i/λtype
λtype/λInProceedings/@i

}
−→ L1

Thanks to the properties of rotated lexicons [2], search operations will con-
sists of simple binary searches on IX−SRLS , and all the relevant matching lists
will be found close together after the first match (see Section 5). Note that such
a rotation preserves the edge direction, but not the role of the involved labels
(i.e. node vs edge labels). To preserve this information, we explicitly distinguish
edge labels from node labels by adding a special character in front of the label
(for simplicity of presentation, we omit this notation in our discussion). As we
will see in the following section, IX−SRLS is particularly useful when dealing
with variables.

Finally, the IX−SRLV and IX−SRN indices provide fast retrieval of SR ele-
ments in a given list L in response to specific search values and node identifiers,
respectively. To be more precise, the indexing fields of IX−SRLV are a list L and
a value label identifier λ<value>. Instead, IX−SRN is accessed through a list L
and the pair of node identifiers (n, n′) to be searched in SR. IX−SRN is imple-
mented as a set of B+trees, while different kinds of predicates are supported
in IX−SRLV by means of B+tree (for range predicates), inverted (containment
predicates) or metric (similarity predicates) indices.

5. Top-k Query Answering Algorithm

In this section we introduce the GeX top-k query answering algorithm, that
efficiently generates the top-k answers according to the scoring function S(E).

Similarly to other proposals for top-k graph query processing [15, 30], our
algorithm founds on the principles of the Threshold Algorithm (TA) [9] which
has been proven optimal in terms of number of visited items. Specifically, the
algorithm follows two main phases:

1. Cursor initialization, where the query edges are assigned to cursors which
fetch data from the relevant path pointer lists;

2. Cursor access and solution building, where sorted access in parallel is per-
formed on the cursors and the most relevant solutions are built.
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However, the GeX querying algorithm operates in a more challenging sce-
nario than the other TA-derived algorithms because of its approximate matching
approach that includes unbounded nodes and edges, label approximation and
undirected edges. Such features affect both phases of the algorithm and we
introduced significant modifications to the TA in order to efficiently deal with
them.

In the cursor initialization phase, cursors can be associated to more edge
lists. In particular, the number of such lists can be very high in case of un-
specified labels. The algorithm limits the number of relevant lists by access-
ing the newly introduced index IX−SRLS where data is organized according to
structural information only. This represents a definite advantage over our past
proposal [25], where we had to open many independent cursors for each possible
values and/or instances matching an unspecified label. Moreover, by means of
the rotated lexicon, such a phase is able to quickly identify queries having no
structural matches.

In the cursor access and solution binding phase, each object in one cursor
conceptually joins with more than one object in each of the others. Therefore,
all answers involving such object should be computed and they can be poten-
tially a large number. For this reason, a pruning threshold is applied not only
to decide if the generated answers are sufficient, but also during answer com-
putation to avoid completing the computation of useless answers. Further, as
far as the cursor access is involved, differently from [15] where only round-robin
accesses (ROUND ROBIN) are considered, GeX includes additional cursor selec-
tion strategies whose goal is to try to build better ranked answers as soon as
possible.

All such benefits will be clearly demonstrated by the experimental results
and comparisons shown in Section 6.

The algorithm is detailed in the following by considering the case of a single
graph; otherwise, it can be easily extended to check graph identifiers. Moreover,
for the sake of clarity, we start by considering the case of exact matching for

node and edge labels, therefore, S(E) = β
2|E|

∑
e∈E

c(g(e))
MC ; then, we show how

the algorithm can be easily extended to deal with approximate labels (Section
5.3).

5.1. Cursor initialization

Let q = (N,E,LN , LE , V, C) be a query and let firstly suppose that all
the query labels are specified and all the query edges are directed. In this
simple case, each query edge ei = (nS(i), nE(i)), for i ∈ [1, |E|], is associ-
ated with a cursor Ci that iterates on the elements in the sorted list Li ≡
L(λ∗(nS(i)), λ(ei), λ

∗(nE(i))); S(i) and E(i) denote the ids of the start and end
nodes of ei, respectively. The cursor is easily initialized by: (a) searching for
the involved label ids in IX−L according to the nodes and edge labels λ(nS(i)),
λ(ei), λ(nE(i)); (b) accessing IX−SRLS in order to retrieve list Li.

When an edge ei is undirected or contains variables, its cursor Ci will pos-
sibly be associated with more than one list, i.e. Li:1, Li:2, . . . , Li:t. More
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specifically, for an undirected edge, the accessed lists would simply be Li:1 ≡
L(λ∗(nS(i)), λ(ei), λ

∗(nE(i))) and Li:2 ≡ L(λ∗(nE(i)), λ(ei), λ
∗(nS(i))). In this

case, the cursor still offers a sorted access to the elements in Li:j , j=1 . . . t, by
accessing the t sorted lists in parallel and advancing on the list having the lowest
cost element.

On the other hand, the case of unbound nodes and edges is efficiently dealt
with by means of the IX−SRLS rotated lexicon features. More specifically,
query edges containing variables are processed by substituting each variable
var with the wildcard @, and by rotating their sequences so that special sym-
bols appear as last. For instance, an edge $x/λtype/λJournal is transformed to
λtype/λJournal/@. In the index, the wildcard @ will match with any label, @i,
and @v. Then, the transformed sequence is used to search IX−SRLS through
a simple binary search for finding the first match. Because of how IX−SRLS
is constructed, possible additional matches are then available in the immedi-
ately subsequent entries. In case the variable var appears in a query predicate
var〈op〉v, we access IX−SRLS by substituting var with @v, and we restrict the
selected list Li:j by accessing IX−SRLV through (Li:j ,λv).

With reference to the complete top-k query answering algorithm shown in
Fig. 6, cursor initialization is specified at lines 1-4.

Example 5.1. Going back to our data graph (Fig. 1) and Query 1 (Fig. 2), we
simplify the query to prevent the case of approximate label matching, a feature
which is not essential to understand the core of the algorithm. Let us consider
only the first three query nodes (n1, n2 and n3) and modify the labels of n1 and
n3 to InProceedings, and D. Srivastava, respectively. Cursors are initialized
in the following way:

• the label ids matching InProceedings, D. Srivastava, type, and author

are found by means of IX−L;

• SR is then queried through IX−SRLS and IX−SRLV : the first edge e1 con-
tains a variable $w, so, first of all, the sequence $w/λtype/λInProceedings
is rotated to λtype/ λInProceedings/ $w, then IX−SRLS is searched through
the rotated sequence. From Fig. 4, we see that the only matching list is
L1, and, since e1 does not involves values, cursor C1 is initialized to the
whole L1;

• in a similar way, L2 is associated to edge e2 by means of IX−SRLS. How-
ever, since e2 involves a value, index IX−SRLV is accessed through (L2,
λD.Srivastava) and cursor C2 is initialized to the elements of L2 containing
D. Srivastava as a value.

Each cursor Ci is accessible through the following functions:

• next() advances the cursor and returns the next cursor element (n, n′, c(e)),
i.e. the next node pair e = (n, n′) together with its cost c(e);

• seek(n,n’) performs indexed random accesses on the cursor through the
node identifiers (n, n′) and returns the matching cursor elements (only
one or both ids can be specified);
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Algorithm 1 answerQuery(q,k)

1: for all i 2 [1, |E|] do // Phase 1: Cursor initialization on query edges
2: ((�(nS(i)), �(ei), �(nE(i)))  IX�L(labels in ei)
3: {Li:j}  IX�SRLS,SRLV (�⇤(nS(i)), �(ei), �

⇤(nE(i)), �<value>)
4: Ci  newCursor({Li:j})
5: i=0; Ans = ;;
6: while (i getNextCursor(i)) > 0 do // Phase 2: Cursor access and solution building
7: (n, n0, c(e)) Ci.next()
8: computeAnswers(i, n, n0, c(e), 0, ;, ;, Ans)

9: lBound P|E|
j=1 Cj .peekCost()

10: if |Ans| � k and lBound � Ans[k].score then
11: abort answer computation
12: output Ans

Algorithm 2 computeAnswers(i, n, n0, cost, curS, nList, eList, Ans)

1: nList[S(i)] = n
2: nList[E(i)] = n0

3: update(eList, i, n, n0)
4: curS  curS + cost
5: ı getNextQueryEdge(i)
6: if ı < 0 then // answer completed
7: if Ans[k].score > curS OR |Ans| < k then
8: Ans.add((nList, eList, curS))
9: return

10: if |Ans| � k^ curS +Cı.peekCost()) � Ans[k].score then // abort computation of current
answer

11: return
12: else // continue answer computation recursively
13: while ((n, n0, cost) Cı.seek(eList[ı].nS , eList[ı].nE))

6= NULL do
14: computeAnswers(ı, n, n0, cost, curS, nList, eList, Ans)
15: return
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Figure 6: Top-k query answering algorithm

• curCost() returns the cost c(e) of the current element, i.e. the element on
which the cursor is currently positioned;

• peekCost() returns the cost c(e) of the next cursor element (the cursor
position is not advanced);

• size() returns the number of elements following the current position.

5.2. Cursor access and solution building

In line with the TA principles [9], Algorithm 1 computes the k best answers
by performing a parallel sorted access to the |E| cursors (lines 5-12). Specifically,
a starting cursor Ci is selected at line 6 through the getNextCursor algorithm
detailed in Fig. 8, Ci advances through the next() function (line 7), then, in
line 8 algorithm computeAnswers performs random access to the other cursors
and computes (some of) the answers originating from e. The top-k answers
computed so far are maintained in list Ans sorted on increasing score values.

After each answer computation step, the algorithm computes the score lBound
of the set of the next node pairs under sorted access to the |E| cursors as they
were a solution, and stops the process whenever at least k answers have been
seen whose grade is smaller than lBound (lines 9-11). Indeed, as cursor elements
are ordered by increasing cost, lBound represents the best score of any solution
which could be computed in the following steps.

Example 5.2. Continuing our example, after cursor initialization let us sup-
pose that cursor selection prioritizes access to the most selective cursors:

• sorted access is performed on C2 and the node pair (n13,n11) is extracted
from the cursor;

• all answers involving the extracted pair are efficiently constructed by per-
forming random accesses in the other cursors; for the first query edge,
index IX−SRN is queried for n = n13 (being this the starting node for edge
e1);
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Algorithm 1 answerQuery(q,k)

1: for all i 2 [1, |E|] do // Phase 1: Cursor initialization on query edges
2: ((�(nS(i)), �(ei), �(nE(i)))  IX�L(labels in ei)
3: {Li:j}  IX�SRLS,SRLV (�⇤(nS(i)), �(ei), �

⇤(nE(i)), �<value>)
4: Ci  newCursor({Li:j})
5: i=0; Ans = ;;
6: while (i getNextCursor(i)) > 0 do // Phase 2: Cursor access and solution building
7: (n, n0, c(e)) Ci.next()
8: computeAnswers(i, n, n0, c(e), 0, ;, ;, Ans)

9: lBound P|E|
j=1 Cj .peekCost()

10: if |Ans| � k and lBound � Ans[k].score then
11: abort answer computation
12: output Ans

Algorithm 2 computeAnswers(i, n, n0, cost, curS, nList, eList, Ans)

1: nList[S(i)] = n
2: nList[E(i)] = n0

3: update(eList, i, n, n0)
4: curS  curS + cost
5: ı getNextQueryEdge(i)
6: if ı < 0 then // answer completed
7: if Ans[k].score > curS OR |Ans| < k then
8: Ans.add((nList, eList, curS))
9: return

10: if |Ans| � k^ curS +Cı.peekCost()) � Ans[k].score then // abort computation of current
answer

11: return
12: else // continue answer computation recursively
13: while ((n, n0, cost) Cı.seek(eList[ı].nS , eList[ı].nE))

6= NULL do
14: computeAnswers(ı, n, n0, cost, curS, nList, eList, Ans)
15: return
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Figure 7: Answer computation algorithm

• then, results are generated by combining the matches for each of the query

edges; in our simple case, exactly one answer is found, i.e. ESR = (f, g),
where 4 = f(1), 13 = f(2) and 11 = f(3) and with the edge assignment
defined as:

e g(e) λ(g(e)) p(g(e))
e1 (n13, n4) type e6
e2 (n13, n11) author e13

Finally, the score of the answer is computed (in this case, it is 0 since
no approximations are performed), and, since the cursors do not contain
additional data, the algorithm stops and returns the results.

As far as computeAnswers is concerned (see Fig. 7), an answer is a triple
(nList, eList, score) where nList[1, . . . , |N |] is a list of data nodes, one for each
query node, which encodes the node-assignment function f , eList[1, . . . , |E|] is
a list of node pairs (nS , nE) in SR, one for each query edge, which encodes
the edge-assignment function g, and score is the score S(E) of the approxi-
mate embedding E = (f, g). In the following, we will denote as eList[i].nS
and eList[i].nE the start and end nodes of the i-th node pair stored in eList,
respectively.

At the beginning, the entries of both lists are initialized with node place-
holders but those entries corresponding to (n, n′) (lines 1-3) and then they are
updated while recursively computing the answer. More precisely, each time a
data node pair (n, n′) is added to the current solution, the update() function
updates eList[i] and uses n and n′ to update the entries corresponding to ei’s
adjacent edges.

21



20 Federica Mandreoli et al.

empty list. Algorithm 2, which is described in outline in the following, recursively computes
each answer originating from the current query edge ei.

Whenever the answer computation process is completed for the newly entering data node
pair e = (n, n�), the answer is added to Ans if Ans contains less than k entries or if its score
is no greater than the k-th one (lines 1-9); note that for simplicity of presentation the score
normalization is omitted from the algorithm. Otherwise, the process can be interrupted for
two reasons: the lower bound of the answers which will be computed in the following exceeds
the pruning threshold Ans[k].score (lines 10-11) or no matching object in the selected cursor
Cı is found (lines 13-15). In particular, Cı.seek() usually performs indexed random accesses
on its elements through the node identifiers available in eList[ı], where ı is the current query
edge selected at line 5.

More precisely, each time a new data node pair is added to the current solution, the
update() function does not limit itself to update eList[i], but it also uses n and n� to update
the entries corresponding to ei’s adjacent edges. Then, getNextQueryEdge() selects at each
call the next unvisited query edge which has been (partially) bound as an update() side e�ect
(the bind information will be used as a key in Cı.seek()).

Besides round-robin accesses (ROUND ROBIN) which is typically available in the literature
[12], Algorithm 3 includes the following additional cursor selection strategies. The NEXT BEST

mode chooses the cursor minimizing the variation of the pruning threshold. Moreover, as
our lists are not equally sized, we can start building answers from the most selective edges by
prioritizing the cursors whose size is the smallest one (MAX SEL). This appears a particularly
promising strategy, especially for complex queries. For instance, consider a typical query
where many nodes and edges are present, and where some of the nodes are left unbound:
edges containing such nodes are not a good choice to start processing and, because of their
very low selectivity, they will be among the last ones to be selected.

Algorithm 3 getNextCursor(current)
1: next � �1
2: if Mode =ROUND ROBIN then
3: next � pick i from [1, . . . , |E|] in round robin starting from current such that Ci.size()> 0
4: else if Mode =NEXT BEST then
5: next � find i � [1, . . . , |E|] minimizing (Ci.nextCost() �Ci.curCost()) such that Ci.size()> 0
6: else if Mode =MAX SEL then
7: next � find i � [1, . . . , |E|] minimizing Ci.size() such that Ci.size()> 0
8: return next

5.4. Dealing with Approximate Labels

GeX querying algorithm can be easily extended to handle approximate label matching
without significantly changing the algorithm’s behavior. In particular, di�erently from other
TA-derived algorithms (e.g. [12]), the way the cursors Ci are organized easily supports this
capability. In our case, each query label is possibly associated with more than one data
label, i.e. those labels similar to the query label w.r.t. dL; the same applies to query edges
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sides round-robin accesses (ROUND ROBIN) which is typically available in the liter-
ature [14], the algorithm includes the following additional cursor selection strate-
gies. The NEXT BEST mode chooses the cursor that minimizes the variation of the
pruning threshold (RICCARDO SEI SICURO?? LA PRUNING THRESHOLD
DOVREBBE ESSERE Ans[k].score). Moreover, as list sizes often show a regard-
able variance, we can start building answers from the most selective edges by
prioritizing the cursors whose size is the smallest one (MAX SEL). For instance, con-
sider those queries where some of the nodes are left unbound: edges containing
such nodes are not a good choice to start processing with and, because of their
very low selectivity, they will be among the last ones to be selected.

Algorithm 1 getNextCursor(current)

1: next �1

Algorithm 2 getNextCursor(current)

1: next �1

Algorithm 3 getNextCursor(current)

1: next �1
2: if Mode =ROUND ROBIN then
3: next pick i from [1, . . . , |E|] in round robin starting from current such that Ci.size()> 0
4: else if Mode =NEXT BEST then
5: next find i 2 [1, . . . , |E|] minimizing (Ci.peekCost() �Ci.curCost()) such that Ci.size()> 0
6: else if Mode =MAX SEL then
7: next find i 2 [1, . . . , |E|] minimizing Ci.size() such that Ci.size()> 0
8: return next

Figure 8: Cursor selection algorithm

Each computeAnswers call (line 14) is led by the cursor Cı associated with
the next unvisited query edge which has been (partially) bound as an update()
side effect (line 5).

Whenever the answer computation process ends, the answer is added to Ans
if Ans contains less than k entries or if its score is no greater than the k-th one
(lines 6-9).5 Otherwise, the process can be interrupted for two reasons: either
the lower bound of the answers which should be computed exceeds the pruning
threshold Ans[k].score (lines 10-11) or no matching SR edge in the selected cur-
sor Cı is found (lines 13-15). In particular, Cı.seek() performs indexed random
accesses on its elements through the node identifiers available in eList[ı].

As far as cursor selection is concerned, algorithm getNextCursor shown in
Fig. 8 returns the next cursor according to different selection strategies. Besides
round-robin accesses (ROUND ROBIN) which is typically available in the literature
[15], the algorithm includes the following additional cursor selection strategies.
The NEXT BEST picks an edge from the cursor that minimizes the difference
between the cost of the next (i.e. upcoming) element and that of the current
one. In this case, the idea is to minimize the lower bound of the score of the
potential solutions that will be generated next, i.e. the ones that will originate
from the picked edge. Moreover, as list sizes often show a regardable variance,
we can start building answers from the most selective edges by prioritizing the
cursors whose size is the smallest one (MAX SEL). For instance, consider those
queries where some of the nodes are left unbound: edges containing such nodes
are not a good choice to start processing with and, because of their very low
selectivity, they will be among the last ones to be selected.

5.3. Dealing with Approximate Labels

When dealing with approximate label, each query label is possibly associated
with more than one data label, i.e. those labels similar to the query label w.r.t.
dL.

The GeX querying algorithm presented so far is straightforwardly extended
to deal with this case thanks to the way cursors are initialized and accessed.
Indeed, any query edge cursor can be associated to more than one list, where
the objects of each list share the same label.

5Note that for the sake of simplicity score normalization is omitted.
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Query #n #e #any
#exp+
ans Description

Struct+
relax

(w/+$+
edge)

Label+
approx

R1 3 2 1 1 “The(authors(that(studied(at(the(University(of(Kazan”
R2 3 2 1 4 “People'that'studied(at(the(University(of(Kazan” x
R3 3 2 1 4 “People'connected(($(edge)(to(University(of(Kazan” x x
R4 4 3 2 4 “The'public'spaces'connected(($(edge)(to(Lev(Tolstoj” x x
R5 7 6 3 4 “The'public'spaces'that'lie (in(the(same(town(as(Vosstaniye(Square” x
R6 3 2 1 4 “Human'beings'that'frequented(the(University(of(Kazan” x x
R7 7 6 3 4 “Places'that'are'in(the(same(city(as(Vosstaniye(Square” x x

Query #n #e #any
#exp+
ans Description

Struct+
relax

(w/+$+
edge)

Label+
approx

Q1 3 2 1 12 “Articles(of(year(1997”
Q2 3 2 1 36 “Papers'(generically)'of'year (1997” x x
Q3 5 4 3 10 “Titles(of'papers'of'year (1990(and(connected(($(edge)(to(STACS(conference” x x x
Q4 6 6 4 148 “Titles(of'documents'created'by'a'person(who(has(also'created'a'document(in(1994” x
Q5 5 4 3 10 “Name(of'works'of (1990(and'connected(($(edge)(to(STACS(conference” x x x

Russia+dataset

DBLPGS+and+DBLP+datasets+(expected+answers+are+given+for+DBLPGS)

Table 1: Query specifications for Russia, DBLP-S and DBLP datasets

Thus, fixed a query edge ei = (nS(i), nE(i)), it is sufficient for its cursor Ci to

associate each list Li:j with three values, DLi:j

S , DLi:j

E and DLi:j

e , expressing the
distance of the starting node, ending node and edge labels from the query ones,
respectively. Such information is combined with the cost information of the list
elements so that the cursor still offers sorted data access. As to answer ranking,
nList and eList entries are simply extended with appropriate dL values in order
to compute the overall score of each answer. Note that the top-k algorithm is
still correct being sorted data access guaranteed also in this general case.

6. Experimental Evaluation

We contextualized GeX through the RDF-like instantiation of SR shown
in Appendix, and we performed a thorough analysis of both the effectiveness
and the efficiency of GeX on several RDF-based real world datasets. In this
section we present a selection of the most significant results we obtained, includ-
ing specific tests comparing our effectiveness figures with the ones obtainable
by different state of the art approaches and detailed time and space efficiency
comparisons between different alternative implementations of our system.

6.1. Experimental Setting

Among the several collections we employed to test GeX, we selected Russia6,
DBLP-S and DBLP for the following discussion, as they allow us to completely
stress the system from all the required perspectives. Russia describes several
information about the country’s cities and people, while DBLP-S (small version)
and DBLP (complete version) are extracted from the well known DBLP scientific
bibliography data. Note that DBLP data is also one of the most exploited
resources in the literature for graph search testing purposes [15, 30, 23]. The
structure of such graphs is quite complex: in particular, the Russia dataset

6Publicly available at http://www.rdfdata.org
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Figure 9: One of the Russia queries (R7, left), together with one possible embedding (right)

has a very detailed schema, with over 500 different and richly interconnected
concepts and properties, while DBLP and DBLP-S build from a typical data-
centric scenario of nearly 100 schema elements and create a dense bibliography
network of relations between authors and their works. Russia and DBLP-S,
which are not very big in size (1012 nodes / 1613 edges and 4373 nodes / 7779
edges, respectively), will be employed for testing the system effectiveness. On
the other hand, the very large DBLP collection will stress the approach also
from an efficiency point of view, with 1897225 nodes and 5009848 edges.

For all collections, we created a set of significant queries, named R1 to R7
(Russia) and Q1 to Q5 (DBLP and DBLP-S). Table 1 shows an overview of the
employed queries (number of nodes, number of edges, number of “any-label” i.e.
variables $, number of expected answers), together with their textual descrip-
tions and the specific challenges they present to be correctly solved, including:

• structural approximations (with or without generic semantic connection
($) edges), where the structure of the original schema needs to be relaxed.
The relevant part of the query is highlighted in italics in the Table 1
description;

• semantic label approximations, where some of the nodes do not employ
the same vocabulary of the schemas. Relevant terms are underlined in
Table 1;

• a combination of both.

Besides the simple R1, queries R2 to R5 are gradually more complex and
require different approximations: queries R2 and R3 generically ask for “people”
(a concept subsuming a large number of more specific classes), similarly to
queries R4 and R5 asking for generic “public spaces”, while queries R3 and R4
employ generic semantic connection ($) edges. On the other hand, queries R6
and R7 are designed to stress the semantic label similarity engine and employ
very generic and alternative terms (different from the schema vocabulary and
the other queries) on purpose. Figure 9 shows, as illustrative example, the
complete graph representation (and, on the right, a possible embedding) of R7,
while the others can be easily inferred from the descriptions. For instance,
label approximations are needed for both nodes (“Place”, “City”) and edges

24



Web
Query P recall P(lowT) P@ea #q P recall #q P recall P recall P recall

R1 1 1 1 1 1 1 1 n/a 0,200 1 1 1 1 1
R2 1 1 0,667 1 13 n/a n/a n/a 0,308 1 1 1 1 1
R3 1 1 0,571 1 689 n/a n/a n/a 0,308 1 0,31 1 0,4 1
R4 1 1 0,8 1 637 n/a n/a n/a 0,044 1 0,04 1 0,21 0,5
R5 1 1 0,5 1 49 n/a n/a n/a 0,267 1 1 1 1 0,75
R6 0,8 1 0,363 1 13 n/a n/a n/a 0,308 1 n/a n/a 0,8 1

R7 0,8 1 0,44 1 637 n/a n/a n/a 0,044 1 n/a n/a 0,21 0,5

Q1 1 1 0,357 1 1 1 1 3 0,002 1 1 1 1 1
Q2 1 1 1 1 4 n/a n/a 2 0,061 1 n/a n/a 1 1
Q3 1 1 0,909 1 25 n/a n/a n/a 0 1 n/a n/a 0,01 1
Q4 1 0,94 0,754 1 64 n/a n/a 41 0 1 1 0,93 1 0,94
Q5 0,91 1 0,667 1 25 n/a n/a n/a 0 1 n/a n/a 0,01 1

Naive NAGAAMP TALEAMP

RussiaAdataset

DBLPJSADataset

GeX Exact

Table 2: Effectiveness results comparison - Russia and DBLP-S

(“isIn”), while structural approximations are exploited to derive the semantic
connections between the nodes f(1) and f(3). Following the same principles,
the DBLP queries start from similar ones already exploited in literature (e.g. in
[15, 30]) but are enhanced so to exploit the GeX peculiarities (e.g. “document”
subsumes a large number of more specific classes, “paper” and “work” are not
in the schema vocabulary, and so on).

In order to apply label similarities, the concept labels are disambiguated with
the STRIDER [26] structural disambiguation system; the data labels having a
similarity higher than a specified threshold are associated to the query labels.
The system, including full data structures and algorithms, is fully implemented
in Java 1.6. The reference implementation which we employed for most of our
tests is an ad-hoc solution exploiting the data structures described in Section
4.2 (which we will refer to as “enhanced”), completely built from scratch in java
low-level programming. Different GeX implementations are also considered and
compared in specific sections: together with the “enhanced ad-hoc” solution, we
consider the “enhanced RDBMS” one based on a full relational system (Post-
greSQL 8.4) and “enhanced DBLib”, based on a light and embeddable database
library (Oracle BerkeleyDB 3.2 Java Edition). Further, as a baseline, we also
compare the “DBLib” implementation and index structures as described in [25].
All the experiments are executed on an Intel Core2 Quad Q9450 2.66GHz Win-
dows 7 64 bit workstation, equipped with 4GB RAM and a 500GB SATA II
hard drive.

6.2. Effectiveness Evaluation and Comparison

Table 2 presents a detailed summary of the effectiveness results we obtained
for Russia (upper part of the table) and DBLP-S (lower part). The table shows
different measures and comparisons: the precision (i.e. percentage of relevant
retrieved answers w.r.t. the retrieved ones) and recall (i.e. percentage of rel-
evant retrieved answers w.r.t. existing relevant ones) levels achieved by GeX
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in a standard and low similarity threshold settings (more on the latter at the
end of this section), comparing them with the ones achievable through differ-
ent approaches: we simulated an exact matching approach and a näıve struc-
tural approach (similar to [6]). While the exact match approach clearly has
a very limited flexibility, the considered näıve approach is somehow opposed:
the näıve results are the ones that would have been retrieved by computing
all node matches and connecting them in the data in all possible ways, thus
disregarding our SR information. For DBLP we also considered the specific
Web portal search opportunity, not available for Russia, and, where applicable,
we also analyzed the number of queries (#q) that would be necessary to ob-
tain all the expected results (as opposed to one single query for our system).
Further, we simulated all and only the aspects of the NAGA [19] and TALE
[29] state of the art proposals which are relevant to our effectiveness evaluation
analysis, in particular their query model and matching paradigms (NAGA MP
and TALE MP in table). Please note that not all the considered approaches
support all the features required to correctly answer the queries (this explains
the various “n/a” in the table): for instance, while NAGA is a semantic ap-
proach and is thus correctly able to handle isA hierarchy navigation, TALE
only offers a syntactical “degree of approximation” for relaxing structures. On
the other hand, NAGA has no support for semantic label approximation, while
TALE has a syntactic graph matching technique which is able to cope with label
mismatches by “plugging-in” external label similarities: in this case, for a fair
comparison with GeX, we exploited our semantic similarity. The same applies
to the NAGA scoring model, which is not directly applicable to our scenario
(for a web-based corpus, such as the knowledge base they use, it would depend
on the informativeness and confidence of the authoritative pages from which it
is extracted).

Let us start our analysis by examining the results for Russia. Query R1 is the
most simple, since it does not require approximations, thus the exact, NAGA,
TALE and GeX approaches return the correct answer, Lev Tolstoj, with a
precision and recall of 1. The näıve approach, however, builds a larger number
of answers, since it connects other authors to the required University through
paths that are not semantically relevant (precision 0.2). Note that, even if the
TALE approach is not able to assess the semantic relevance of the paths, in this
case it is able to prune out the wrong answers thanks to the syntactical “degree
of approximation” threshold (the corresponding embedding structures would be
too different from the query one). For all queries (R1-R7) we achieve very good
(perfect for R1-R5) precision; this is made possible by exploiting SR and, for
the label similarity computations, a “safely” high similarity threshold setting,
nonetheless also allowing us to obtain perfect recall levels. Instead, the exact and
näıve approaches are either not applicable (no retrieved exact matches) or very
inaccurate. Also, note that “rewriting” our query to all possible exact queries
is almost infeasible due to the excessive growth of the number of exact queries
that would be required (for instance, more than 600 queries to be processed for
R3 and R4).

Let us now focus on the NAGA and TALE performances, which are not
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R1	   R2	   R3	   R4	   R5	   R6	   R7	  
GeX	   1	   1	   1	   1	   1	   0,89	   0,89	  
Exact	   1	   0	   0	   0	   0	   0	   0	  
Naive	   0,33	   0,47	   0,47	   0,09	   0,42	   0,47	   0,08	  
NAGA	  MP	   1	   1	   0,47	   0,08	   1	   0	   0	  
TALE	  MP	   1	   1	   0,57	   0,30	   0,86	   0,89	   0,30	  
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Figure 10: F-measure results comparison - Russia

always able to deliver satisfying precision and recall levels for the considered
queries. This is due to the specific features and ways of working of the two
systems: NAGA correctly handles the semantics in R2 and R5, however generic
semantic connection ($) edges are supported only by means of the “connect”
edge, thus disregarding semantic information and producing a large number of
useless answers (for instance, precision 0.308 and 0.044 for queries R3 and R4,
respectively). Further, queries with semantic label approximation, such as R6
and R7, can not be processed by such system. On the other hand, in TALE
the offered syntactical “degree of approximation” does not appear to be able
to discriminate good and bad results for all queries requiring semantic-aware
structural approximations, thus producing irrelevant answers (low precision in
R3, R4 and R7) and missing relevant answers (low recall in R4, R5 and R7).
Fig. 10 presents a visual summary of the effectiveness results achieved by the
different considered techniques by showing the achieved F-measures (weighted
harmonic means of precision and recall): our results show an F-measure of 0.89
or higher for all the Russia queries.

These good results are also confirmed by the DBLP queries (lower part of
Table 2). Again, differently from the other systems, GeX achieves the highest
precision and recall levels. In this case, we can also see that accessing the DBLP
Web portal would require a significant work from the user who should submit
a possibly very large number of queries to retrieve the expected results (see the
#q column).

Finally, we present a small but representative sample of a specific effective-
ness evaluation we performed on our ranking model and function. In particular,
we simulated a more rich and “noisy” answer set to Russia and DBLP queries
by significantly lowering the semantic approximation threshold employed for la-
bel match and, together with precision P (denoted as P (lowT ) in Table 2), we
computed precision at recall level ea, P@ea, where ea is the number of expected
answers of each query. As shown in table, even if P (lowT ) is globally lower for
the whole retrieved answer set (for instance, “title” is now also similar to la-
bel “note”), the function proves to be effective in discriminating the irrelevant
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Q1# Q2# Q3# Q4# Q1# Q2# Q3# Q4#
MS(seq)# 215# 432# 587# 683# 397# 485# 732# 764#
RR# 57# 36# 64# 44# 81# 62# 116# 108#
NB# 51# 36# 53# 42# 76# 62# 108# 81#
MS# 48# 35# 46# 39# 69# 58# 73# 44#
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Figure 11: Query Execution time for DBLP

Query RR NB MS RR NB MS RR NB MS
Q1 35% 64% 71% 14 11 7 7 6 5
Q2 50% 78% 98% 10 7 5 7 6 5
Q3 29% 26% 45% 17 23 16 21 17 15
Q4 29% 45% 97% 17 13 3 145 98 72

#random5accesses%compl5answers #sorted5accesses

Table 3: Details on performed index accesses for DBLP

answers and keeping them low in the ranking, with perfect P@ea levels.

6.3. Efficiency Evaluation and Scalability

Along with a good effectiveness, a graph query answering approach also nec-
essarily needs to be very efficient in order to be useful, since the size of the
managed graphs can be very high. In the following tests, we analyze the perfor-
mance of GeX on the large DBLP collection, considering query execution time
and the number of index accesses performed by the different available cursor
selection strategies and access modes. In this section, we will consider the per-
formance of queries Q1-Q4, while query Q5 delivers a performance very close
the Q3 one and is therefore not shown. Further, specific query variations will
be exploited to test the system scalability. All the time figures we show are
those obtained by our “enhanced ad-hoc” implementations. A detailed compar-
ison of the performances offered by our different implementations, including full
indexing space requirements analysis, will be given in Section 6.4.

Fig. 11 shows the execution time of queries Q1 to Q4 for the Round Robin
(RR), Next Best (NB) and Max Sel (MS) cursor selection strategies, for both
k = 5 and k = 10. For all of them, the random accesses performed by the
seek() function exploit indices; the sequential versions of these strategies proved
significantly slower then their index-based counterparts, thus we present only
the best performing one (denoted as “MS(seq)” in figure) as a baseline. First of
all, we can see that the index-based execution time, even for the most complex
queries, is low, less than 0.1 seconds for this large dataset (k = 10), except for
Q3 and Q4 that, in some cases, slightly exceed this value. As to the cursor
selection methods, RR generally proves to be the worse performing strategy
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k=1$ k=10$ k=100$
Q6$ 11$ 81$ 579$
Q7$ 19$ 98$ 498$
Q8$ 14$ 83$ 502$
Q9$ 8$ 62$ 471$
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Figure 12: Scalability test results for DBLP (MS strategy)

and is particularly outperformed by the others in case of queries having many
edges with different selectivity (such as Q3 and Q4). MS strategy is the most
efficient in all situations (less than 80 milliseconds); NB performance is close
but equally satisfying, also considering that, differently from MS, it does not
require to know the cursors’ size to work, thus possibly proving more versatile.
MS scalability w.r.t. k also proves the most encouraging for all queries, with a
computation time increase well under 60% in going from k = 5 to k = 10.

Table 3 completes the picture by comparing the different strategies, for k = 5,
in terms of the percentage of completed answer computations and the number
of required disk accesses, both sorted and random. Notice the high percentage
of completed answer computations, specifically for MS, meaning that the time
spent in starting useless answer computations is minimized. Further, the MS
strategy also provides the lowest number of disk accesses, thus justifying the
previously examined figures.

Finally, we deepen the scalability analysis by stressing GeX with high values
of k: Fig. 12 shows the figures obtained by the MS strategy for k from 1 to 100
on queries Q6-Q9, which are derived from query Q1 by considering query values
with lower selectivity, so to obtain a number of answers which is significant for
the analysis. As we can see, the encouraging trends discussed for Q1-Q4 for
lower k values are confirmed.

6.4. Time and Space Performance Comparison between Different Implementa-
tions

Up to now we considered the performances of GeX “enhanced ad-hoc” im-
plementation. We now conclude the experimental evaluation with a comparison
of the efficiency of the different implementations of our system, i.e. we will also
consider the alternative “enhanced RDBMS” and “enhanced DBLib” versions.
All such systems are based on the enhanced index structures and algorithm
presented in this paper. Further, as a baseline, we will also consider the origi-
nal system and index structures (“DBLib”), as presented in [25]. Let us start
by examining query execution time for Q1-Q4 for DBLP, as shown in Fig. 13:
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Q1# Q2# Q3# Q4# Q1# Q2# Q3# Q4#
GeX#na,ve# 48# 35# 46# 39# 69# 58# 73# 44#
GeX#DBLib# 260# 207# 245# 210# 399# 331# 458# 260#
GeX#RDBMS# 796# 605# 721# 613# 1286# 1091# 1376# 932#
DBLib# 295# 304# 497# 502# 394# 385# 536# 556#
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Figure 13: Performances of different implementations for DBLP
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Russia# DBLP.S# DBLP#
DBLib# 4,825# 7,488# 4,680,000#
GeX#RDBMS# 1,251# 1,941# 1,213,200#
GeX#DBLib# 2,201# 3,416# 2,134,800#
GeX#na>ve# 225# 349# 218,000#

Figure 14: Indexing space comparison between different implementations

as we can see, the performances are in general satisfying (typically well under
one second for each query) for all implementations, however the solutions based
on external data engines, such as DBMSs and embedded Database Libraries,
require a significant time overhead w.r.t. the ad-hoc solution we programmed
in ad-hoc java code. Moreover, another interesting comparison is between the
“enhanced DBLib” and “DBLib” versions: in this case both solutions are based
on the Berkeley DB library and thus we can better appreciate the efficiency
improvements given by the novel index structures and algorithms presented in
this paper w.r.t. the ones in [25]. Finally, Fig. 14 completes the picture with
a detailed comparison of the indexing space requirements of all the considered
implementations: first of all, notice that, as we expected, the enhanced index
structure optimizations allow us to drastically reduce the space requirements
of the original “DBLib” version. This is true for all the enhanced implementa-
tions: for instance, for the large DBLP collection, the “enhanced DBLib” and
“enhanced RDBMS” reduce space occupation to 45% and 25% of the original
requirements, respectively. Instead, the “enhanced ad-hoc” reveals by far the
most advantageous solution also from the space requirements point of view: for
all datasets, the indexing space is reduced to as little as 4% of the original
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requirements.

7. Related Work

The approximate matching of complex queries on graph-modeled data orig-
inates in the ’90s with the need of querying Web data, like HTML, which is
heterogeneous and where data structure is not fully known.

A pioneering work in this field has been Lorel [1], a SQL/OQL-style query
language designed to be implemented on top of an OODBMS. In later years,
FleXPath [3] focused on this issue by dealing with XML data. Since then,
data representation has been getting richer and richer of information, giving
rise to a variety of graph-based data sources where edges between nodes not
only express connection information, like in HTML/XML; rather edges can also
carry semantic information on the relationships occurring between the connected
data, like in RDF, thus empowering knowledge representation.

In this semantically richer context, the works which are more related to ours
are [19, 10, 36, 24].

As far as we know, NAGA [19] is the first work which addresses the need
of semantic query capabilities which go beyond keyword-based search as a key
issue when searching for knowledge. Nevertheless, several differences exist be-
tween [19, 10], as well as [1, 3], and our work, specifically in query formulation
and query answering. First of all, all these works do not allow for semantic
approximations on query nodes’ and edges labels. Then, edge approximation
is expressed through the use of regular expressions over relationships as query
edges’ labels. Labels of matching paths must satisfy the given regular expres-
sion, thus following a pure syntactic approach. [10] also gives the possibility of
specifying constraints on (sub)path lengths based on edge types in the regular
expression. In very complex databases like those, for instance, in the biological
field, finding data which exactly matches a complex regular expression may be
a real challenge. On the other hand, simple regular expressions, i.e., made of a
single label, are not approximated (except for the isA relationship in [19]).

A further difference is that GeX allows for specifying conditions to constrain
query results through relational (indeed, also supported in [10]) and similarity
predicates. Furthermore, in NAGA answers to relatedness queries, i.e., queries
containing edges labeled by the special keyword connect, return nodes which are
connected through any path in the data. As discussed in Section 3.1, topological
connection does not imply that the data retrieved is meaningfully related. The
same limitation is suffered by the other works. To overcome these limitations,
our model relies on the Semantic Relatedness relation SR to exclude misleading
results. Finally, NAGA does not delve into details as to the efficiency of the
answering process, and only hints are given about the specific data structures
and algorithms used to implement the system. On the other hand, in [10] a
query graph is considered as a set of reachability queries, one for each query
edge. This implies that a query result is a set of reachability query results,
each one being a set of node pairs that are guaranteed to be connected through
the specified regular expressions on the respective query edge. In GeX query
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results are indeed graphs where connections between data nodes are completely
specified.

The works in [36, 24] exploit schema information to derive the concepts of
Meaningful Schema Pattern and Meaningful Query Focus, with similar objec-
tives as our Semantic Relatedness relation. However, the proposed solution does
not investigate the problem of handling labeled edges, and it is targeted for rela-
tional and XML data. Thus, it can be considered as an XML-like instantiation
of SR.

Much research efforts have focused on querying graph databases. A large
amount of work is devoted to finding exact matches of a query graph either in a
given large graph [37, 39, 41] or in large sets of data graphs [33]. In this context,
[35] introduces a limited kind of approximation by admitting query node label
containment to deal with multi-labeled graphs, while [44] supports node label
substring operations on RDF graphs. Some relevant works [14, 15, 17, 22] have
the main goal of investigating efficiency issues, mostly focused on keyword-based
search.

[29, 34, 8, 38, 40] go beyond the keyword-based query paradigm and support
approximate subgraph matching. However, they only make syntactic considera-
tions to evaluate the degree of structural approximations on query connections.
In all these works the semantic relatedness of the connected data is not dis-
cussed. The Graph Information Discovery (GID) framework proposed in [31]
founds on the notion of filters to output a ranked subgraph of an input graph.
However, GID provides the user with limited query capabilities as to the spec-
ification of semantic relationships occurring between the data. In [42] query
relaxations are applied to malleable schemas. Approximations are achieved by
query expansion techniques based on the discovery of correlations of attributes
and relationships in the data. However, query relaxations are not concerned
with entities’ labels, and thus the user must know the schema to start the
query. Furthermore, approximations on relationships are limited to edge substi-
tution, thus not considering structural relaxations to paths. A further relevant
work is [7] which emphasizes the need of supporting flexible query answering
over heterogeneous data sources. However, in that work the expressive power
of queries is limited. For instance, our Query 2 in the reference example can
not be expressed in the query language presented in [7]. Then, the work mainly
focuses on indexing aspects, and approximations on queries are limited to the
identification of synonyms. The proposal in [32] presents a hybrid query for-
malism which combines keyword search with structured queries, yet limited
to tree-shaped unary queries, i.e., queries with only a single target variable.
Furthermore, the work follows a pure IR approach where neither semantic nor
structural approximations are considered for the query answering process.

As to query answering methodology, proposals like [1, 3, 42, 38] are or-
thogonal/dual to ours because they focus on generating query relaxations to be
matched exactly in the data; the GeX query answering model instead founds on
a flexible query matching mechanism that supports approximations both on the
vocabulary and on the structure of a query. In line with this approach, GeX
offers a ranking model that measures answer goodness and a top-k retrieval
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algorithm that relies on it.
In the recent proposal [20] an innovative perspective is adopted: the match

of a query graph may not necessarily be (even approximately) isomorphic to
the query graph in terms of label and topologically equality. While opening
an interesting issue, the work is limited to deal with graphs having unlabeled
edges.

With regard to the efficiency of subgraph computation, an interesting ap-
proach is the one presented in [30] where a different perspective is taken: key-
words, that are admitted to appear also as data graph edges’ labels, are used
to retrieve data subgraphs connecting them, which to derive structured queries
from to be forwarded to a relational query engine. The main objective of this
step is making query formulation more effective. Efficient algorithms are intro-
duced for the computation of the top-k subgraphs. Similarly to our proposal,
efficiency of subgraph exploration is obtained by means of a summary structure
similar to a dataguide [13] where concept nodes are represented only once, in
intensional form. The subgraph exploration algorithm that relies on it derives
structured queries that are not guaranteed to return results, because the in-
tensional representation possibly exposes data relationships that holds only for
some data. Differently from [30] we exploit a summary structure to efficiently
retrieve instances of concept nodes too. However, these are only those con-
nected in a semantically meaningful way, being our structures founded on the
SR relation. Further, our algorithms retrieve the top-k query results, while [30]
retrieve the top-k queries. A further relevant work is [43] which, as said by its
authors, is the first proposal that focuses on indexing both the structure and
the labeling information of a large data graph to support approximate graph
query answering. Differently from GeX, approximation is not semantic, in that
it only admits the partial match of query nodes, while (unlabeled) query edges
are allowed to be approximated by data paths.

As to the ranking of results, the models proposed in [8, 19] consist of a really
valuable framework. However, these proposals are orthogonal to ours since they
follow a statistical approach which exploits some knowledge of the underlying
dataset. Our ranking model instead relies on scoring functions to evaluate the
semantic approximations occurring at both data nodes and data edges. How-
ever, it would be interesting to incorporate such probabilistic principles into
our model to enhance the ranking of results. The GID proposal [31] exploits
authority-flow ranking techniques to support a query-customized ranking of re-
sults, i.e., it allows the user to specify what ranking mechanism (if any) should
be used for each leg of the query. Nevertheless, since these techniques proved
to be expensive when interactively applied, optimization techniques have to be
necessarily employed. Similarly to our ranking model, the subgraph matching
cost function presented in [20] is computed on the basis of the linear combina-
tion of label and neighborhood similarity for each query node. However such
cost function is not designed to deal with partial query matches.
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8. Conclusions

We presented the GeX (Graph-eXplorer) approach to support the approxi-
mate matching of complex queries on graph-modeled data.

GeX offers a framework that generalizes the existing approaches and al-
lows for querying any datasets which conform to a graph representation. It
exhibits a highly expressive graph-based query language for queries ranging
from keyword-based to complex ones, by admitting several kinds of vague and
missing information, according to varying degrees of knowledge the user may
have.

GeX introduces the notion of Semantic Relatedness (SR) to identify mean-
ingfully related nodes in a data graph. To the authors’ knowledge, this is the
first work that explores the employment of a semantic notion like SR for struc-
tural query approximation. The aim is that of allowing for meaningful structural
relaxations only, by overcoming the limits of traditional topological-connection-
based approaches.

The feasibility of the GeX framework is proved by the introduction of data
structures and indices specifically designed to rely on the notion of SR. As an
improvement of [25], the data structures have been completely redesigned, by
definitely optimizing the space required to store the SR data. We have also
shown that GeX is enhanced with a top-k retrieval algorithm that guarantees
efficiency of execution, by exposing several cursor selection strategies, according
to different policies for building the best ranked answers as soon as possible.

Finally, the extensive experimental evaluation on various real world datasets,
in comparison with some relevant state-of-the-art proposals we simulated for
the purpose, shows the effectiveness of GeX query answering as well as very
good search time and indexing space performances. It is worth noting that the
generality of GeX in dealing with different datasets does not affect the query
answering mechanism proposed, rather it only impacts on the indices used to
access the data.

In our future work, we plan to complete GeX with a model to support query
formulation, by enabling the user to express queries in natural language.

Appendix A. An RDF-like Instantiation of SR

In this section, we show a possible instantiation of SR for an RDF-like data
model, as introduced in Section 3.1.

Such an instantiation relies on the notion of type. More precisely, data edges
are grouped together on the basis of the kind of relationship they represent.
We assume the existence of five edge types: property, type, isA, isPartOf, and
domRel. The type property is assigned to each edge between an instance node
and a value node. A sample of property edge is the edge e7 in the data graph
in Fig. 1. isA is an acyclic transitive relation which expresses a hierarchical
relationship between two classes while a type relation is used to link one entity
node to a class it belongs to. All the edges in Fig. 1 labeled subClassOf and
type are of type isA and type, respectively. isPartOf concerns the membership
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of an instance to another instance and, finally, domRel denotes any relationship
which can be established between instances. The data graph in Fig. 1 contains
two domRel edges: e8 and e10. In the following, τ(e) will denote the type of the
edge e.

The construction of SR on any data graph G = (N,E,LN , LE) conforming
to an RDF-like data model is performed in an incremental fashion through a
set of rewriting rules founded on the type semantics and the graph topology.
The approach we adopted in introducing the above rules is conservative as it is
exclusively based on types and does not make any assumption on the involved
labels. On the other hand, adopting a “näıve” approach for the SR expansion
could bring to misleading results. For instance, the author of a paper which
cites another paper is not the author of the cited paper. Thus, we prefer not
to overwhelm users with wrong results while accepting few false negatives. One
way to overcome this problem is to adopt a fine grain semantic analysis of the
chain of node and edge labels in order to state whether the starting node and
the ending node are semantically related or not. This study is out of the scope
of this paper and will be dealt with in our future work.

To this extent, similarly to [28] but for different purposes, the rewriting
system starts from a set of axiomatic rules for edges in E, and recursively adds
new node pairs by exploiting a set of extension rules. Each rule has a left-
hand part which states preconditions and a right-hand part which specifies the
properties of the node pair added to SR and the corresponding cost function c
instance. The following axiomatic rule initializes SR with the set of edges in
E7:

e ∈ E → {e|, τSR(e) = τG(e), p(e) = e}, c(e) = 0

while the following rules are used to associate each edge with a label:

τG(e) = isA → λSR(e) = isA

τG(e) = isPartOf → λSR(e) = isPartOf

τG(e) = type → λSR(e) = type

τG(e) = property → λSR(e) = λG(e)

τG(e) = domRel → λSR(e) = λG(e)

Note that whenever the node semantics is carried by the type, the node is
assigned a default label. Then, SR is extended by means of the rules shown in
Tab. A.4.

In particular, in rule (r1) the path associated to the newly added edge is
the concatenation of the two involved paths and the cost actually represents
the difference between the length of p(e′′) and the length of a direct connection
between x and z, i.e. 1.

For instance rule (1) applied to the data graph of Fig. 1 adds three edges to
SR:

7We use subscripts G and SR to distinguish the properties in the graph and in the semantic
relatedness relationship, respectively.
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For all e = (x, y), e′ = (y, z) ∈ SR:
(r1) τ(e) = τ(e′) = isAORτ(e) = type, τ(e′) = isAOR τ(e) = τ(e′) = isPartOf→

{e′′ = (x, z)|τ(e′′) = τ(e), λ(e′′) = λ(e), p(e′′) = p(e) ◦ 8p(e′)}, c(e′′) = c(e) + c(e′) + 1

For all p1, p2 properties, e = (x, y) ∈ SR:
(r2) τ((p1, p2)) = isA, λ(e) = pd(p1).λ→ {e′ = (x, y)|τ(e′) = pd(p2).τ, λ(e′) = pd(p2).λ, p(e′) = p(e)},

c(e′) = c(e) + 1

For all p properties, e = (x, y), e′ = (y, z) ∈ SR:
(r3) τ((p, aTrans)) = type, λ(e) = pd(p).λ, λ(e′) = pd(p).λ→

{e′′ = (x, z)|τ(e′′) = pd(p).τ, λ(e′′) = pd(p).λ, p(e′′) = p(e) ◦ p(e′)}, c(e′′) = c(e) + c(e′) + 1

For all p properties, cl classes, e = (x, y), (p, cl) ∈ SR:
(r4) τ((p, cl)) = domain, λ(e) = pd(p).λ→ {e′ = (x, cl)|τ(e′) = type, λ(e′) = type, p(e′) = p(e)},

c(e′) = c(e) + 1
(r5) τ((p, cl)) = range, λ(e) = pd(p).λ→ {e′ = (y, cl)|τ(e′) = type, λ(e′) = type, p(e′) = p(e)},

c(e′) = c(e) + 1

Table A.4: Rewriting rules for RDF-like graphs

e τ(e) λ(e) p(e) c(e)
(n6, n1) type type 〈e4, e1〉 1
(n7, n1) type type 〈e5, e2〉 1
(n13, n1) type type 〈e6, e3〉 1

Then, we extend the RDF-like data model and the related rewriting system in
order to take into account, besides the subclass hierarchies, other meaningful
class properties which can be defined in OWL and RDFS. In particular, we focus
on the property and domRel edges. For ease of reading, in the following we will
refer to the property and domRel edges by using the generic term “property”.

Properties in RDF-like graphs are defined by meta-level classes whose do-
mains and ranges are defined through the newly added edge types domain and
range and whose hierarchies are defined through isA edges. Moreover, when-
ever OWL descriptions are available, we consider the acyclic transitive property
characteristic and allow this characteristic to be stated through the edge type
type and the newly added class aTrans. For instance, the triples (cite, type,
aTrans), (cite, domain, Document), and (cite, range, Document) could define
property cite. Given this extended model, the rewriting system is extended
with rules (r2)-(r5) above. Function pd(·) associates any meta-level class defin-
ing a property with the property it defines (the label pd(·).λ and the type
pd(·).τ). To this end, we assume that the bound between each property defined
at meta-level and its use at instance level is made through the involved labels
which must be the same.

Rule (r2) states that all node pairs related by one property are also related
by its superproperties, rule (r3) extends rule (r1) to any transitive property,
while rule (r4) and (r5) exploit the property domain and range to add new class
instances. Finally, it is worth noting that the cost associated to each edge added
through rules (r2), (r4), and (r5) is not related to the path length but rather to
the number of node pairs used to infer them.
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Theorem 1 (convergence). SR is finite and unique.

Proof. First note that the rewriting system is monotone and finitely terminat-
ing. Moreover, it is also locally confluent. It follows that the rewriting system
is globally confluent. Therefore SR is finite and unique. �
Finally, we did not discuss the two property characteristics, namely inverse and
symmetric, due to the termination problem. Indeed, a repeated application
of any rewriting rule exploiting such characteristics would add new instances
to SR identical to some of the already included instances in SR, but paths
and costs. Thus, the process would never terminate. However, as we adopt a
distinct-node set semantics, we can directly compute SR instead of computing
SR and, then, reducing it. In this case, we would add each “virtual” edge only
once, the first time it is derived, as it can be shown that the cost of the instances
added afterwards would be higher.
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SPARQL Queries via Subgraph Matching. Proc. VLDB Endow., 4(8):482–
493, 2011.

Author Biographies

Federica Mandreoli got the Laurea degree in Computer Sci-
ence from the University of Bologna (Italy) in 1997. In 1997 she
started her Ph.D. experience at DEIS (University of Bologna)
and on March 2001 she received the Ph.D. degree in Computer
Science Engineering with a thesis entitled ”Temporal Schema
Versioning in Object-Oriented Databases”. She is currently
an assistant professor in the FIM Department of the Univer-
sity of Modena and Reggio Emilia. Her research interests in-
clude information and knowledge management for large data
sets, data sharing in P2P networks, and query processing over
graph-structured data.

Riccardo Martoglia received his Laurea Degree (cum Laude)
and his Ph.D. in Computer Engineering from the University of
Modena and Reggio Emilia. He is currently an assistant profes-
sor in the FIM Department of the same university. His research
themes are hot topics in the area of Databases, Information Sys-
tems, Information Retrieval and Semantic Web. In particular,
his work concerns the study of new methodologies for managing,
storing and querying large amounts of non-conventional infor-
mation, including textual, XML and graph data. He is author
of over 70 publications and has participated to many National
and International projects on the above mentioned topics.

40



Wilma Penzo received her MS degree in Computer Science
in 1993 from the University of Bologna, Italy, and her PhD
degree in Electronic and Computer Engineering from the same
University in 1997. Since 1996 she has been an Assistant Profes-
sor. She currently is with the Department of Computer Science
and Engineering (DISI), University of Bologna. Her recent re-
search interests include query processing on graph-based data,
stream data management, Semantic Web, semantic P2P sys-
tems. She also dealt with fuzzy query languages for multimedia
databases, semistructured databases, indexing and query pro-
cessing in XML digital libraries.

41


